Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCELIK, Fatih
dc.contributor.authorCELIK, Kemal
dc.contributor.authorCELIK, Ayse
dc.date.accessioned2024-10-24T05:48:25Z
dc.date.available2024-10-24T05:48:25Z
dc.date.issuedDecember 2024en_US
dc.identifier.citationScopus EXPORT DATE: 24 October 2024 @ARTICLE{CELIK2024, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205275837&doi=10.1038%2fs41598-024-73803-z&partnerID=40&md5=3f8c6e1b2392fda63e702aba146971a4}, affiliations = {Department of Geomatic Engineering, Yıldız Technical University, Esenler, Istanbul, Turkey; Department of Geomatics Engineering, Gumushane University, Gumushane, Turkey; Gumushane University, Kelkit Aydın Dogan Meslek Yuksekokulu, Gumushane, Turkey}, correspondence_address = {F. CELIK; Department of Geomatic Engineering, Yıldız Technical University, Esenler, Istanbul, Turkey; email: F.alpcelik@gmail.com}, publisher = {Nature Research}, issn = {20452322}, pmid = {39333699}, language = {English}, abbrev_source_title = {Sci. Rep.} }en_US
dc.identifier.urihttps://www.scopus.com/record/display.uri?eid=2-s2.0-85205275837&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=bb9125c606126a81e29647122effa2d5
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6339
dc.description.abstractBrain tumors pose a serious threat to public health, impacting thousands of individuals directly or indirectly worldwide. Timely and accurate detection of these tumors is crucial for effective treatment and enhancing the quality of patients’ lives. The widely used brain imaging technique is magnetic resonance imaging, the precise identification of brain tumors in MRI images is challenging due to the diverse anatomical structures. This paper introduces an innovative approach known as the ensemble attention mechanism to address this challenge. Initially, the approach uses two networks to extract intermediate- and final-level feature maps from MobileNetV3 and EfficientNetB7. This assists in gathering the relevant feature maps from the different models at different levels. Then, the technique incorporates a co-attention mechanism into the intermediate and final feature map levels on both networks and ensembles them. This directs attention to certain regions to extract global-level features at different levels. Ensemble of attentive feature maps enabling the precise detection of various feature patterns within brain tumor images at both model, local, and global levels. This leads to an improvement in the classification process. The proposed system was evaluated on the Figshare dataset and achieved an accuracy of 98.94%, and 98.48% for the BraTS 2019 dataset which is superior to other methods. Thus, it is robust and suitable for brain tumor detection in healthcare systems. © The Author(s) 2024.en_US
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.relation.ispartofScientific Reportsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAttention; Brain tumor; Classification; CNN; Deep learningen_US
dc.titleEnhancing brain tumor classification through ensemble attention mechanismen_US
dc.typearticleen_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümüen_US
dc.authorid0000-0003-0662-5901en_US
dc.authorid0000-0003-1495-297Xen_US
dc.identifier.volume14en_US
dc.identifier.issue1en_US
dc.contributor.institutionauthorCELIK, Kemal
dc.contributor.institutionauthorCELIK, Ayse
dc.identifier.doi10.1038/s41598-024-73803-zen_US
dc.authorscopusid57208770844en_US
dc.authorscopusid59348091200en_US
dc.description.pubmedpublicationid39333699en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster