dc.contributor.author | Unal, Emrah | |
dc.contributor.author | Gokdogan, Ahmet | |
dc.date.accessioned | 2021-11-09T19:48:42Z | |
dc.date.available | 2021-11-09T19:48:42Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0030-4026 | |
dc.identifier.uri | https://doi.org/10.1016/j.ijleo.2016.10.031 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12440/3753 | |
dc.description.abstract | Recently, a new fractional derivative called the conformable fractional derivative is given which is based on the basic limit definition of the derivative in (Khalil et al., 2014). Then, the fractional versions of chain rules, exponential functions, Gronwall's inequality, integration by parts, Taylor power series expansions is developed in (Abdeljawad, 2015). In this paper, we give conformable fractional differential transform method and its application to conformable fractional differential equations. (C) 2016 Elsevier GmbH. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier Gmbh | en_US |
dc.relation.ispartof | Optik | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Conformable fractional derivative | en_US |
dc.subject | Fractional power series | en_US |
dc.subject | Conformable fractional differential transform method | en_US |
dc.subject | Conformable fractional ordinary differential equations | en_US |
dc.title | Solution of conformable fractional ordinary differential equations via differential transform method | en_US |
dc.type | article | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.description.wospublicationid | WOS:000388050700034 | en_US |
dc.description.scopuspublicationid | 2-s2.0-84992058851 | en_US |
dc.department | Gümüşhane Üniversitesi | en_US |
dc.identifier.volume | 128 | en_US |
dc.identifier.startpage | 264 | en_US |
dc.identifier.doi | 10.1016/j.ijleo.2016.10.031 | |
dc.identifier.endpage | 273 | en_US |
dc.authorscopusid | 56368094300 | |
dc.authorscopusid | 37067342300 | |