Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAlemdag, S.
dc.contributor.authorGurocak, Z.
dc.contributor.authorCevik, A.
dc.contributor.authorCabalar, A. F.
dc.contributor.authorGokceoglu, C.
dc.date.accessioned2021-11-09T19:49:37Z
dc.date.available2021-11-09T19:49:37Z
dc.date.issued2016
dc.identifier.issn0013-7952
dc.identifier.issn1872-6917
dc.identifier.urihttps://doi.org/10.1016/j.enggeo.2015.12.002
dc.identifier.urihttps://hdl.handle.net/20.500.12440/4086
dc.description.abstractThis paper investigates a series of experimental results and numerical simulations employed to estimate the deformation modulus of a stratified rock mass. The deformation modulus of rock mass has a significant importance for some applications in engineering geology and geotechnical projects including foundation, slope, and tunnel designs. Deformation modulus of a rock mass can be determined using large scale in-situ tests. This large scale sophisticated in-situ testing equipments are sometimes difficult to install, plus time consuming to be employed in the field. Therefore, this study aims to estimate indirectly the deformation modulus values via empirical methods such as the neural network, neuro fuzzy and genetic programming approaches. A series of analyses have been developed for correlating various relationships between the deformation modulus of rock mass, rock mass rating, rock quality designation, uniaxial compressive strength, and elasticity modulus of intact rock parameters. The performance capacities of proposed models are assessed and found as quite satisfactory. At the completion of a comparative study on the accuracy of models, in the results, it is seen that overall genetic programming models yielded more precise results than neural network and neuro fuzzy models. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Geologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeformation modulusen_US
dc.subjectRock massen_US
dc.subjectNeural networken_US
dc.subjectNeuro fuzzyen_US
dc.subjectGenetic programmingen_US
dc.titleModeling deformation modulus of a stratified sedimentary rock mass using neural network, fuzzy inference and genetic programmingen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000372688600007en_US
dc.description.scopuspublicationid2-s2.0-84954306520en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridGokceoglu, Candan / 0000-0003-4762-9933
dc.authoridGokceoglu, Candan / 0000-0003-4762-9933
dc.identifier.volume203en_US
dc.identifier.startpage70en_US
dc.identifier.doi10.1016/j.enggeo.2015.12.002
dc.identifier.endpage82en_US
dc.authorwosidGokceoglu, Candan / S-3273-2019
dc.authorwosidCevik, Abdulkadir / AAG-5350-2020
dc.authorwosidCabalar, Ali Firat / AAG-5616-2020
dc.authorwosidGokceoglu, Candan / E-3259-2013
dc.authorscopusid22949906400
dc.authorscopusid9745386100
dc.authorscopusid35614832100
dc.authorscopusid16315314600
dc.authorscopusid35552191500


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster