Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorWang, B.
dc.contributor.authorGerekan, B.
dc.contributor.authorMotai, Y.
dc.contributor.authorDong, L.
dc.contributor.authorXu, W.
dc.date.accessioned2021-11-09T19:37:18Z
dc.date.available2021-11-09T19:37:18Z
dc.date.issued2020
dc.identifier.issn23798858
dc.identifier.urihttps://hdl.handle.net/20.500.12440/2800
dc.description.abstractThis paper addresses a problem on infrared maritime target detection robustly in various situations. Its main contribution is to improve the infrared maritime target detection accuracy in different backgrounds, for various targets, using multiple infrared wave bands. The accuracy and the computational time of traditional infrared maritime searching systems are improved by our proposed Local Peak Singularity Measurement (LPSM)-Based Image Enhancement and Grayscale Distribution Curve Shift Binarization (GDCSB)-Based Target Segmentation. The first part uses LPSM to quantize the local singularity of each peak. Additionally, an enhancement map (EM) is generated based on the quantitative local singularity. After multiplying the original image by the EM, targets can be enhanced and the background will be suppressed. The second part of GDCSB-Based Target Segmentation calculates the desired threshold by cyclic shift of the grayscale distribution curve (GDC) of the enhanced image. After binarizing the enhanced image, real targets can be segmented from the image background. To verify the proposed algorithm, experiments based on 13,625 infrared maritime images and five comparison algorithms were conducted. Results show that the proposed algorithm has solid performance in strong and weak background clutters, different wave bands, different maritime targets, etc. © 2016 IEEE.en_US
dc.description.sponsorshipChina Scholarship Council, CSC: 201606570006en_US
dc.description.sponsorshipThis work was supported by the China Scholarship Council under Grant 201606570006.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Transactions on Intelligent Vehiclesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectimage segmentation; Infrared imaging; maritime surveillance; target detectionen_US
dc.titleRobust Detection of Infrared Maritime Targets for Autonomous Navigationen_US
dc.typearticleen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.description.scopuspublicationid2-s2.0-85084224149en_US
dc.department[Belirlenecek]en_US
dc.identifier.volume5en_US
dc.identifier.issue4en_US
dc.identifier.startpage635en_US
dc.contributor.institutionauthor[Belirlenecek]
dc.identifier.doi10.1109/TIV.2020.2991955
dc.identifier.endpage648en_US
dc.authorscopusid57193355389
dc.authorscopusid57194856620
dc.authorscopusid9734468900
dc.authorscopusid15730329300
dc.authorscopusid7404429104


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster