Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorReis, Hatice Catal
dc.date.accessioned2021-11-09T19:42:13Z
dc.date.available2021-11-09T19:42:13Z
dc.date.issued2022
dc.identifier.issn0120-5609
dc.identifier.issn2248-8723
dc.identifier.urihttps://doi.org/10.15446/ing.investig.v42n1.88825
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3301
dc.description.abstractThe coronavirus disease 2019 (COVID-19) is fatal and spreading rapidly. Early detection and diagnosis of the COVID-19 infection will prevent rapid spread. This study aims to automatically detect COVID-19 through a chest computed tomography (CT) dataset. The standard models for automatic COVID-19 detection using raw chest CT images are presented. This study uses convolutional neural network (CNN), Zeiler and Fergus network (ZFNet), and dense convolutional network-121 (DenseNet121) architectures of deep convolutional neural network models. The proposed models are presented to provide accurate diagnosis for binary classification. The datasets were obtained from a public database. This retrospective study included 757 chest CT images (360 confirmed COVID-19 and 397 non-COVID-19 chest CT images). The algorithms were coded using the Python programming language. The performance metrics used were accuracy, precision, recall, F1-score, and ROC-AUC. Comparative analyses are presented between the three models by considering hyper-parameter factors to find the best model. We obtained the best performance, with an accuracy of 94,7%, a recall of 90%, a precision of 100%, and an F1-score of 94,7% from the CNN model. As a result, the CNN algorithm is more accurate and precise than the ZFNet and DenseNet121 models. This study can present a second point of view to medical staff.en_US
dc.language.isoengen_US
dc.publisherUniv Nac Colombia, Fac Ingenieriaen_US
dc.relation.ispartofIngenieria E Investigacionen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCOVID-19en_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networken_US
dc.subjectZeiler and Fergus networken_US
dc.subjectdense convolutional network-121en_US
dc.titleCOVID-19 Diagnosis with Deep Learningen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000674566300006en_US
dc.description.scopuspublicationid2-s2.0-85112315017en_US
dc.departmentGümüşhane Üniversitesien_US
dc.identifier.volume42en_US
dc.identifier.issue1en_US
dc.identifier.doi10.15446/ing.investig.v42n1.88825
dc.authorscopusid57192666861


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster