Simultaneous quadrotor autopilot system and collective morphing system design
Erişim
info:eu-repo/semantics/closedAccessTarih
2020Erişim
info:eu-repo/semantics/closedAccessÜst veri
Tüm öğe kaydını gösterÖzet
Purpose The purpose of this paper is to design a quadrotor with collective morphing using the simultaneous perturbation stochastic approximation (SPSA) optimization algorithm. Design/methodology/approach Quadrotor design is made by using Solidworks drawing program and some mathematical performance relations. Modelling and simulation are performed in Matlab/Simulink program by using the state space model approaches with the parameters mostly taken from Solidworks. Proportional integral derivative (PID) approach is used as control technique. Morphing amount and the best PID coefficients are determined by using SPSA algorithm. Findings By using SPSA algorithm, the amount of morphing and the best PID coefficients are determined, and the quadrotor longitudinal and lateral flights are made most stable via morphing. Research limitations/implications It takes quite a long time to model the quadrotor in Solidworks and Matlab/Simulink with the state space model and using the SPSA algorithm. However, this situation is overcome with the proposed model. Practical implications Optimization with SPSA is very useful in determining the amount of morphing and PID coefficients for quadrotors. Social implications SPSA optimization method is useful in terms of cost, time and practicality. Originality/value It is released to improve performance with morphing, to determine morphing rate with SPSA algorithm and to determine PID coefficients accordingly.