dc.contributor.author | Ashyralyev, Allaberen | |
dc.contributor.author | Ashyralyyev, Charyyar | |
dc.date.accessioned | 2019-12-10T12:34:04Z | |
dc.date.available | 2019-12-10T12:34:04Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1392-5113 | |
dc.identifier.uri | https://doi.org/10.15388/NA.2014.3.3 | |
dc.description.abstract | The boundary value problem of determining the parameter of an elliptic equation -u ''(t) + Au(t) = f (t) + p (0 <= t <= T), u(0) = phi, u(T) = psi, u(lambda) = xi, 0 < lambda < T, with a positive operator A in an arbitrary Banach space E is studied. The exact estimates are obtained for the solution of this problem in Holder norms. Coercive stability estimates for the solution of boundary value problems for multi-dimensional elliptic equations are established. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Inst Mathematics & Informatics | en_US |
dc.relation.ispartof | Nonlinear Analysis-Modelling and Control | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | elliptic equations | en_US |
dc.subject | boundary value problems | en_US |
dc.subject | stability | en_US |
dc.subject | exact estimates | en_US |
dc.title | On the problem of determining the parameter of an elliptic equation in a Banach space | en_US |
dc.type | article | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.description.wospublicationid | WOS:000343017800004 | en_US |
dc.description.scopuspublicationid | 2-s2.0-84903578055 | en_US |
dc.department | Gümüşhane Üniversitesi | en_US |
dc.authorid | Ashyralyyev, Charyyar / 0000-0002-6976-2084 | |
dc.identifier.volume | 19 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 350 | en_US |
dc.identifier.doi | 10.15388/NA.2014.3.3 | |
dc.identifier.endpage | 366 | en_US |
dc.authorwosid | Ashyralyyev, Charyyar / ABD-6005-2020 | |
dc.authorwosid | Ashyralyyev, Charyyar / K-5442-2015 | |
dc.authorscopusid | 6602401828 | |
dc.authorscopusid | 55334518800 | |