Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKosmaz Sunnetci, Betul
dc.contributor.authorBingol, Ozkan
dc.contributor.authorGedikli, Eyup
dc.contributor.authorEkinci, Murat
dc.date.accessioned2025-03-06T12:47:05Z
dc.date.available2025-03-06T12:47:05Z
dc.date.issued21 September 2024through 22 September 2024en_US
dc.identifier.citationScopus EXPORT DATE: 06 March 2025 @CONFERENCE{Kosmaz Sunnetci2024, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207886375&doi=10.1109%2fIDAP64064.2024.10710885&partnerID=40&md5=234ef9a4992cea992ad20525cd3b08f8}, affiliations = {Gumushane University, Department of Mathematical Engineering, Gümüşhane, Turkey; Gumushane University, Department of Software Engineering, Gümüşhane, Turkey; Karadeniz Technical University, Department of Software Engineering, Trabzon, Turkey; Karadeniz Technical University, Department of Computer Engineering, Trabzon, Turkey}, correspondence_address = {B. Kosmaz Sunnetci; Gumushane University, Department of Mathematical Engineering, Gümüşhane, Turkey; email: betul.kosmaz@gumushane.edu.tr}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, isbn = {979-833153149-2}, language = {English}, abbrev_source_title = {Int. Artif. Intell. Data Process. Symp., IDAP} }en_US
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85207886375&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=af7c149f959d6a8a6accf18d8012c2cf
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6429
dc.description.abstractAutomatic ROI extraction from hand images is a critical step in palmprint recognition. Traditional methods involve steps such as identifying the region of the hand, finding the valleys between the fingers and marking the palm area. Some of these processes are performed manually and some are performed with image processing techniques. However, these methods are time-consuming, vulnerable to human error, and computationally redundant. In this study, a deep learning-based convolutional neural network is developed for high-performance automatic ROI extraction from hand images. The proposed method eliminates the hand segmentation process and provides a solution where the palm region can be automatically selected directly. This reduces processing time, minimizes human error and improves overall accuracy. © 2024 IEEE.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectbiometric recognition; deep learning; palmprint; ROI localizationen_US
dc.titleHigh Performance Automatic ROI Extraction from Hand Images with Convolutional Neural Networksen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Mühendisliği Bölümüen_US
dc.authorid0000-0001-7715-0777en_US
dc.contributor.institutionauthorKosmaz Sunnetci, Betul
dc.identifier.doi10.1109/IDAP64064.2024.10710885en_US
dc.authorwosidDBA-7333-2022en_US
dc.authorscopusid57222983551en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster