Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAykas, Didem-Peren
dc.contributor.authorMenevseoglu, Ahmed
dc.contributor.authorGunes, Nurhan
dc.date.accessioned2023-02-09T10:43:39Z
dc.date.available2023-02-09T10:43:39Z
dc.date.issued2022en_US
dc.identifier.citationDidem-Peren Aykas, Ahmed Menevseoglu, Nurhan Gunes, Information theory and machine learning based authentication of flaxseed oil using portable and handheld vibrational spectroscopy sensors, Chinese Journal of Analytical Chemistry, Volume 50, Issue 4, 2022, 100064, ISSN 1872-2040, https://doi.org/10.1016/j.cjac.2022.100064. (https://www.sciencedirect.com/science/article/pii/S1872204022000196)en_US
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1872204022000196?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.12440/5798
dc.description.abstractFlaxseed oil is one of the popular edible oils, and its adulteration has become a concern because of its high commodity value. Therefore, there is a need to detect adulterated flaxseeds with a rapid, non-invasive, and simple method to keep the quality of flaxseed oil. This study aimed to develop a machine learning algorithm and information theory to detect adulterated flaxseed oils by vibrational spectroscopy units combined with chemometrics. Oil spectra were collected with portable/handheld vibrational spectroscopic units and analyzed using conditional entropy, support vector machines (SVM), and soft independent modeling of class analogy (SIMCA) to generate classification models to identify the pureness of oils and partial least square regression (PLSR) to predict the adulterant levels and fatty acid distributions. Conditional entropy showed that two or three wavenumbers/shifts could discriminate the oils using machine learning algorithms with an accuracy of over 95%. SIMCA models determined the oils with an interclass distance (ICD) over 1.1. Specifically, the Fourier transform mid-infrared (FT-MIR) unit provided the best classification of the oils with ICD over 4.9. All instruments showed good performance in predicting fatty acids and adulteration levels with r(val) >= 0.89 and standard error prediction (SEP) <= 1.7 %. Overall, these portable/handheld units showed great potential for rapid, simple, and non-invasive monitoring to identify adulterated flaxseed oils.en_US
dc.language.isoengen_US
dc.publisherSCIENCE PRESSen_US
dc.relation.ispartofCHINESE JOURNAL OF ANALYTICAL CHEMISTRYen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectVibrational spectroscopyen_US
dc.subjectFlaxseed oien_US
dc.subjectAdulterationen_US
dc.subjectMachine learningen_US
dc.subjectSIMCAen_US
dc.subjectPLSRen_US
dc.titleInformation theory and machine learning based authentication of flaxseed oil using portable and handheld vibrational spectroscopy sensorsen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000791808700001en_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Gıda Mühendisliği Bölümüen_US
dc.authorid0000-0003-2454-7898en_US
dc.authorid0000-0003-4163-8679en_US
dc.identifier.volume50en_US
dc.identifier.issue4en_US
dc.contributor.institutionauthorMenevseoglu, Ahmed
dc.contributor.institutionauthorGüneş, Nurhan
dc.identifier.doi10.1016/j.cjac.2022.100064en_US
dc.authorwosidAAA-1336-2021en_US
dc.authorwosidA-2830-2016en_US
dc.authorscopusid57217136321en_US
dc.authorscopusid57193926002en_US
dc.description.wosqualityQ4en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster