Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUlutas, Ahsen
dc.contributor.authorCakmak, Recep
dc.contributor.authorAltas, Ismail Hakki
dc.date.accessioned2021-11-09T19:49:08Z
dc.date.available2021-11-09T19:49:08Z
dc.date.issued2018
dc.identifier.isbn978-1-5386-7786-5
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3948
dc.descriptionInnovations in Intelligent Systems and Applications Conference (ASYU) -- OCT 04-06, 2018 -- Adana, TURKEYen_US
dc.description.abstractSolar energy is a renewable energy source which has intermittent and variable characteristic. Solar irradiation must be predicted in advance in an electrical grid which has solar energy based electrical power generation systems in order to operate the electrical grid stable and efficient. In this study, a multi-layered, feed forward artificial neural network (ANN) has been designed to predict the hourly solar irradiation of next day. The designed ANN has been trained by data which has been obtained via similarity analysis. Total solar irradiation on horizontal plane, relative humidity and temperature data of Trabzon province for 2015-2017 have been used as the training data set. Hourly solar irradiation prediction has been performed by utilizing the designed ANN and test data set. The prediction results have been evaluated as to root mean square (RMS), mean absolute error (MAE) and mean absolute percentage error (MAPE) performance criteria. The obtained performance criteria results show that the proposed ANN could make prediction with acceptable error.en_US
dc.description.sponsorshipCUKUROVA Univ, Yildiz Tech Univ, IEEE Turkey Sect, Cukurova Univ Comp Eng Depten_US
dc.language.isoturen_US
dc.publisherIEEEen_US
dc.relation.ispartof2018 Innovations in Intelligent Systems and Applications Conference (Asyu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSolar energyen_US
dc.subjectsolar irradiation predictionen_US
dc.subjectsimilar day selectionen_US
dc.subjectartificial neural networksen_US
dc.subjectartificial intelligenceen_US
dc.subjectrenewable energy sourcesen_US
dc.titleHourly Solar Irradiation Prediction by Artificial Neural Network Based on Similarity Analysis of Time Seriesen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000455592800029en_US
dc.description.scopuspublicationid2-s2.0-85059988375en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridCakmak, Recep / 0000-0002-6467-6240
dc.authoridAltas, Ismail Hakki / 0000-0001-9298-4091
dc.identifier.startpage140en_US
dc.identifier.endpage145en_US
dc.authorwosidCakmak, Recep / ABF-1475-2020
dc.authorwosidAltas, Ismail Hakki / AAT-2075-2020
dc.authorscopusid57205427963
dc.authorscopusid55364863700
dc.authorscopusid6603812262


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster