Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUnlu, Ramazan
dc.date.accessioned2021-11-09T19:42:08Z
dc.date.available2021-11-09T19:42:08Z
dc.date.issued2021
dc.identifier.issn0020-0255
dc.identifier.issn1872-6291
dc.identifier.urihttps://doi.org/10.1016/j.ins.2020.09.059
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3267
dc.description.abstractThe quality control process is essential in maintaining the stability of production systems and proactively detecting abnormalities that may result in high mechanical and labor costs. In this study, a new data simulation strategy was devised to improve the early prediction performance (EPP) of an algorithm. Traditional control chart data simulation methods work based on creating abnormal patterns consisting of only abnormal signals. However, a classifier trained with data samples consisting of only abnormal data signals may fail to early detect abnormality in a real-time production line, in which abnormal signals is obscured by volume of normal signals. From this perspective, training a model by imitating real-world cases can improve the performance of an algorithm in terms of early detection of an abnormality. Normal and abnormal patterns were simulated by implementing a new approach called Mix Ratio Data Simulation (MRDS). The proposed methodology MRDS is compared with the customary data simulation method under the predefined scenarios in terms of EPP. The findings indicated that changing the way of simulating dataset increases the EEP of the machine-learning algorithm regardless of abnormality types and parameters. (c) 2020 Elsevier Inc. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformation Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectControl Chart Pattern Recognitionen_US
dc.subjectEarly Prediction Performanceen_US
dc.subjectCCP Data Simulationen_US
dc.titleA robust data simulation technique to improve early detection performance of a classifier in control chart pattern recognition systemsen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000596057300002en_US
dc.description.scopuspublicationid2-s2.0-85092693028en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridUNLU, RAMAZAN / 0000-0002-1201-195X
dc.identifier.volume548en_US
dc.identifier.startpage18en_US
dc.identifier.doi10.1016/j.ins.2020.09.059
dc.identifier.endpage36en_US
dc.authorwosidUNLU, RAMAZAN / C-3695-2019
dc.authorscopusid57197769375


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster