Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorŞengül, Süleyman
dc.contributor.authorBekiryazici, Zafer
dc.contributor.authorMerdan, Mehmet
dc.date.accessioned2024-10-24T06:49:12Z
dc.date.available2024-10-24T06:49:12Z
dc.date.issuedSeptember 2024en_US
dc.identifier.citationScopus EXPORT DATE: 24 October 2024 @ARTICLE{Şengül2024, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205264998&doi=10.3390%2ffractalfract8090533&partnerID=40&md5=5aafc203e03b15aa2ebf3abf709eaffa}, affiliations = {Department of Mathematics, Recep Tayyip Erdogan University, Rize, 53100, Turkey; Department of Mathematical Engineering, Gümüşhane University, Gümüşhane, 29100, Turkey}, correspondence_address = {M. Merdan; Department of Mathematical Engineering, Gümüşhane University, Gümüşhane, 29100, Turkey; email: mmerdan@gumushane.edu.tr}, publisher = {Multidisciplinary Digital Publishing Institute (MDPI)}, issn = {25043110}, language = {English}, abbrev_source_title = {Fractal Fract.} }en_US
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85205264998&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=a02a53d1b160366b191b8f0de98852bf
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6340
dc.description.abstractIn this study, the optimal q-Homotopy Analysis Method (optimal q-HAM) has been used to investigate fractional Abel differential equations. This article is designed as a case study, where several forms of Abel equations, containing Bernoulli and Riccati equations, are given with ordinary derivatives and fractional derivatives in the Caputo sense to present the application of the method. The optimal q-HAM is an improved version of the Homotopy Analysis Method (HAM) and its modification q-HAM and focuses on finding the optimal value of the convergence parameters for a better approximation. Numerical applications are given where optimal values of the convergence control parameters are found. Additionally, the correspondence of the approximate solutions obtained for these optimal values and the exact or numerical solutions are shown with figures and tables. The results show that the optimal q-HAM improves the convergence of the approximate solutions obtained with the q-HAM. Approximate solutions obtained with the fractional Differential Transform Method, q-HAM and predictor–corrector method are also used to highlight the superiority of the optimal q-HAM. Analysis of the results from various methods points out that optimal q-HAM is a strong tool for the analysis of the approximate analytical solution in Abel-type differential equations. This approach can be used to analyze other fractional differential equations arising in mathematical investigations. © 2024 by the authors.en_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.ispartofFractal and Fractionalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAbel differential equation; Caputo fractional derivative; fractional differential transform method; optimal q-homotopy analysis methoden_US
dc.titleApproximate Solutions of Fractional Differential Equations Using Optimal q-Homotopy Analysis Method: A Case Study of Abel Differential Equationsen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Matematik Mühendisliği Bölümüen_US
dc.authorid0000-0002-8509-3044en_US
dc.identifier.volume8en_US
dc.identifier.issue9en_US
dc.contributor.institutionauthorMerdan, Mehmet
dc.identifier.doi10.3390/fractalfract8090533en_US
dc.authorscopusid34980002400en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster