Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSevim, Zeynep
dc.contributor.authorDogan, Hulya
dc.contributor.authorDemir, Zeynep
dc.contributor.authorSezen, Feride Sena
dc.contributor.authorDogan, Ramazan Ozgur
dc.date.accessioned2023-09-06T06:51:46Z
dc.date.available2023-09-06T06:51:46Z
dc.date.issued2023en_US
dc.identifier.citationZ. Sevim, H. Dogan, Z. Demir, F. S. Sezen and R. O. Dogan, "An Extensive Study: Creation of A New Inverted Microscope Image Data Set and Improving Auto-Encoder Models for Higher Accuracy Segmentation of HaCaT Cell Culture Line," 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Istanbul, Turkiye, 2023, pp. 1-6, doi: 10.1109/HORA58378.2023.10156778.en_US
dc.identifier.urihttps://ieeexplore.ieee.org/document/1015677
dc.identifier.urihttps://hdl.handle.net/20.500.12440/6015
dc.description.abstractIn cell culture investigations, it is assumed that the number of cells is counted automatically without the need for forward planning, additional tools, or consumables. The automatic cell counting process is greatly facilitated and made functional by the segmentation of cell culture lines. Many studies with high-accuracy results have been developed for cell or tissue segmentation in images acquired from microscopic systems, but this success cannot be achieved for segmentation of cell culture line (especially in images acquired from inverted microscope). There are still restrictions in segmentation of cell culture line studies in inverted microscope systems. In this context, a new inverted microscope image data set is created and higher accuracy auto-encoder models are developed for segmentation of HaCat cell culture line. The analyzes of the developed auto-encoder models are evaluated using four different performance evaluation procedures which are Accuracy, Sensitivity, Specificity and Jaccard. In terms of the performance evaluation procedures used in this study, the achievements of the auto-encoder models are clearly satisfactory for the automated segmentation of the HaCat cell culture line. © 2023 IEEE.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofHORA 2023 - 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectauto-encoderen_US
dc.subjectcell cultureen_US
dc.subjectcell segmentationen_US
dc.subjectdeep learningen_US
dc.subjectinverted microscopeen_US
dc.titleAn Extensive Study: Creation of A New Inverted Microscope Image Data Set and Improving Auto-Encoder Models for Higher Accuracy Segmentation of HaCaT Cell Culture Lineen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans-Ögesi-Uluslararası-kurum-Öğretim-elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.authorid0000-0001-6415-5755en_US
dc.contributor.institutionauthorDogan, Ramazan Ozgur
dc.identifier.doi10.1109/HORA58378.2023.10156778en_US
dc.authorwosidGLN-8177-2022en_US
dc.authorscopusid56247021800en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster