Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYavuzdoğan, Ahmet
dc.contributor.authorTanır Kayıkçı, Emine
dc.date.accessioned2025-03-07T11:02:22Z
dc.date.available2025-03-07T11:02:22Z
dc.date.issuedFebruary 2025en_US
dc.identifier.citationScopus EXPORT DATE: 07 March 2025 @ARTICLE{Yavuzdoğan2025, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85209572491&doi=10.1016%2fj.ocemod.2024.102463&partnerID=40&md5=7fea6ce52bf50fa83287b25805421a94}, affiliations = {Gümüşhane University, Faculty of Engineering and Natural Sciences, Department of Geodesy, Gümüşhane, 29100, Turkey; Karadeniz Technical University, Faculty of Engineering, Department of Geodesy, Trabzon, 61000, Turkey}, correspondence_address = {A. Yavuzdoğan; Gümüşhane University, Faculty of Engineering and Natural Sciences, Department of Geodesy, Gümüşhane, 29100, Turkey; email: yavuzdogan@gumushane.edu.tr}, publisher = {Elsevier Ltd}, issn = {14635003}, language = {English}, abbrev_source_title = {Ocean Model.} }en_US
dc.identifier.uriscopus.com/record/display.uri?eid=2-s2.0-85209572491&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=353bda451710a91347ca2e5550acbc12
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6434
dc.description.abstractRising sea levels pose significant risks to coastal communities and ecosystems. Accurate modeling of sea level changes is crucial for effective environmental management and disaster mitigation. Machine learning methods are emerging as an important asset in improving sea level predictions and understanding the impacts of climate change. Especially, Long Short-Term Memory (LSTM) models have emerged as a powerful tool for sea level anomaly modeling, but there is an increasing need for more advanced models in this area. This study enhances existing methodologies by introducing a novel approach using an LSTM Auto-Encoder model, designed to compress input data into a lower-dimensional latent space before reconstructing it, thereby capturing complex temporal dependencies and anomalies effectively. We compared LSTM Auto-Encoder model performance with that of a Stacked LSTM network, which learns complex temporal patterns through multiple layers, and a traditional damped-persistence statistical model. Our results demonstrate that the LSTM Auto-Encoder model not only outperformed these models in predicting sea level anomalies across various lead times but also exhibited superior generalization capabilities across both satellite altimeter and in-situ data. These findings highlight the potential of the LSTM Auto-Encoder model as a powerful tool in coastal management and climate change studies, underscoring the critical role of advanced machine learning techniques in enhancing our predictive abilities and informing disaster preparedness strategies. © 2024 Elsevier Ltden_US
dc.language.isoengen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofOcean Modellingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnomaly modeling; Black sea; Deep learning; LSTM; LSTM Auto-Encoder; Sea levelen_US
dc.titleAdvancing sea level anomaly modeling in the black sea with LSTM Auto-Encoders: A novel approachen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümüen_US
dc.authorid0000-0002-9898-4946en_US
dc.identifier.volume193en_US
dc.contributor.institutionauthorYavuzdoğan, Ahmet
dc.identifier.doi10.1016/j.ocemod.2024.102463en_US
dc.authorwosidIXD-2565-2023en_US
dc.authorscopusid57219026110en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster