Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBayram, B.
dc.contributor.authorErdem, F.
dc.contributor.authorAkpinar, B.
dc.contributor.authorInce, A. K.
dc.contributor.authorBozkurt, S.
dc.contributor.authorReis, H. Catal
dc.contributor.authorSeker, D. Z.
dc.date.accessioned2021-11-09T19:48:56Z
dc.date.available2021-11-09T19:48:56Z
dc.date.issued2017
dc.identifier.issn2194-9042
dc.identifier.issn2194-9050
dc.identifier.urihttps://doi.org/10.5194/isprs-annals-IV-4-W4-141-2017
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3873
dc.description4th International Workshop on Geoinformation Science / 4th ISPRS International Workshop on Multi-Dimensional and Multi-Scale Spatial Data Modeling (GeoAdvances) -- OCT 14-15, 2017 -- Karabuk Univ, Safranbolu Campus, Safranbolu, TURKEYen_US
dc.description.abstractCoastal monitoring plays a vital role in environmental planning and hazard management related issues. Since shorelines are fundamental data for environment management, disaster management, coastal erosion studies, modelling of sediment transport and coastal morphodynamics, various techniques have been developed to extract shorelines. Random Forest is one of these techniques which is used in this study for shoreline extraction.. This algorithm is a machine learning method based on decision trees. Decision trees analyse classes of training data creates rules for classification. In this study, Terkos region has been chosen for the proposed method within the scope of TUBITAK Project (Project No: 115Y718) titled Integration of Unmanned Aerial Vehicles for Sustainable Coastal Zone Monitoring Model Three-Dimensional Automatic Coastline Extraction and Analysis: Istanbul-Terkos Example . Random Forest algorithm has been implemented to extract the shoreline of the Black Sea where near the lake from LANDSAT-8 and GOKTURK-2 satellite imageries taken in 2015. The MATLAB environment was used for classification. To obtain land and waterbody classes, the Random Forest method has been applied to NIR bands of LANDSAT-8 (5th band) and GOKTURK-2 (4th band) imageries. Each image has been digitized manually and shorelines obtained for accuracy assessment. According to accuracy assessment results, Random Forest method is efficient for both medium and high resolution images for shoreline extraction studies.en_US
dc.description.sponsorshipInt Soc Photogrammetry & Remote Sensingen_US
dc.description.sponsorshipTUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [115Y718and]en_US
dc.description.sponsorshipThis study has been supported by TUBITAK (The Scientific and Technological Research Council of Turkey) with project number 115Y718and entitled Integration of Unmanned Aerial Vehicles for Sustainable Coastal Zone Monitoring Model -ThreeDimensional Automatic Coastline Extraction and Analysis: Istanbul-Terkos Example''.en_US
dc.language.isoengen_US
dc.publisherCopernicus Gesellschaft Mbhen_US
dc.relation.ispartof4th International Geoadvances Workshop - Geoadvances 2017: Isprs Workshop on Multi-Dimensional & Multi-Scale Spatial Data Modelingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRandom Foresten_US
dc.subjectShoreline Extractionen_US
dc.subjectImage segmentationen_US
dc.subjectLANDSAT-8en_US
dc.subjectGOKTURK-2en_US
dc.titleTHE EFFICIENCY OF RANDOM FOREST METHOD FOR SHORELINE EXTRACTION FROM LANDSAT-8 AND GOKTURK-2 IMAGERIESen_US
dc.typeconferenceObjecten_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000568997100022en_US
dc.description.scopuspublicationid2-s2.0-85037126131en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridSeker, Dursun Zafer / 0000-0001-7498-1540
dc.authoridErdem, Firat / 0000-0002-6163-1979
dc.authoridAkpinar, Burak / 0000-0002-3076-1578
dc.identifier.volume4-4en_US
dc.identifier.issueW4en_US
dc.identifier.startpage141en_US
dc.identifier.doi10.5194/isprs-annals-IV-4-W4-141-2017
dc.identifier.endpage145en_US
dc.authorwosidSeker, Dursun Zafer / ABA-7384-2020
dc.authorwosidErdem, Firat / AAN-9270-2021
dc.authorscopusid15130508500
dc.authorscopusid57196018307
dc.authorscopusid18933400300
dc.authorscopusid57198801914
dc.authorscopusid57198798066
dc.authorscopusid57192666861
dc.authorscopusid6602931561


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster