Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÖnder, Emrah
dc.contributor.authorÖzdemir, Muhlis
dc.contributor.authorYıldırım, Fatih Bahadır
dc.date.accessioned2014-09-21T13:29:18Z
dc.date.available2014-09-21T13:29:18Z
dc.date.issued2013-06-30
dc.identifier.issn1309-4289
dc.identifier.urihttps://hdl.handle.net/20.500.12440/532
dc.identifier.urihttps://deliverypdf.ssrn.com/delivery.php?ID=437004004092116099113081000123080100113004071015039058088007021119000116065101122025101010116127126036124022109113075001029020016015022093033075002025017082125077027005089055101014124003121120088119118025120000082084103093018112119126090096021096031086&EXT=pdf&INDEX=TRUE
dc.description.abstractCombinatorial optimization problems are usually NP-hard and the solution space of them is very large. Therefore the set of feasible solutions cannot be evaluated one by one. Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are meta-heuristic techniques for combinatorial optimization problems. ABC and PSO are swarm intelligence based approaches and they are nature-inspired optimization algorithms. In this study ABC and PSO supported GA techniques were used for finding the shortest route in condition of to visit every city one time but the starting city twice. The problem is a well-known Symmetric Travelling Salesman Problem. Our travelling salesman problem (TSP) consists of 81 cities of Turkey. ABC and PSO-based GA algorithms are applied to solve the travelling salesman problem and results are compared with ant colony optimization (ACO) solution. Our research mainly focused on the application of ABC and PSO based GA algorithms in combinatorial optimization problem. Numerical experiments show that ABC and PSO supported GA are very competitive and have good results compared with the ACO, when it is applied to the regarding problem.en_US
dc.language.isoengen_US
dc.publisherKafkas Üniversitesi İktisadi İdari Bilimler Fakültesi Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Bee Colony Algorithmen_US
dc.subjectParticle Swarm Optimizationen_US
dc.subjectClusteringen_US
dc.subjectGenetic Algorithmen_US
dc.subjectTraveling Salesman Problemen_US
dc.subjectShortest Pathen_US
dc.subjectMeta-Heuristicsen_US
dc.subjectCombinatorial Problemsen_US
dc.titleCombinatorial Optimization Using artificial Bee Colony Algorithm and Particle Swarm Optimization Supported Genetic Algorithmen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, İktisadi ve İdari Bilimler Fakültesi, İşletme Bölümüen_US
dc.contributor.institutionauthorÖzdemir, Muhlis


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster