Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTurk, Veysel
dc.contributor.authorKhoshelham, Kourosh
dc.contributor.authorKaya, Serhat
dc.contributor.authorCatal Reis, Hatice
dc.date.accessioned2023-01-30T07:29:12Z
dc.date.available2023-01-30T07:29:12Z
dc.date.issued2022en_US
dc.identifier.urihttps://link.springer.com/article/10.1007/s11517-021-02473-0
dc.identifier.urihttps://hdl.handle.net/20.500.12440/5597
dc.description.abstractCancer is among the common causes of death around the world. Skin cancer is one of the most lethal types of cancer. Early diagnosis and treatment are vital in skin cancer. In addition to traditional methods, method such as deep learning is frequently used to diagnose and classify the disease. Expert experience plays a major role in diagnosing skin cancer. Therefore, for more reliable results in the diagnosis of skin lesions, deep learning algorithms can help in the correct diagnosis. In this study, we propose InSiNet, a deep learning-based convolutional neural network to detect benign and malignant lesions. The performance of the method is tested on International Skin Imaging Collaboration HAM10000 images (ISIC 2018), ISIC 2019, and ISIC 2020, under the same conditions. The computation time and accuracy comparison analysis was performed between the proposed algorithm and other machine learning techniques (GoogleNet, DenseNet-201, ResNet152V2, EfficientNetB0, RBF-support vector machine, logistic regression, and random forest). The results show that the developed InSiNet architecture outperforms the other methods achieving an accuracy of 94.59%, 91.89%, and 90.54% in ISIC 2018, 2019, and 2020 datasets, respectively. Since the deep learning algorithms eliminate the human factor during diagnosis, they can give reliable results in addition to traditional methods. Graphical abstract: [Figure not available: see fulltext.] © 2022, International Federation for Medical and Biological Engineering.en_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofMedical and Biological Engineering and Computingen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectClassification; GoogleNet; InSiNet; Segmentation; Skin canceren_US
dc.subjectClassificationen_US
dc.subjectGoogleNeen_US
dc.subjectInSiNeten_US
dc.subjectSkin canceren_US
dc.titleInSiNet: a deep convolutional approach to skin cancer detection and segmentationen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000742753500050en_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümüen_US
dc.authorid0000-0003-2696-2446en_US
dc.identifier.volume60en_US
dc.identifier.issue3en_US
dc.identifier.startpage643en_US
dc.contributor.institutionauthorCatal Reis, Hatice
dc.identifier.doi10.1007/s11517-021-02473-0en_US
dc.identifier.endpage666en_US
dc.authorwosidFTB-1003-2022en_US
dc.authorscopusid57192666861en_US
dc.description.pubmedpublicationidPMID: 35028864en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster