Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKarsli F.
dc.contributor.authorDihkan M.
dc.contributor.authorAKBULUT ZEYNEP
dc.contributor.authorOzdemir Samed
dc.date.accessioned2024-05-06T12:13:54Z
dc.date.available2024-05-06T12:13:54Z
dc.date.issued8 March 2024en_US
dc.identifier.citationScopus EXPORT DATE: 02 May 2024 @CONFERENCE{Akbulut20247, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85187806039&doi=10.5194%2fisprs-archives-XLVIII-4-W9-2024-7-2024&partnerID=40&md5=a4a16674e306a757760aeba65a7be073}, affiliations = {Gumushane University, Faculty of Engineering and Natural Sciences, Department of Geomatics Engineering, Gumushane, Turkey; Karadeniz Technical University, Faculty of Engineering, Department of Geomatics Engineering, Trabzon, Turkey}, correspondence_address = {Z. Akbulut; Gumushane University, Faculty of Engineering and Natural Sciences, Department of Geomatics Engineering, Gumushane, Turkey; email: zeynepakbulut@gumushane.edu.tr}, editor = {Isikdag U. and Bayram B.}, publisher = {International Society for Photogrammetry and Remote Sensing}, issn = {16821750}, language = {English}, abbrev_source_title = {Int. Arch. Photogramm., Remote Sens. Spat. Inf. Sci. - ISPRS Arch.} }en_US
dc.identifier.issn16821750
dc.identifier.urihttps://isprs-archives.copernicus.org/articles/XLVIII-4-W9-2024/7/2024/
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6211
dc.description.abstractThe objective of the study is to conduct a comprehensive examination of how different neighbourhood types, namely spherical, cylindrical, and k-nearest neighbour (kNN), influence the feature extraction capabilities of the PointNet++ architecture in the semantic segmentation of Airborne Laser Scanning (ALS) point clouds. Two datasets are utilized for semantic segmentation analysis: the Dayton Annotated LiDAR Earth Scan (DALES) and the ISPRS 3D Semantic Labelling Benchmark datasets. In the experiments, the kNN method exhibited approximately 1% higher accuracy in weighted mean F1 and intersection over union (IoU) metrics compared to the spherical and cylindrical neighbourhood types on the DALES dataset. However, in the generalization experiment conducted on the ISPRS dataset, the spherical neighbourhood achieved the best results in these metrics, outperforming the cylindrical neighbourhood by a small margin. Notably, the kNN method was the least accurate, with a decrease in accuracy of approximately 1% in both weighted mean IoU and F1 scores. These findings suggest that the features extracted from spherical and cylindrical neighbourhood types are more generalizable compared to those from the kNN method. © Author(s) 2024.en_US
dc.language.isoengen_US
dc.publisherInternational Society for Photogrammetry and Remote Sensingen_US
dc.relation.ispartofInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archivesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAirborne Laser Scanningen_US
dc.subjectDeep Neural Networken_US
dc.subjectNeighbourhood Typesen_US
dc.subjectPointNet++en_US
dc.subjectSemantic Segmentationen_US
dc.titleAN ANALYSIS OF NEIGHBOURHOOD TYPES FOR POINTNET++ IN SEMANTIC SEGMENTATION OF AIRBORNE LASER SCANNING DATAen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümüen_US
dc.authorid0000-0001-7217-899Xen_US
dc.authorid0000-0001-9801-1506en_US
dc.identifier.volume48en_US
dc.identifier.issue4/W9-2024en_US
dc.identifier.startpage7en_US
dc.contributor.institutionauthorAKBULUT, ZEYNEP
dc.contributor.institutionauthorOzdemir, Samed
dc.identifier.doi10.5194/isprs-archives-XLVIII-4-W9-2024-7-2024en_US
dc.identifier.endpage13en_US
dc.authorwosidJAD-2101-2023en_US
dc.authorwosidIXD-2301-2023en_US
dc.authorscopusid57270443800en_US
dc.authorscopusid57212912948en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster