Transition from shoshonitic to adakitic magmatism in the eastern Pontides, NE Turkey: Implications for slab window melting
Access
info:eu-repo/semantics/closedAccessDate
2011Access
info:eu-repo/semantics/closedAccessMetadata
Show full item recordCitation
EYÜBOGLU YENER,SUN LIN CHUNG,MADHAVA SANTOSH,DUDAS FRANCIS O,AKARYALI ENVER (2011). Transition from shoshonitic to adakitic magmatism in the eastern Pontides NE Turkey Implications for slab window melting. GONDWANA RESEARCH, 19(2), 413-429.Abstract
The formation of the eastern Pontides orogenic belt has been widely assigned to a northward subduction of the Neotethyan oceanic slab during the late Mesozoic-Cenozoic. Here we provide an alternate model based on new geological, geochemical and isotopic data. The magmatic activity in the far south of the belt started in the early Campanian with shoshonitic trachyandesites and associated pyroclastics. This sequence is covered by the late Campanian-early Maastrichtian reefal limestones and another stage of high-K volcanism represented by analcimized leucite-rich ultrapotassic rocks of the Maastrichtian-early Paleocene (?) ages. The shoshonitic and ultrapotassic rocks, with K2O contents ranging from 0.26 to 6.95 wt.%, display broadly similar rare earth and multi-element distribution patterns. Both rock types are enriched in LILE and LREE and depleted in HFSE (Nb,Ta and Ti), suggesting a subduction-enriched mantle source for the magma generation. Subsequently, during the late Paleocene, a stage of acidic magmatism (SiO2 of 53.25-73.61 wt.%) that shows adakitic geochemical characteristics including high Sr/Y (46-416) and La/Yb (11-51) and low Y (2.6-12.2 ppm), is documented characterized by melting of a mafic source such as the MORB crust with garnet in the residue. The adakitic magmatism began at similar to 56 Ma and migrated toward the north through time, culminating with porphyritic andesites (similar to 47 Ma) that were emplaced in the Gumushane-Bayburt line and its vicinity. North of this line, coeval magmas show typical calc-alkaline nature and continued to develop toward further north until the middle to late Eocene. Based on the spatial and temporal variations in the magmas generated in the eastern Pontides orogenic belt, we propose a new geodynamic model to explain the tectonomagmatic evolution of these rocks and correlate the adakitic magmatism to ridge subduction and slab window process within a south-dipping subduction zone. Our model is in contrast to the previous proposals which envisage partial melting or delamination of thickened lower continental crust due to the collision in the south during the Paleocene-Eocene. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.