Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorReis, Hatice Catal
dc.contributor.authorKhoshelham, Kourosh
dc.date.accessioned2021-11-09T19:43:24Z
dc.date.available2021-11-09T19:43:24Z
dc.date.issued2021
dc.identifier.issn1866-7511
dc.identifier.issn1866-7538
dc.identifier.urihttps://doi.org/10.1007/s12517-021-08491-4
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3616
dc.description.abstractIn historical buildings, surface cracks are important indicators of potential structural damage. Natural disasters and indirect human factors, which are frequently encountered in recent periods, negatively affect historical buildings and structures. Fast and cost-effective crack detection methods play a key role in structural health monitoring of historical buildings. This paper presents methodologies for identifying concrete cracks using deep learning. We propose ReCRNet, a deep learning architecture designed for classifying images of cracks. The performance of the proposed method is evaluated and compared with state-of-the-art methods such as AlexNet, VGG 19, linear support vector machine (SVM), and decision tree (DT). The results show that ReCRNet achieves better performance in terms of accuracy, precision, recall, F1-score, and receiver operating characteristic (ROC), in comparison with the other crack classifiers. Accordingly, the proposed approach is recommended for automatic monitoring of historical buildings and building condition assessments.en_US
dc.description.sponsorshipScientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [2019/1, 1059B191900671]en_US
dc.description.sponsorshipThis research was supported by funding from The Scientific and Technological Research Council of Turkey (TUBITAK 2219-International Postdoctoral Research Fellowship Program, 2019/1, 1059B191900671).en_US
dc.language.isoengen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofArabian Journal of Geosciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCrack detectionen_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectReCRNeten_US
dc.subjectAlexNeten_US
dc.subjectVGG 19en_US
dc.subjectSVMen_US
dc.subjectDTen_US
dc.titleReCRNet: a deep residual network for crack detection in historical buildingsen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000705863200003en_US
dc.description.scopuspublicationid2-s2.0-85116425223en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridKhoshelham, Kourosh / 0000-0001-6639-1727
dc.identifier.volume14en_US
dc.identifier.issue20en_US
dc.identifier.doi10.1007/s12517-021-08491-4
dc.authorwosidKhoshelham, Kourosh / A-3789-2010
dc.authorscopusid57192666861
dc.authorscopusid9737355300


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster