dc.contributor.author | İncir, Ramazan | |
dc.contributor.author | Bozkurt, Ferhat | |
dc.date.accessioned | 2025-03-05T11:11:59Z | |
dc.date.available | 2025-03-05T11:11:59Z | |
dc.date.issued | 15 May 2024through 18 May 2024 | en_US |
dc.identifier.citation | Scopus
EXPORT DATE: 05 March 2025
@CONFERENCE{İncir2024,
url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200856887&doi=10.1109%2fSIU61531.2024.10600987&partnerID=40&md5=fc261ea76c74653e84c3044397e2a481},
affiliations = {Bilgisayar Teknolojileri Bölümü, Gümüşhane Üniversitesi, Gümüşhane, Turkey; Bilgisayar Mühendisliği Bölümü, Atatürk Üniversitesi, Erzurum, Turkey},
publisher = {Institute of Electrical and Electronics Engineers Inc.},
isbn = {979-835038896-1},
language = {Turkish},
abbrev_source_title = {IEEE Conf. Signal Process. Commun. Appl., SIU - Proc.}
} | en_US |
dc.identifier.isbn | 979-835038896-1 | |
dc.identifier.uri | scopus.com/record/display.uri?eid=2-s2.0-85200856887&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=1e2b036c34147a047ca5351725eb8ade | |
dc.identifier.uri | https://hdl.handle.net/20.500.12440/6405 | |
dc.description.abstract | Diabetic Retinopathy (DR) is a retinal disease caused by diabetes, representing one of the most prevalent causes of vision loss affecting millions of people worldwide. Swift detection and treatment of this condition are crucial for preventing the disease. Various deep learning and machine learning algorithms have been employed for disease detection and classification, often overlooking the data preprocessing stage. In the data preprocessing phase of this study, segmentation of important lesions, such as hard exudates, was conducted using the K-Means clustering method. The identified lesions were highlighted on the original images. The resulting dataset was then classified using pre-trained architectures, namely EfficientNetV2-M, ResNet50, MobileNet, and DenseNet121. After training on the APTOS dataset, the EfficientNetV2-M model achieved an accuracy of 95.16%. The classification results indicated the contribution of the lesion highlighting process during data preprocessing to the overall classification accuracy. © 2024 IEEE. | en_US |
dc.language.iso | tur | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Classification; Diabetic Retinopathy; K-Means Clustering; Pre-trained Models | en_US |
dc.title | A Study on the Segmentation and Classification of Diabetic Retinopathy Images Using the K-Means Clustering Method | en_US |
dc.title.alternative | Diyabetik Retinopati Görüntülerinin K-Means Kümeleme Yöntemi ile Bölütlenmesi ve Sınıflandırılması Üzerine Bir Çalışma | en_US |
dc.type | conferenceObject | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı | en_US |
dc.department | Meslek Yüksekokulları, Kelkit Aydın Doğan Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü | en_US |
dc.authorid | 0000-0002-7869-9945 | en_US |
dc.contributor.institutionauthor | İncir, Ramazan | |
dc.identifier.doi | 10.1109/SIU61531.2024.10600987 | en_US |
dc.authorscopusid | 58340510100 | en_US |