dc.contributor.author | Celik, Muhammet | |
dc.contributor.author | Seferoglu, Mehmet Tevfik | |
dc.contributor.author | Akpinar, Muhammet Vefa | |
dc.contributor.author | Nasery, Mohammad Manzoor | |
dc.contributor.author | Seferoglu, Aysegul Gunes | |
dc.date.accessioned | 2023-01-25T13:34:28Z | |
dc.date.available | 2023-01-25T13:34:28Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.uri | https://dergipark.org.tr/en/pub/tekderg/issue/54016/643027 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12440/5557 | |
dc.description.abstract | Transverse contraction joints are by far the most common type of joint in jointed plain concrete pavements. Early loading of contraction joints can create a weakened vertical plane and later grow as a full-depth crack. In this study, load transfer efficiency (LTE) of steel mesh reinforced transverse contraction joints were studied at accelerated pavement tests (APT). 3D finite element (FE) model of jointed plain concrete pavement (JPCP) was developed to study deflections and crack propagation in just under the joint of the concrete pavement. The APT tests were focused on the LTE values before and after the crack initiation under the contraction joint region. Experiments were performed on three slabs in which two of these slabs were prepared without reinforcement and one of them was reinforced with steel mesh. Data generated by APT was used for verification of crack propagation modeling in the finite element analysis. Steel mesh reinforced slab gave the lowest vertical deflections (51μm) and highest LTE (91.56%). The LTE value in the reinforced slab after 25,000 passes was 13.63% higher than the average of unreinforced slabs. The findings suggest that the load transfer efficiency was found to be a complex parameter and should be interpreted together with average displacement values when contraction joints are evaluated at early traffic loadings. © 2021 Turkish Chamber of Civil Engineers. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Turkish Chamber of Civil Engineers | en_US |
dc.relation.ispartof | Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Accelerated pavement test; Concrete pavement; Finite element analysis; Steel mesh reinforcement; Transverse contraction joint | en_US |
dc.title | Evaluation of Load-Transfer Efficiency of Steel Mesh Reinforced Contraction Joints in Concrete Pavement: Accelerated Pavement Test and FE Analysis | en_US |
dc.type | article | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümü | en_US |
dc.authorid | 0000-0002-3320-4013 | en_US |
dc.authorid | 0000-0003-4677-3335 | en_US |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 11337 | en_US |
dc.contributor.institutionauthor | Seferoğlu, Mehmet Tevfik | |
dc.contributor.institutionauthor | Seferoğlu, Aysegül Güneş | |
dc.identifier.endpage | 11359 | en_US |
dc.authorwosid | GCY-9526-2022 | en_US |
dc.authorwosid | DSV-1249-2022 | en_US |
dc.authorscopusid | 57200678806 | en_US |
dc.authorscopusid | 57200674574 | en_US |