dc.contributor.author | Yaprak, Büşranur | |
dc.contributor.author | Gedikli, Eyüp | |
dc.contributor.author | Bingöl, Özkan | |
dc.contributor.author | Doğan, Ramazan Özgür | |
dc.date.accessioned | 2025-03-05T11:21:29Z | |
dc.date.available | 2025-03-05T11:21:29Z | |
dc.date.issued | 15 May 2024through 18 May 2024 | en_US |
dc.identifier.citation | Scopus
EXPORT DATE: 05 March 2025
@CONFERENCE{Yaprak2024,
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200852754&doi=10.1109%2fSIU61531.2024.10600941&partnerID=40&md5=22bc212710d9fc57a2773eadb94d575e},
affiliations = {Yazılım Mühendisliği Bölümü, Gümüşhane Üniversitesi, Gümüşhane, Turkey; Yazılım Mühendisliği Bölümü, Karadeniz Teknik Üniversitesi, Trabzon, Turkey; Yapay Zeka Mühendisliği Bölümü, Trabzon Üniversitesi, Trabzon, Turkey},
correspondence_address = {B. Yaprak; Yazılım Mühendisliği Bölümü, Gümüşhane Üniversitesi, Gümüşhane, Turkey; email: busra.kucukugurlu@gumushane.edu.tr},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
isbn = {979-835038896-1},
language = {Turkish},
abbrev_source_title = {IEEE Conf. Signal Process. Commun. Appl., SIU - Proc.}
} | en_US |
dc.identifier.isbn | 979-835038896-1 | |
dc.identifier.uri | scopus.com/record/display.uri?eid=2-s2.0-85200852754&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=3e7c0387fd0f6739aa75d838fadc8a55 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12440/6406 | |
dc.description.abstract | Gait recognition is a biometrics-based computer vision process used to identify people based on their walking styles. Compared to other types of biometrics, gait offers a more advantageous recognition process as it does not require high-resolution and close-range images and obtains without contact. But besides this, gait biometrics is highly affected by cross-view variation, and under this variation recognition performance decreases significantly. In this study, performance evaluations of fine-tuned VGG-16 and ResNet-50 deep CNN networks on the cross-view gait recognition problem are performed. For this purpose, Gait energy images (GEI) and Silhouettes obtained from CASIA-B, the most comprehensive data set in gait recognition, are given as input to the networks. The experimental results showed that the VGG-16 network achieved higher recognition rates in cross-view gait recognition. © 2024 IEEE. | en_US |
dc.language.iso | tur | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | cross-view gait recognition; deep CNN networks; GEI; Silhouette; VGG-16 | en_US |
dc.title | Cross-view Gait Recognition Based on Fine-Tuned Deep Networks | en_US |
dc.title.alternative | İnce-ayarlı Derin Ağlara Dayalı Çapraz-bakış Yürüyüş Tanıma | en_US |
dc.type | conferenceObject | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümü | en_US |
dc.authorid | 0000-0001-6415-5755 | en_US |
dc.contributor.institutionauthor | Bingöl, Özkan | |
dc.contributor.institutionauthor | Doğan, Ramazan Özgür | |
dc.identifier.doi | 10.1109/SIU61531.2024.10600941 | en_US |
dc.authorwosid | GLN-8177-2022 | en_US |
dc.authorwosid | F-7486-2015 | en_US |
dc.authorscopusid | 56247021800 | en_US |
dc.authorscopusid | 37036764200 | en_US |