Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorPolat, Eray
dc.contributor.authorÇelik, Fatih
dc.contributor.authorArici, Hasan Evrim
dc.contributor.authorKöseoglu, Mehmet Ali
dc.date.accessioned2025-03-17T11:59:26Z
dc.date.available2025-03-17T11:59:26Z
dc.date.issued2024en_US
dc.identifier.citationScopus EXPORT DATE: 17 March 2025 @ARTICLE{Polat2024, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85213472781&doi=10.1080%2f13683500.2024.2446410&partnerID=40&md5=7dcca7f3b20af1c388ccb4a67770ac02}, affiliations = {Faculty of Tourism, Gumushane University, Gumushane, Turkey; Department of Marketing and Advertising, Trabzon University, Trabzon, Turkey; Faculty of Tourism, Kastamonu University, Kastamonu, Turkey; EU Business School, European University, Munich, Germany; College of Management, Metropolitan State University, Saint Paul, MN, United States}, correspondence_address = {E. Polat; Faculty of Tourism, Gumushane University, Gumushane, Turkey; email: eraypolat38@gmail.com}, publisher = {Routledge}, issn = {13683500}, language = {English}, abbrev_source_title = {Curr. Issues Tour.} }en_US
dc.identifier.uriscopus.com/record/display.uri?eid=2-s2.0-85213472781&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=ecde7f4f922864c668b195429fc445c8
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6477
dc.description.abstractIn the dynamic nature of hospitality and tourism (H&T) research, it is increasingly difficult to distinguish highly-cited-papers (HCPs) due to the rapid proliferation of publications. This study employs machine learning techniques to identify the predictors of citation counts in H&T research over both short-term (5-year) and long-term (20-year) periods using HCPs. The analysis integrates a theoretical framework comprising normative theory and social constructivist theory. The findings indicate that international citation, PlumXmetrics, and early citations are the most effective determinants in both periods. Furthermore, while the importance of international citations is evident in both periods, the order of importance of the other two predictors changes. PlumXmetrics are more important in the long-term, while early citations are more important in the short-term. In conclusion, this comprehensive and up-to-date study of citation dynamics provides valuable insights for scholars and other stakeholders interested in enhancing the visibility and influence of H&T literature. © 2024 Informa UK Limited, trading as Taylor & Francis Group.en_US
dc.language.isoengen_US
dc.publisherRoutledgeen_US
dc.relation.ispartofCurrent Issues in Tourismen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcitation behaviour; Highly-cited-papers; machine learning; normative theory; predictors of citations; social constructivist theoryen_US
dc.titlePredictors of citations: an analysis of highly-cited-papers in hospitality and tourism research using a machine learning approachen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Turizm Fakültesi, Gastronomi ve Mutfak Sanatlarıen_US
dc.authorid0000-0003-1470-4298en_US
dc.contributor.institutionauthorPolat, Eray
dc.identifier.doi10.1080/13683500.2024.2446410en_US
dc.authorscopusid57911061600en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster