Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorMelek, Mesut
dc.date.accessioned2023-01-30T08:20:52Z
dc.date.available2023-01-30T08:20:52Z
dc.date.issued2021en_US
dc.identifier.urihttps://ieeexplore.ieee.org/document/9633004
dc.identifier.urihttps://hdl.handle.net/20.500.12440/5605
dc.description.abstractElectroencephalography (EEG) signals recorded during sleep are divided into 30-second segments and analyzed by experts and classified into sleep stages, and in this way, diagnosis and treatment of diseases are made. Computer-Assisted sleep scoring systems can effectively reduce the burden of experts by classifying sleep stages. In this study, after preprocessing of the EEG signals, four features were obtained for each EEG band (20 features in total) with the autoregressive model and then classified with three different classifiers common in machine learning. The proposed method was tested on the data set called ISRUC sleep (Subgroup 3, ISRUC3) and the results were compared with the results of other studies. The results show that the proposed method is more successful than other existing methods, despite the use of fewer features. © 2021 IEEE.en_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2021 - Tip Teknolojileri Kongresi - 2021 Medical Technologies Congressen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClassificationen_US
dc.subjectEEGen_US
dc.subjectISRUC sleepen_US
dc.subjectAutoregressive modelen_US
dc.titleAutomatic sleep scoring system based on autoregressive modelen_US
dc.title.alternativeOtoregresif modeline dayali otomatik uyku skorlama sistemien_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.departmentMeslek Yüksekokulları, Gümüşhane Meslek Yüksekokulu, Elektronik ve Otomasyon Bölümüen_US
dc.authorid0000-0002-7152-7788en_US
dc.identifier.volume175481en_US
dc.contributor.institutionauthorMelek, Mesut
dc.identifier.doi10.1109/TIPTEKNO53239.2021.9633004en_US
dc.authorwosidAAB-7552-2019en_US
dc.authorscopusid57219391532en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster