Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBaşoğlu, Mustafa Engin
dc.contributor.authorKarabinaoğlu, Murat Salim
dc.contributor.authorÇakır, Bekir
dc.contributor.authorKazdaloglu, Abdulvehhab
dc.date.accessioned2023-02-01T06:44:45Z
dc.date.available2023-02-01T06:44:45Z
dc.date.issued2022en_US
dc.identifier.citationKARABİNAOĞLU, MURAT SALİM; ÇAKIR, BEKİR; BAŞOĞLU, MUSTAFA ENGİN; KAZDALOĞLU, ABDÜLVEHHAB; and GÜNEROĞLU, AZİZ (2022) "Comparison of deep learning and regression-based MPPT algorithms in PV systems," Turkish Journal of Electrical Engineering and Computer Sciences: Vol. 30: No. 6, Article 21.en_US
dc.identifier.urihttps://journals.tubitak.gov.tr/elektrik/vol30/iss6/21/
dc.identifier.urihttps://hdl.handle.net/20.500.12440/5683
dc.description.abstractSolar energy systems (SES) and photovoltaic (PV) modules should be operated at the maximum power point (MPP) to achieve the highest efficiency in the energy generation processes. Maximum power point tracking (MPPT) applications using conventional methods may not be able to follow the global MPP (GMPP) of the PV system under changing atmospheric conditions and they could oscillate around the local MPP. In this study, a machine learning and deep learning (DL) based long short-term memory (LSTM) model is proposed as an innovative solution for MPPT. Contrary to the traditional MPPT applications using current and voltage sensors, the output resistance of the PV module estimation was made by using environmental parameters (such as temperature and radiation) and artificial intelligence algorithms in this study.The LSTM model was compared with artificial neural networks (ANN) and regression methods regarding mean square error (MSE), root mean square error(RMSE) and mean absolute error (MAE) parameters. It has been determined that the LSTM model has a better performance and could more successfully follow MPP compared to the other methods. Finally, after the comparison with the ANN method, it is proved that LSTM gives 37%, 21%, and 31% more successful MSE, RMSE, and MAE results, respectivelyen_US
dc.language.isoengen_US
dc.publisherTUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEYen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMaximum power point trackingen_US
dc.subjectdeep learningen_US
dc.subjectlong-short term memoryen_US
dc.subjectregressionen_US
dc.subjectartificial neural networken_US
dc.titleComparison of deep learning and regression-based MPPT algorithms in PV systemsen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik - Elektronik Mühendisliği Bölümüen_US
dc.authorid0000-0002-6228-4112en_US
dc.identifier.volume30en_US
dc.identifier.issue6en_US
dc.identifier.startpage2319en_US
dc.contributor.institutionauthorBaşoglu, Mustafa Engin
dc.identifier.doi10.55730/1300-0632.3941en_US
dc.identifier.endpage2338en_US
dc.authorwosidEML-8593-2022en_US
dc.authorscopusid55649743900en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster