Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorİncir, Ramazan
dc.contributor.authorBozkurt, Ferhat
dc.date.accessioned2025-03-05T11:11:59Z
dc.date.available2025-03-05T11:11:59Z
dc.date.issued15 May 2024through 18 May 2024en_US
dc.identifier.citationScopus EXPORT DATE: 05 March 2025 @CONFERENCE{İncir2024, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200856887&doi=10.1109%2fSIU61531.2024.10600987&partnerID=40&md5=fc261ea76c74653e84c3044397e2a481}, affiliations = {Bilgisayar Teknolojileri Bölümü, Gümüşhane Üniversitesi, Gümüşhane, Turkey; Bilgisayar Mühendisliği Bölümü, Atatürk Üniversitesi, Erzurum, Turkey}, publisher = {Institute of Electrical and Electronics Engineers Inc.}, isbn = {979-835038896-1}, language = {Turkish}, abbrev_source_title = {IEEE Conf. Signal Process. Commun. Appl., SIU - Proc.} }en_US
dc.identifier.isbn979-835038896-1
dc.identifier.uriscopus.com/record/display.uri?eid=2-s2.0-85200856887&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=1e2b036c34147a047ca5351725eb8ade
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6405
dc.description.abstractDiabetic Retinopathy (DR) is a retinal disease caused by diabetes, representing one of the most prevalent causes of vision loss affecting millions of people worldwide. Swift detection and treatment of this condition are crucial for preventing the disease. Various deep learning and machine learning algorithms have been employed for disease detection and classification, often overlooking the data preprocessing stage. In the data preprocessing phase of this study, segmentation of important lesions, such as hard exudates, was conducted using the K-Means clustering method. The identified lesions were highlighted on the original images. The resulting dataset was then classified using pre-trained architectures, namely EfficientNetV2-M, ResNet50, MobileNet, and DenseNet121. After training on the APTOS dataset, the EfficientNetV2-M model achieved an accuracy of 95.16%. The classification results indicated the contribution of the lesion highlighting process during data preprocessing to the overall classification accuracy. © 2024 IEEE.en_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassification; Diabetic Retinopathy; K-Means Clustering; Pre-trained Modelsen_US
dc.titleA Study on the Segmentation and Classification of Diabetic Retinopathy Images Using the K-Means Clustering Methoden_US
dc.title.alternativeDiyabetik Retinopati Görüntülerinin K-Means Kümeleme Yöntemi ile Bölütlenmesi ve Sınıflandırılması Üzerine Bir Çalışmaen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.departmentMeslek Yüksekokulları, Kelkit Aydın Doğan Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümüen_US
dc.authorid0000-0002-7869-9945en_US
dc.contributor.institutionauthorİncir, Ramazan
dc.identifier.doi10.1109/SIU61531.2024.10600987en_US
dc.authorscopusid58340510100en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster