Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAlbayrak, Selahattin
dc.contributor.authorBurnaz, Oguz
dc.date.accessioned2021-11-09T19:42:00Z
dc.date.available2021-11-09T19:42:00Z
dc.date.issued2016
dc.identifier.issn0308-0501
dc.identifier.issn1099-1018
dc.identifier.urihttps://doi.org/10.1002/fam.2317
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3209
dc.description.abstractThe thermal analysis in structural members can be extremely complex, especially for materials that retain moisture and have a low thermal conductivity. The simplest method of defining the temperature profile through the cross section is to use test data presented in tables or charts, which are published in codes or design guides. These tabulated data are generally based on standard fire conditions. Annex A of TS-EN1992-1-2 provides a series of calculated temperature profiles for concrete slabs or walls, beams, and columns. But these profiles are given for specific cross-section dimensions and standard fire resistance durations. The main purpose of this study is to estimate the temperature profiles of reinforced concrete beam and column cross sections by using artificial neural networks (ANN) with different topologies. When modeling ANN, it is benefited from multi-layer ANN, which uses supervised learning rule. During training and testing stage of ANN, the results obtained from the aforementioned temperature profiles are used. The temperatures values were read from the temperature profile charts according to standard fire durations, cross-sections height and widths, and x and y coordinates of the points by the reference point. By testing ANN with different topologies in conclusions, its usability, advantages, and disadvantages are evaluated. Copyright (C) 2015 John Wiley & Sons, Ltd.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.ispartofFire and Materialsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecttemperature profilesen_US
dc.subjectreinforced concrete cross sectionen_US
dc.subjectartificial neural networks (ANN)en_US
dc.subjectfireen_US
dc.titleEstimation of the temperature profiles of reinforced concrete cross sections exposed to standard fires by using artificial neural networks with different topologiesen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000383719400001en_US
dc.description.scopuspublicationid2-s2.0-84938864678en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridBurnaz, Oguz / 0000-0003-0773-6291
dc.identifier.volume40en_US
dc.identifier.issue5en_US
dc.identifier.startpage655en_US
dc.identifier.doi10.1002/fam.2317
dc.identifier.endpage667en_US
dc.authorscopusid56769166000
dc.authorscopusid55567587000


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster