Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBulut, Sinan
dc.contributor.authorGunlu, Alkan
dc.contributor.authorCakir, Gunay
dc.date.accessioned2023-01-27T05:49:56Z
dc.date.available2023-01-27T05:49:56Z
dc.date.issued2022en_US
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/10106049.2022.2158238
dc.identifier.urihttps://hdl.handle.net/20.500.12440/5572
dc.description.abstractRemote sensing technologies have been extensively used in forest management in predicting stand parameters. The goal of this study is to use Landsat 8 and Sentinel-2 satellite images to estimate stand volume, basal area, number of trees, mean diameter, and top height. 180 temporary sample plots were taken in pure Crimean pine stands with varied structure. Reflectance, vegetation indices, and eight texture values were generated from Landsat 8 and Sentinel-2 satellite images. The stand parameters were modelled with the remotely sensed data using multiple linear regression, support vector machine, and deep learning techniques. The results showed that the support vector machine technique provided the highest level of model performance with 45 degrees orientation for number of trees (R-2 = 0.98, RMSE%=5.97) and 90 degrees orientation for basal area (R-2=0.91, RMSE%=15.22). The results indicated that the texture values presented better results than the reflectance and the vegetation indices in estimating the stand parameters.en_US
dc.language.isoengen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.ispartofGEOCARTO INTERNATIONALen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStand parametersen_US
dc.subjectremote sensing dataen_US
dc.subjectmultiple linear regressionen_US
dc.subjectsupport vector machineen_US
dc.subjectdeep learningen_US
dc.titleModelling some stand parameters using Landsat 8 OLI and Sentinel-2 satellite images by machine learning techniques: a case study in Turkiyeen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.departmentMeslek Yüksekokulları, Gümüşhane Meslek Yüksekokulu, Ormancılık Bölümüen_US
dc.authorid0000-0003-4951-4283en_US
dc.identifier.volume38en_US
dc.identifier.issue1en_US
dc.contributor.institutionauthorCakir, Gunay
dc.identifier.doi10.1080/10106049.2022.2158238en_US
dc.authorwosidO-8159-2015en_US
dc.authorscopusid16240801500en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster