Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSahin, Ali Kivanc
dc.contributor.authorCavdar, Bora
dc.contributor.authorDogan, Ramazan Ozgur
dc.contributor.authorAyas, Selen
dc.contributor.authorOzgenc, Busra
dc.contributor.authorAyas, Mustafa Sinasi
dc.date.accessioned2023-12-14T10:24:29Z
dc.date.available2023-12-14T10:24:29Z
dc.date.issued2023en_US
dc.identifier.citationA. K. Sahin, B. Cavdar, R. O. Dogan, S. Ayas, B. Ozgenc and M. S. Ayas, "A Hybrid CNN-LSTM Framework for Unsupervised Anomaly Detection in Water Distribution Plant," 2023 Innovations in Intelligent Systems and Applications Conference (ASYU), Sivas, Turkiye, 2023, pp. 1-6, doi: 10.1109/ASYU58738.2023.10296546.en_US
dc.identifier.urihttps://ieeexplore.ieee.org/document/10296546
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6109
dc.description.abstractTo reduce potential threats to public health and economic losses, water distribution systems, which are critical parts of industrial control systems, require accurate and effective anomaly detection. The successful incorporation of machine learning models into anomaly detection procedures has been made possible by recent developments in computer science. In this research, a hybrid CNN-LSTM framework for anomaly detection in water distribution systems is presented using Python programming language in the JupyterLab environment. The performance of the proposed CNN-LSTM network model is carefully evaluated on the publicly available WADI dataset, which contains several types of attacks for a water distribution testbed, using a statistical window-based anomaly detection approach. The experimental results show acceptable precision, recall and F1 scores of 0.8619, 0.7041, and 0.775, respectively, demonstrating the efficiency of the framework in detecting anomalies in the water distribution system. © 2023 IEEE.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomaly detectionen_US
dc.subjectCNN-LSTM network modelen_US
dc.subjectWADI dataseten_US
dc.subjectWater distribution systemsen_US
dc.titleA Hybrid CNN-LSTM Framework for Unsupervised Anomaly Detection in Water Distribution Planten_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.authorid0000-0001-6415-5755en_US
dc.contributor.institutionauthorDogan, Ramazan Ozgur
dc.identifier.doi10.1109/ASYU58738.2023.10296546en_US
dc.authorwosidGLN-8177-2022en_US
dc.authorscopusid56247021800en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster