Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYaprak, Busranur
dc.contributor.authorGedikli, Eyup
dc.date.accessioned2025-03-06T09:30:00Z
dc.date.available2025-03-06T09:30:00Z
dc.date.issued4 September 2024through 6 September 2024en_US
dc.identifier.citationScopus EXPORT DATE: 06 March 2025 @CONFERENCE{Yaprak2024, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206477041&doi=10.1109%2fINISTA62901.2024.10683858&partnerID=40&md5=0e93de4c3a21a3af2042da34a801bbd0}, affiliations = {Gümüşhane University, Department of Software Engineering, Gümüşhane, Turkey; Karadeniz Technical University, Department of Software Engineering, Trabzon, Turkey}, correspondence_address = {B. Yaprak; Gümüşhane University, Department of Software Engineering, Gümüşhane, Turkey; email: busra.kucukugurlu@gumushane.edu.tr}, editor = {Badica C. and Ivanovic M. and Koprinkova-Hristova P. and Leon F. and Manolopoulos Y. and Yildirim T. and Ucar A.}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, isbn = {979-835036813-0}, language = {English}, abbrev_source_title = {Int. Conf. INnov. Intell. Syst. Appl., INISTA} }en_US
dc.identifier.issn979-835036813-0
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85206477041&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=e0b169034a7d168bbbadfd222c4d8ae7
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6410
dc.description.abstractGait recognition aims to identify people from a distance by analyzing their walking style. Nevertheless, the efficacy of recognition drops significantly under cross-view and, appearance-based variations such as carrying and clothing. In this study, the performance of the MobileNet-V1 deep network is evaluated in various scenarios to address the cross-view gait recognition problem. In the first scenario, the fine-tuned MobileNet-V1 is evaluated on Gait Energy Images (GEI) as input data, while in the second scenario, the fine-tuned MobileNet-V1 is assessed with Optical Flows and masked RGB frames input data. In the last scenario, the first two scenarios are combined over a single fused deep network based on finetuned MobileNet-V1, and a single recognition process is performed using two different fused features data; GEI features with Optical Flow features, and GEI features with masked RGB frame features. In the evaluation process, a comprehensive data set for the cross-view gait recognition problem, CASIA-B is used for the experiments. The obtained results demonstrate that in the last scenario, the contribution of masked RGB frame features to the recognition rate of GEI is more significant. © 2024 IEEE.en_US
dc.description.sponsorshipDepartment of Computers and Information Technology of the Faculty of Automation, Computers and ElectronicsDepartment of Informatics of the Faculty of Mathematics and Natural SciencesDepartment of Statistics and Business Informatics of the Faculty of Economics and Business AdministrationDoctoral School "Constantin Belea"Syncro SoftUniversity of Craiovaen_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof18th International Conference on INnovations in Intelligent SysTems and Applications, INISTA 2024en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcross-view gait recognition; GEI; masked RGB frame; MobileNet; optical flowen_US
dc.titleIn Different Scenarios MobileNet-V1 for Cross-view Gait Recognitionen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.authorid0000-0002-6034-6850en_US
dc.contributor.institutionauthorYaprak, Büşranur
dc.identifier.doi10.1109/INISTA62901.2024.10683858en_US
dc.authorwosidMFZ-7904-2025en_US
dc.authorscopusid58938260300en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster