Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKülekçi, Gökhan
dc.contributor.authorHacıefendioğlu, Kemal
dc.contributor.authorBaşağa, Hasan Basri
dc.date.accessioned2025-06-02T11:40:56Z
dc.date.available2025-06-02T11:40:56Z
dc.date.issuedApril 2025en_US
dc.identifier.citationScopus EXPORT DATE: 02 June 2025 @ARTICLE{Külekçi2025802, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001298937&doi=10.1007%2fs12613-024-3048-8&partnerID=40&md5=bb3e139a9e699af8b212ed9ef1c70fdc}, affiliations = {Mining Engineering Department, Faculty of Engineering and Natural Sciences, Gümüşhane University, Gümüşhane, Turkey; Department of Civil Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey; Earthquake and Structural Health Application and Research Center, Karadeniz Technical University, Trabzon, Turkey; Civil Engineering Academy R & D Software Consulting Limited Company, Samsun, Turkey}, correspondence_address = {G. Külekçi; Mining Engineering Department, Faculty of Engineering and Natural Sciences, Gümüşhane University, Gümüşhane, Turkey; email: gokhankulekci@gmail.com}, publisher = {University of Science and Technology Beijing}, issn = {16744799}, language = {English}, abbrev_source_title = {Int. J. Miner. Metall. Mater.} }en_US
dc.identifier.issn16744799
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-105001298937&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=b660d8352dab53a7ad3e5d6361843ac2
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6523
dc.description.abstractThe precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance. Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise, often complicated by the coexistence of other minerals. This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals. The utilizied four advanced deep learning models—PSPNet, U-Net, FPN, and LinkNet—has significant advancements in efficiency and accuracy. Among these models, PSPNet exhibited superior performance, achieving the highest intersection over union (IoU) scores and demonstrating exceptional reliability in segmenting quartz minerals, even in complex scenarios. The study involved a comprehensive dataset of 120 thin sections, encompassing 2470 hyperspectral images prepared from 20 rock samples. Expert-reviewed masks were used for model training, ensuring robust segmentation results. This automated approach not only expedites the recognition process but also enhances reliability, providing a valuable tool for geologists and advancing the field of mineralogical analysis. © University of Science and Technology Beijing 2025.en_US
dc.language.isoengen_US
dc.publisherUniversity of Science and Technology Beijingen_US
dc.relation.ispartofUniversity of Science and Technology Beijingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdeep learning; deep learning in geology; hyperspectral imaging; quartz mineral identificationen_US
dc.titleEnhancing mineral processing with deep learning: Automated quartz identification using thin section imagesen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Maden Mühendisliği Bölümüen_US
dc.authorid0000-0002-2971-4045en_US
dc.identifier.volume32en_US
dc.identifier.issue4en_US
dc.identifier.startpage802en_US
dc.contributor.institutionauthorKülekçi, Gökhan
dc.identifier.doi10.1007/s12613-024-3048-8en_US
dc.identifier.endpage816en_US
dc.authorscopusid55710944000en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster