dc.contributor.author | Sagir, Birsen | |
dc.contributor.author | Gungor, Nihan | |
dc.date.accessioned | 2021-11-09T19:42:43Z | |
dc.date.available | 2021-11-09T19:42:43Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0354-5180 | |
dc.identifier.uri | https://doi.org/10.2298/FIL1509107S | |
dc.identifier.uri | https://hdl.handle.net/20.500.12440/3456 | |
dc.description.abstract | In this paper, we define the superposition operator P-g where g : N-2 x R -> R by P-g ((x(ks))) = 1 (k, s, x(ks)) for all real double sequence (x(ks)). Chew & Lee [4] and Petranuarat & Kemprasit [7] have characterized P-g : l(p) -> l(1) and P-g : l(p) -> l(q) where 1 <= p, q < infinity, respectively. The main goal of this paper is to construct the necessary and sufficient conditions for the continuity of P-g : L-p -> L-1 and P-g : L-p -> L-q where 1 <= p, q < infinity. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Univ Nis, Fac Sci Math | en_US |
dc.relation.ispartof | Filomat | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Superposition Operators | en_US |
dc.subject | Continuity | en_US |
dc.subject | Double Sequence Spaces | en_US |
dc.subject | Pringsheim's convergent | en_US |
dc.title | Continuity of Superposition Operators on the Double Sequence Spaces L-p | en_US |
dc.type | article | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.description.wospublicationid | WOS:000366736100019 | en_US |
dc.description.scopuspublicationid | 2-s2.0-84949430466 | en_US |
dc.department | Gümüşhane Üniversitesi | en_US |
dc.identifier.volume | 29 | en_US |
dc.identifier.issue | 9 | en_US |
dc.identifier.startpage | 2107 | en_US |
dc.identifier.doi | 10.2298/FIL1509107S | |
dc.identifier.endpage | 2118 | en_US |
dc.authorscopusid | 8866066700 | |
dc.authorscopusid | 56781191300 | |