Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDemirel, Ugur
dc.contributor.authorCam, Handan
dc.contributor.authorUnlu, Ramazan
dc.date.accessioned2021-11-09T19:41:58Z
dc.date.available2021-11-09T19:41:58Z
dc.date.issued2021
dc.identifier.issn2147-1762
dc.identifier.urihttps://doi.org/10.35378/gujs.679103
dc.identifier.urihttps://hdl.handle.net/20.500.12440/3191
dc.description.abstractStock market prediction in financial and commodity markets is a major challenge for speculators, investors, and companies but also profitable with an accurate prediction. Thus, obtaining accurate prediction results becomes extremely important especially while the stock market is essentially volatile, nonlinear, complicated, adaptive, nonparametric and unpredictable in nature. This study aims to forecast the opening and closing stock prices of 42 firms listed in Istanbul Stock Exchange National 100 Index (ISE-100) using well-known machine learning methods, Multilayer Perceptrons (MLP) and Support Vector Machines (SVM) models and deep learning algorithm, Long Short Term Memory (LSTM) by comparing their forecasting performances. The analysis includes 9 years of data from 01.01.2010 to 01.01.2019. For each firm 2249 data for the opening and 2249 for the closing stock prices were established as daily data sets. Forecasting performance of these methods was evaluated by applying different criteria for each model: root mean squared error (RMSE), mean squared error (MSE) and R-squared (R2). The results of this study show that MLP and LSTM models become advantageous in estimating the opening and closing stock prices comparing to SVM model.en_US
dc.language.isoengen_US
dc.publisherGazi Univen_US
dc.relation.ispartofGazi University Journal of Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectStock market pricesen_US
dc.subjectEstimationen_US
dc.subjectMachine learningen_US
dc.subjectDeep learningen_US
dc.subjectPython languageen_US
dc.titlePredicting Stock Prices Using Machine Learning Methods and Deep Learning Algorithms: The Sample of the Istanbul Stock Exchangeen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.wospublicationidWOS:000623884100006en_US
dc.description.scopuspublicationid2-s2.0-85102970246en_US
dc.departmentGümüşhane Üniversitesien_US
dc.authoridUNLU, RAMAZAN / 0000-0002-1201-195X
dc.identifier.volume34en_US
dc.identifier.issue1en_US
dc.identifier.startpage63en_US
dc.identifier.doi10.35378/gujs.679103
dc.identifier.endpage82en_US
dc.authorwosidUNLU, RAMAZAN / C-3695-2019
dc.authorscopusid57222515676
dc.authorscopusid57194002313
dc.authorscopusid57197769375


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster