Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorReis, Hatice Catal
dc.contributor.authorTurk, Veysel
dc.date.accessioned2025-03-12T11:55:20Z
dc.date.available2025-03-12T11:55:20Z
dc.date.issuedFebruary 2025en_US
dc.identifier.citationScopus EXPORT DATE: 12 March 2025 @ARTICLE{Reis20254697, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213069607&doi=10.1007%2fs00521-024-10629-w&partnerID=40&md5=d55ff4425c3b2b1cd9ea62a2ba527d4c}, affiliations = {Department of Geomatics Engineering, Gumushane University, Gumushane, 29000, Turkey; Department of Computer Engineering, University of Harran, Sanliurfa, 63000, Turkey}, correspondence_address = {H.C. Reis; Department of Geomatics Engineering, Gumushane University, Gumushane, 29000, Turkey; email: hcatal@gumushane.edu.tr}, publisher = {Springer Science and Business Media Deutschland GmbH}, issn = {09410643}, language = {English}, abbrev_source_title = {Neural Comput. Appl.} }en_US
dc.identifier.issn09410643
dc.identifier.uriscopus.com/record/display.uri?eid=2-s2.0-85213069607&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=ffb1f5f24e766d17ac09febd1bda4adf
dc.identifier.urihttps://link.springer.com/content/pdf/10.1007/s00521-024-10629-w.pdf?utm_source=scopus&getft_integrator=scopus
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6469
dc.description.abstractDespite their low incidence, brain tumors are one of the most invasive cancer types, constituting a significant burden of death and disease in all age groups. Early and accurate diagnosis of brain tumors plays a vital role in reducing mortality rates. The heterogeneous nature of brain tumors and the diversity of tumor lesions may make it difficult for radiologists to make the right decision in the manual diagnosis process. This study proposes the use of machine learning methods for the classification of brain tumors (pituitary, meningioma, and glioma) and the use of metaheuristic algorithms graph theory, and random walker algorithms in the segmentation of brain tumors. The classification performed with the proposed method obtained an overall accuracy rate of 98.33%. In addition, the classification accuracy of 99.50%, 99.50%, 98.67%, and 99.00% was achieved for no tumor, pituitary, meningioma, and glioma, respectively. Experiments in the segmentation process show that metaheuristic algorithms and max-flow graph cut approach produce successful results. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBrain tumor detection; Computer vision; Deep learning; Graph theory; Image enhancement techniques; Metaheuristic algorithms; Re-transfer learningen_US
dc.subjectAdversarial machine learning; Contrastive Learning; Deep learning; Flow graphs; Graph algorithms; Heuristic methods; Image segmentation; Transfer learningen_US
dc.subjectBrain tumor detection; Brain tumors; Deep learning; Image enhancement technique; Meningiomas; Meta-heuristics algorithms; Novel strategies; Re-transfer learning; Transfer learning; Tumour detectionen_US
dc.subjectHeuristic algorithmsen_US
dc.titleAdvanced brain tumor analysis: a novel strategy for segmentation and classification using modern computational methodsen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümüen_US
dc.authorid0000-0003-2696-2446en_US
dc.identifier.volume37en_US
dc.identifier.issue6en_US
dc.identifier.startpage4697en_US
dc.contributor.institutionauthorCatal Reis, Hatice
dc.identifier.doi10.1007/s00521-024-10629-wen_US
dc.identifier.endpage4731en_US
dc.authorwosidJ-8592-2017en_US
dc.authorscopusid57192666861en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster