Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKobya, Mehmet Emin
dc.contributor.authorTure, Hayati
dc.contributor.authorDogan, Ramazan Ozgur
dc.contributor.authorKayikcioglu, Temel
dc.contributor.authorTeymur, Aykut
dc.date.accessioned2023-10-13T13:06:16Z
dc.date.available2023-10-13T13:06:16Z
dc.date.issued2023en_US
dc.identifier.citationM. E. Kobya, H. Türe, R. Ö. Doğan, T. Kayikçioğlu, A. Teymur and S. Kul, "Kontrastlı Mamografi Görüntülerinde Kitlelerin Şekil ve Birinci Dereceden İstatistiksel Özniteliklere Dayalı Sınıflandırması," 2023 31st Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkiye, 2023, pp. 1-4, doi: 10.1109/SIU59756.2023.10223839.en_US
dc.identifier.urihttps://ieeexplore.ieee.org/document/10223839/authors#authors
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6061
dc.description.abstractMammography is a valuable tool in the diagnosis and staging of primary breast cancer. Contrast-enhanced mammography (CEM) combines an iodinated contrast agent with traditional mammography to increase diagnostic accuracy, especially in women with more dense parenchymal background patterns. In this study, a Decision Support System (DSS) is proposed that classifies masses using radiomic features obtained from masks of benign and malignant masses in images obtained with the CEM technique. An open-access database containing 2006 CEM images was used in this study. Radiomic features obtained from these images were used to identify differences between benign and malignant masses. The DSS uses these features to classify masses using a decision tree algorithm. This study highlights the importance of the use of iodinated contrast agents to improve diagnostic accuracy in women with more dense parenchymal background patterns. Additionally, it emphasizes the potential benefits of a DSS, in combination with radiomic features, in the diagnosis and staging of breast cancer. In conclusion, this study demonstrates that the use of radiomic features in mammography images obtained with the CEM technique is an effective way to classify benign and malignant masses.The use of this technology could be an important tool in the early diagnosis and accurate classification of breast cancer.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.ispartof2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIUen_US
dc.rightsinfo:eu-repo/semantics/restrictedAccessen_US
dc.subjectContrast Enhanced Mammographyen_US
dc.subjectRadiomic featuresen_US
dc.subjectDecision Support Systemen_US
dc.subjectClassificationen_US
dc.subjectBreast Canceren_US
dc.titleAlert Results Shape of Masses in Contrast Mammography Images and First Order Statistical Features Classification Based on 5 of 11 Shape of Masses in Contrast Mammography Images and First Order Statistical Features Classification Based onen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:001062571000086en_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.authorid0000-0001-6415-5755en_US
dc.contributor.institutionauthorDogan, Ramazan Ozgur
dc.identifier.doi10.1109/SIU59756.2023.10223839en_US
dc.authorwosidGLN-8177-2022en_US
dc.authorscopusid56247021800en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster