Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOzgenc, Busra
dc.contributor.authorAyas, Selen
dc.contributor.authorDogan, Ramazan Ozgur
dc.contributor.authorCavdar, Bora
dc.contributor.authorSahin, Ali Klvanc
dc.contributor.authorAyas, Mustafa Sinasi
dc.date.accessioned2023-10-16T07:57:10Z
dc.date.available2023-10-16T07:57:10Z
dc.date.issued2023en_US
dc.identifier.citationB. Özgenç, S. Ayas, R. Ö. Doğan, B. Çavdar, A. K. Şahin and M. Ş. Ayas, "Anomaly Detection in Predicted Water Treatment Data Using Hybrid CNN-LSTM Network Model," 2023 31st Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkiye, 2023, pp. 1-4, doi: 10.1109/SIU59756.2023.10223947.en_US
dc.identifier.urihttps://ieeexplore.ieee.org/document/10223947
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6062
dc.description.abstractWater treatment systems are among the industrial control systems where it is essential to detect anomalies accurately and efficiently due to the potential threat to public health. With advances in computer science, machine learning models have been successfully used in the anomaly detection process in recent years. In this paper, a hybrid CNN-LSTM network model is proposed to detect anomalies in water systems. Using a statistical window-based anomaly detection approach, the performance of the proposed model in detecting different types of attacks is analyzed on the open SWaT dataset. Experimental results show that the precision, recall and F1-score values of the proposed model are 0.994, 0.973 and 0.983, respectively, and can be successfully used to detect anomalies in water treatment systems.en_US
dc.language.isoturen_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIUen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectwater treatment systemsen_US
dc.subjectanomaly detectionen_US
dc.subjectcyber attacken_US
dc.subjectSWaT data seten_US
dc.titleAnomaly Detection in Predicted Water Treatment Data using Hybrid CNN-LSTM Network Modelen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:001062571000174en_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.authorid0000-0001-6415-5755en_US
dc.contributor.institutionauthorDogan, Ramazan Ozgur
dc.identifier.doi10.1109/SIU59756.2023.10223947en_US
dc.authorwosidGLN-8177-2022en_US
dc.authorscopusid56247021800en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster