Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇatal Reis, Hatice
dc.contributor.authorTürk, Veysel
dc.contributor.authorKaya, Serhat
dc.date.accessioned2025-03-07T11:47:43Z
dc.date.available2025-03-07T11:47:43Z
dc.date.issued15 December 2023en_US
dc.identifier.citationScopus EXPORT DATE: 07 March 2025 @ARTICLE{Çatal Reis202342, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85209218839&doi=10.53093%2fmephoj.1301980&partnerID=40&md5=4eb3b377e7f91dc2373c3bcef4da5522}, affiliations = {Gümüşhane University, Department of Geomatics Engineering, Turkey; Harran University, Department of Computer Engineering, Turkey; Dicle University, Department of Mining Engineering, Turkey}, correspondence_address = {H. Çatal Reis; Gümüşhane University, Department of Geomatics Engineering, Turkey; email: hatice.catal@yahoo.com.tr}, publisher = {Mersin University}, issn = {2687654X}, language = {English}, abbrev_source_title = {Mersin Photogrammetry J.} }en_US
dc.identifier.uriscopus.com/record/display.uri?eid=2-s2.0-85209218839&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=f29230ae3908530dd995d90330edcb38
dc.identifier.uri2687654X
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6440
dc.description.abstractMedical data such as computed tomography (CT), magnetic resonance imaging (MRI), and Ultrasound images are used in medical photogrammetry. CT images have been used frequently in recent years for the diagnosis of COVID-19 disease, which has contagious and fatal symptoms. CT is an effective method for early detection of lung anomalies due to COVID-19 infection. Machine learning (ML) techniques can be used to detect and diagnose medical diseases. In particular, classification methods are applied for disease diagnosis and diagnosis. This study proposes traditional machine learning algorithms Random Forest, Logistic Regression, K-Nearest Neighbor and Naive Bayes, and an ensemble learning model to detect COVID-19 anomalies using CT images. According to the experimental findings, the proposed ensemble learning model produced an accuracy of 96.71%. This study can help identify the fastest and most accurate algorithm that predicts CT images with Covid-19 during the epidemic process. In addition, machine learning-based approaches can support healthcare professionals and radiologists in the diagnostic phase. © Author(s) 2023.en_US
dc.language.isoengen_US
dc.publisherMersin Universityen_US
dc.relation.ispartofMersin Photogrammetry Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectChest CT-scan images; Machine Learning; Medical Image Processing; Medical Photogrammetry; SARS-CoV-2en_US
dc.titleDetection of COVID-19 infection from CT images using the medical photogrammetry techniqueen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümüen_US
dc.authorid0000-0003-2696-2446en_US
dc.identifier.volume5en_US
dc.identifier.issue2en_US
dc.identifier.startpage42en_US
dc.contributor.institutionauthorCatal Reis, Hatice
dc.identifier.doi10.53093/mephoj.1301980en_US
dc.identifier.endpage54en_US
dc.authorwosidJ-8592-2017en_US
dc.authorscopusid57192666861en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster