Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUnlu, Ramazan
dc.date.accessioned2021-11-09T19:42:16Z
dc.date.available2021-11-09T19:42:16Z
dc.date.issued2020
dc.identifier.issn1598-8198
dc.identifier.issn1598-818X
dc.identifier.urihttps://doi.org/10.12989/cac.2020.25.6.565
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3319
dc.description.abstractOver the years, several machine learning approaches have been proposed and utilized to create a prediction model for the high-performance concrete (HPC) slump flow. Despite HPC is a highly complex material, predicting its pattern is a rather ambitious process. Hence, choosing and applying the correct method remain a crucial task. Like some other problems, prediction of HPC slump flow suffers from abnormal attributes which might both have an influence on prediction accuracy and increases variance. In recent years, different studies are proposed to optimize the prediction accuracy for HPC slump flow. However, more state-of-the-art regression algorithms can be implemented to create a better model. This study focuses on several methods with different mathematical backgrounds to get the best possible results. Four well-known algorithms Support Vector Regression, M5P Trees, Random Forest, and MLPReg are implemented with optimum parameters as base learners. Also, redundant features are examined to better understand both how ingredients influence on prediction models and whether possible to achieve acceptable results with a few components. Based on the findings, the MLPReg algorithm with optimum parameters gives better results than others in terms of commonly used statistical error evaluation metrics. Besides, chosen algorithms can give rather accurate results using just a few attributes of a slump flow dataset.en_US
dc.language.isoengen_US
dc.publisherTechno-Pressen_US
dc.relation.ispartofComputers and Concreteen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmultilayer perceptron regressionen_US
dc.subjectregression treesen_US
dc.subjectsupport vector regressionen_US
dc.subjectredundant featuresen_US
dc.subjectM5P treesen_US
dc.titleAn assessment of machine learning models for slump flow and examining redundant featuresen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000546272000008en_US
dc.description.scopuspublicationid2-s2.0-85090955330en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridUNLU, RAMAZAN / 0000-0002-1201-195X
dc.identifier.volume25en_US
dc.identifier.issue6en_US
dc.identifier.startpage565en_US
dc.identifier.doi10.12989/cac.2020.25.6.565
dc.identifier.endpage574en_US
dc.authorwosidUNLU, RAMAZAN / C-3695-2019
dc.authorscopusid57197769375


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster