Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUnlu, Ramazan
dc.contributor.authorNamli, Ersin
dc.date.accessioned2021-11-09T19:42:42Z
dc.date.available2021-11-09T19:42:42Z
dc.date.issued2020
dc.identifier.issn1546-2218
dc.identifier.issn1546-2226
dc.identifier.urihttps://doi.org/10.32604/cmc.2020.011335
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3451
dc.description.abstractFrom late 2019 to the present day, the coronavirus outbreak tragically affected the whole world and killed tens of thousands of people. Many countries have taken very stringent measures to alleviate the effects of the coronavirus disease 2019 (COVID-19) and are still being implemented. In this study, various machine learning techniques are implemented to predict possible confirmed cases and mortality numbers for the future. According to these models, we have tried to shed light on the future in terms of possible measures to be taken or updating the current measures. Support Vector Machines (SVM), Holt-Winters, Prophet, and Long-Short Term Memory (LSTM) forecasting models are applied to the novel COVID-19 dataset. According to the results, the Prophet model gives the lowest Root Mean Squared Error (RMSE) score compared to the other three models. Besides, according to this model, a projection for the future COVID-19 predictions of Turkey has been drawn and aimed to shape the current measures against the coronavirus.en_US
dc.language.isoengen_US
dc.publisherTech Science Pressen_US
dc.relation.ispartofCmc-Computers Materials & Continuaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCovid-19en_US
dc.subjectmachine learningen_US
dc.subjecttime series forecastingen_US
dc.titleMachine Learning and Classical Forecasting Methods Based Decision Support Systems for COVID-19en_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000557868500004en_US
dc.description.scopuspublicationid2-s2.0-85090855596en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridUNLU, RAMAZAN / 0000-0002-1201-195X
dc.authoridNamli, Ersin / 0000-0001-5980-9152
dc.identifier.volume64en_US
dc.identifier.issue3en_US
dc.identifier.startpage1383en_US
dc.identifier.doi10.32604/cmc.2020.011335
dc.identifier.endpage1399en_US
dc.authorwosidUNLU, RAMAZAN / C-3695-2019
dc.authorwosidNamli, Ersin / F-6757-2013
dc.authorscopusid57197769375
dc.authorscopusid55499104800


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster