dc.contributor.author | Unlu, Ramazan | |
dc.contributor.author | Xanthopoulos, Petros | |
dc.date.accessioned | 2021-11-09T19:42:25Z | |
dc.date.available | 2021-11-09T19:42:25Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0957-4174 | |
dc.identifier.issn | 1873-6793 | |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2019.01.074 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12440/3373 | |
dc.description.abstract | In unsupervised learning, the problem of finding the appropriate number of clusters-usually notated as k- is very challenging. Its importance lies in the fact that k is a vital hyperparameter for the most clustering algorithms. One algorithmic approach for tacking this problem is to apply a certain clustering algorithm with various cluster configurations and decide to use the one that maximizes a certain internal validity measure. This is a promising and computationally efficient approach since the independent runs are parallelizable. In this paper, we attempt to improve over this estimation approach by incorporating a consensus clustering approach into k estimating scheme. The weighted consensus clustering scheme employs four different indices namely Silhouette (SH), Calinski-Harabasz (CH), Davies-Bouldin (DB), and Consensus (CI) indices to estimate the correct number of cluster. Computational experiments in a dataset with clusters ranging from 2 to 7 show the profound advantages of weighted consensus clustering for correctly finding k in comparison to individual clustering method (e.g, k-means) and simple consensus clustering. (C) 2019 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Expert Systems With Applications | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Weighted consensus clustering | en_US |
dc.subject | Validity indices | en_US |
dc.subject | Number of clusters | en_US |
dc.title | Estimating the number of clusters in a dataset via consensus clustering | en_US |
dc.type | article | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.description.wospublicationid | WOS:000463121100003 | en_US |
dc.description.scopuspublicationid | 2-s2.0-85060907314 | en_US |
dc.department | Gümüşhane Üniversitesi | en_US |
dc.authorid | Xanthopoulos, Petros / 0000-0002-6633-5191 | |
dc.authorid | UNLU, RAMAZAN / 0000-0002-1201-195X | |
dc.identifier.volume | 125 | en_US |
dc.identifier.startpage | 33 | en_US |
dc.identifier.doi | 10.1016/j.eswa.2019.01.074 | |
dc.identifier.endpage | 39 | en_US |
dc.authorwosid | Xanthopoulos, Petros / C-9382-2009 | |
dc.authorwosid | UNLU, RAMAZAN / C-3695-2019 | |
dc.authorscopusid | 57197769375 | |
dc.authorscopusid | 16177015100 | |