Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇatal Reis, Hatice
dc.date.accessioned2023-01-25T13:34:37Z
dc.date.available2023-01-25T13:34:37Z
dc.date.issued2021en_US
dc.identifier.urihttps://periodicos.uem.br/ojs/index.php/ActaSciTechnol/article/view/55189/751375152739
dc.identifier.urihttps://hdl.handle.net/20.500.12440/5559
dc.description.abstractMedicine and engineering sciences have been working in close contact for common purposes. Machine learning algorithms are used in the medical field for early diagnosis prediction. The major aim of this study is to evaluate machine learning algorithms and deep learning algorithms using computed tomography scan (CT-scan) images for automated detection of the coronavirus disease 2019 (COVID-19) patients. We obtained seven hundred and fifty-seven (757) CT-scan images from a public platform. We applied four automated traditional classification methods to predict COVID-19 using deep learning and machine learning. These algorithms are SVM, AdaBoost, NASNetMobile, and InceptionV3. Comparative analyses are presented among the four models by considering metric performance factors to find the best model. The results show that the InceptionV3 model achieves better performance in terms of accuracy, precision, recall, Cohen’s kappa, F1-score, root mean squared error (RMSE), and receiver operating characteristic-area under the curve (ROC-AUC), in comparison with the other Covid-19 classifiers. Accordingly, the InceptionV3 approach is recommended for the automatic diagnosis of Covid-19 and assessments. This research can present a second point of view to medical experts and it can save time for researchers as the performance of standard machine learning methods in detecting COVID-19 is evaluated. © 2021, Eduem - Editora da Universidade Estadual de Maringa. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherUniversidade Estadual de Maringaen_US
dc.relation.ispartofActa Scientiarum - Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaBoost; Coronavirus; InceptionV3; Machine learning; NASNetMobile; SVMen_US
dc.titleAutomatic Classification of COVID-19 using CT-Scan Imagesen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Ulusal - Editör Denetimli Dergien_US
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Harita Mühendisliği Bölümüen_US
dc.authorid0000-0003-2696-2446en_US
dc.identifier.volume43en_US
dc.contributor.institutionauthorÇatal Reis, Hatice
dc.identifier.doi10.4025/ACTASCITECHNOL.V43I1.55189en_US
dc.authorwosidJ-8592-2017en_US
dc.authorscopusid57192666861en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster