Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBingöl, Özhan
dc.contributor.authorGüzey, Hacı Mehmet
dc.date.accessioned2023-07-20T13:14:55Z
dc.date.available2023-07-20T13:14:55Z
dc.date.issued2023en_US
dc.identifier.citationÖzhan Bingöl, Hacı Mehmet Güzey, Fixed-time neuro-sliding mode controller design for quadrotor UAV transporting a suspended payload, European Journal of Control, Volume 73, 2023, 100879, ISSN 0947-3580, https://doi.org/10.1016/j.ejcon.2023.100879. (https://www.sciencedirect.com/science/article/pii/S0947358023001073) Abstract: This study develops a fixed-time neuro-sliding mode controller to enhance the transient response and robustness of a quadrotor that is subjected to external disturbances and parameter uncertainties along with the dynamics of a suspended payload. A simple neural network with a fixed-time adaptive law is used to estimate unknown dynamics; therefore, no previous knowledge of dynamics is required to develop controllers. The neural network component will also help to eliminate the chattering effect of the sliding mode controller through its learning structure. Fixed-time convergence to desired trajectories is proven by detailed theoretical analysis based on the Lyapunov stability theorem, and to show the proposed controller’s effective performance, thorough numerical simulations are run. Keywords: Fixed-time stability; Neural network control; Quadrotor-suspended payload systemen_US
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0947358023001073?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.12440/5986
dc.description.abstractThis study develops a fixed-time neuro-sliding mode controller to enhance the transient response and robustness of a quadrotor that is subjected to external disturbances and parameter uncertainties along with the dynamics of a suspended payload. A simple neural network with a fixed-time adaptive law is used to estimate unknown dynamics; therefore, no previous knowledge of dynamics is required to develop controllers. The neural network component will also help to eliminate the chattering effect of the sliding mode controller through its learning structure. Fixed-time convergence to desired trajectories is proven by detailed theoretical analysis based on the Lyapunov stability theorem, and to show the proposed controller's effective performance, thorough numerical simulations are run. © 2023 European Control Associationen_US
dc.language.isoengen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofEuropean Journal of Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFixed-time stabilityen_US
dc.subjectNeural network controlen_US
dc.subjectQuadrotor-suspended payload systemen_US
dc.titleFixed-time neuro-sliding mode controller design for quadrotor UAV transporting a suspended payloaden_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.authorid0000-0002-3000-7903en_US
dc.identifier.volume73en_US
dc.contributor.institutionauthorBingöl, Özhan
dc.identifier.doi10.1016/j.ejcon.2023.100879en_US
dc.authorwosidAIA-7859-2022en_US
dc.authorscopusid57211180193en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster