In Situ Monitoring of Sugar Content in Breakfast Cereals Using a Novel FT-NIR Spectrometer
Access
info:eu-repo/semantics/openAccessDate
2020Access
info:eu-repo/semantics/openAccessMetadata
Show full item recordAbstract
Featured Application A handheld near-infrared spectrometer combined with multivariate analysis enables real-time monitoring of quality parameters of individual ingredients and end-products, which permits production optimization through early corrective actions. The outcome of this research supports short scanning time (as low as 20 s) with fingerprinting capabilities that can be used to detect individual and total sugar contents in ground and intact breakfast cereals. This research demonstrates simultaneous predictions of individual and total sugars in breakfast cereals using a novel, handheld near-infrared (NIR) spectroscopic sensor. This miniaturized, battery-operated unit based on Fourier Transform (FT)-NIR was used to collect spectra from both ground and intact breakfast cereal samples, followed by real-time wireless data transfer to a commercial tablet for chemometric processing. A total of 164 breakfast cereal samples (60 store-bought and 104 provided by a snack food company) were tested. Reference analysis for the individual (sucrose, glucose, and fructose) and total sugar contents used high-performance liquid chromatography (HPLC). Chemometric prediction models were generated using partial least square regression (PLSR) by combining the HPLC reference analysis data and FT-NIR spectra, and associated calibration models were externally validated through an independent data set. These multivariate models showed excellent correlation (R-pre >= 0.93) and low standard error of prediction (SEP <= 2.4 g/100 g) between the predicted and the measured sugar values. Analysis results from the FT-NIR data, confirmed by the reference techniques, showed that eight store-bought cereal samples out of 60 (13%) were not compliant with the total sugar content declaration. The results suggest that the FT-NIR prototype can provide reliable analysis for the snack food manufacturers for on-site analysis.