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Optimal Investment Decision on Green Energy

Tynysbek Sh. Kalmenov,a) Vladislav S. Hachikyan,b) Gani A. Besbayev,c) and

Aizat Sh. Aimakhanovad)

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
a)Corresponding author: kalmenov@math.kz

b)Electronic mail: vhachikyan@mail.ru
c)Electronic mail: besbayev@math.kz

d)Electronic mail: aimakhanova@math.kz

Abstract. In this note we present that the optimal investment decision can be characterized by two boundaries that satisfy a system
of coupled integral equations of Fredholm type and propose a numerical algorithm for resolution.

INTRODUCTION

The problem considered in this paper involves two underlying processes, for the spark spread and the electricity price,
as well as embedded optimal stopping time problems for the operating decisions of the coal plant and the timing and
selection decisions of the power plant operator. In order to keep the analysis as simple as possible, yet analytically
tractable, we are led to model the spark spread directly, assuming an arithmetic Brownian motion. For the electricity
price we use a geometric Brownian motion as is standard in the literature on renewable power generation (see [1, 2,
3, 4, 5]).

In this paper, we examine the optimal investment in power production projects when two competing technologies, a
coal-fired plant or a wind farm, are considered. We present that the immediate investment policy is characterized by a
pair of boundaries satisfying a system of coupled integral equations of the Fredholm type and provide a new algorithm
to compute its solution. The value of the investment project has an early investment premium representation consisting
of two components, each tallying the local gains achieved when investment in a given technology is optimal.

MAIN RESULTS

Theorem 1 The optimal investment boundaries solve the pair of coupled integral equations,

G1(bX (y)) = π(bX (y),y;bX ,bY ), (1)

G2(bY (x)) = π(x,bY (x);bX ,bY ), (2)

for y > 0 and x ∈ IR, where π(x,y;bX ,bY ) represents the early investment premium (EIP) defined as,

π(x,y;bX ,bY ) = π1(x,y;bX )+π2(x,y;bY ), (3)

π1(x,y;bX ) =−Ex,y

[∫ ∞

0
e−rtH1(Xt)I(Xt ≥ bX (Yt))dt

]
, (4)

π2(x,y;bY ) =−Ex,y

[∫ ∞

0
e−rtH2(Yt)I(Yt ≥ bY (Xt))dt

]
. (5)

Proof of Theorem 1. Let us assume that the operator faces the finite maturity T selection option problem,

V (x,y;T ) = sup
t≤τ≤T

Ex,y
[
e−rτ max(V1(Xτ)−Kg,W (Yτ)−Kw)

]
, (6)
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for x ∈ IR, y > 0 and T > 0. Standard arguments of American options pricing theory provides the early exercise
premium representation, i.e., the decomposition of American-style derivative into the European counterpart and early
exercise premium (see [6, 7]),

V (x,y;T ) =V e(x,y;T )+π(t,x;bT
X ,b

T
Y ,T ), (7)

where V e is the expected discounted payoff at T ,

V (x,y;T ) = Ex,y
[
e−rT max(V1(XT )−Kg,W (YT )−Kw)

]
, (8)

and the early exercise premium depends on the exercise surfaces (bT
X ,b

T
Y ) and given as follows,

π(x,y;bT
X ,b

T
Y ,T ) = π1(x,y;bT

X ,T )+π2(x,y;bT
Y ,T ), (9)

π1(x,y;bT
X ,T ) =−Ex,y

[∫ T

0
e−rtH1(Xt)I(Xt ≥ bT

X (t,Yt))dt
]
, (10)

π2(x,y;bT
Y ,T ) =−Ex,y

[∫ T

0
e−rtH2(Yt)I(Yt ≥ bT

Y (t,Xt))dt
]
, (11)

for x ∈ IR, y > 0 and T > 0. We now let T → +∞, it is clear then that V (x,y;T ) → V (x,y), bT
X (t,y) → bX (y) and

bT
Y (t,x)→ bY (x) for any given t, x and y. The European part then vanishes as e−rT dominates and π(x,y;bT

X ,b
T
Y ,T )→

π(x,y;bX ,bY ) so that

V (x,y) = π(x,y;bX ,bY ) (12)

for x ∈ IR and y > 0. If now insert x = bX (y) and y = bY (x), respectively, we arrive at the system of two integral
equations (1)-(2). Theorem 1 shows that the boundaries solve a system of coupled integral equations. These equations
derive from the Early Investment Premium (EIP) representation of the value of the project considered by the operator.
As there are two subregions, the EIP premium π(x,y;bX ,bY ) has two components corresponding respectively to the
value of investing when the coal-fired technology is optimal (π1(x,y;bX )) and when the wind technology is optimal
(π2(x,y;bY )). Because each premium component depends on its corresponding boundary, the equations are coupled.
Hence, the boundary bX depends on bY , and conversely.

This characterization of the optimal investment boundaries is reminiscent of the characterization typically obtained
for the exercise boundaries of American max-call options (e.g., [4]). Although the structural form of the two systems
appears similar, they differ in several respects. First, in (1)-(2) there is no term relating to a European option compo-
nent. This follows from the assumption that the project endlessly lived. In this case, the residual value on The end
date disappears. Secondly, equations do not have a recursive structure in time or space. Lack of recursiveness in time
comes from the endless horizon of the nature of the problem. Lack of recursiveness in space is due to the fact that
boundaries their respective premium domains. As a result, the integral equations not a typical Volterra type, as with
the standard American option price Problems. Third, investment payments are related to non-linear, exponentially
affine function of the base variable. Unlike The standard max call has a linear return in the exercise area. Finally,
underlying variables evolve in accordance with geometric Brownian motion and arithmetic Brownian motion. This
mix of processes invalidates scaling properties found in standard models based on geometric Brownian motion.

The system of coupled integral equations (1)-(2) can, in principle, be used to compute the optimal investment
boundaries. One of the difficulties in implementing an algorithm based on these equations is the unboundedness of
the domains over which boundaries are defined. The next result, which describes the asymptotic behavior of the
boundaries, helps to address this issue. It shows that boundaries have linear growth and provides their exact slopes.
We extract these slopes from the system of integral equations (1)-(2), and are not aware of any other method to achieve
this. This shows another advantage and highlights the informational content of these equations.

Lemma 2 The following identities hold,

lim
y↑+∞

bX (y)
y

= b∞
X , (13)

020001-2



lim
x↑+∞

bY (x)
x

= b∞
Y , (14)

where the slopes b∞
X and b∞

Y can be computed, respectively, as

b∞
X =

γw
∫ ∞

0 e−δY t ∫ ∞
−∞ ϕ(z1)Φ

(
−

1
σY

√
t (log(b∞)−(μY+

1
2 σ2

Y )t)−ρz2√
1−ρ2

)
dz1 dt

γg/r− γg
∫ ∞

0 e−rt
∫ ∞
−∞ ϕ(z1)I

((
μY − 1

2 σ2
Y

)
t+σY

√
tz1 < 0

)
dz1 dt

, (15)

b∞
Y =

γg
∫ ∞

0 e−rt ∫ ∞
−∞ ϕ(z1)I(b∞ exp

{(
μY − 1

2 σ2
Y
)

t+σY
√

tz1}< 1
)

dz1 dt

γw/δY − γw
∫ ∞

0 e−δY t
∫ ∞
−∞ ϕ(z2)Φ

(
1√

1−ρ2

(
(μY/σY +σY/2)

√
t +ρz2

))
dz2 dt

, (16)

and where the product of the slopes b∞ = b∞
X b∞

Y is the unique solution to

b∞ =

∫ ∞
0 e−δY t ∫ ∞

−∞ ϕ(z1)Φ
(
−

1
σY

√
t (log(b∞)−(μY+

1
2 σ2

Y )t)−ρz1√
1−ρ2

)
dz1 dt

1/r− ∫ ∞
0 e−rt

∫ ∞
−∞ ϕ(z1)I

((
μY − 1

2 σ2
Y

)
t+σY

√
tz1 < 0

)
dz1 dt

×
∫ ∞

0 e−rt ∫ ∞
−∞ ϕ(z1)I(b∞ exp

{(
μY − 1

2 σ2
Y
)

t+σY
√

tz1}< 1
)

dz1 dt

1/δY − ∫ ∞
0 e−δY t

∫ ∞
−∞ ϕ(z2)Φ

(
1√

1−ρ2

(
(μY/σY +σY/2)

√
t +ρz2

))
dz2 dt

. (17)

In these formulas, ϕ and Φ are the standard normal cdf and pdf, respectively. We also have that b∞
X · y ≤ bX (y) for

any y > 0 and b∞
Y · x ≤ bY (x) for any x ∈ IR.

Having obtained the system of integral equations, the expression for the early investment premium π and the
asymptotic behavior of the boundaries, we now propose a numerical algorithm to compute the pair of boundaries
(bX ,bY ). We note that this approach can be extended to other perpetual multidimensional timing problems.

As noted above, the integral equations are not of Volterra type and this is in contrast to standard situations in
American option problems where the time-dependent boundaries are solutions to recursive integral equations, which
can be solved by backward induction. In our case, the equations are of Fredholm type, i.e., to extract bY (x) we need
to know the values of bY (x̃) for both x̃ < x and x̃ > x. Thus, we do not have recursive induction in x. However, we
make use of the following iterative procedure. Let us choose some initial curves (b0

X (y),b
0
Y (x)) for x ∈ IR and y > 0,

and then, recursively, define bn
X (y) and bn

Y (x) as solutions to the algebraic equations,

G1(bn
X (y)) = π(bn−1

X (y),y;bn−1
X ,bn−1

Y ), (18)

G2(bn
Y (x)) = π(x,bn−1

Y (x);bn−1
X ,bn−1

Y ), (19)

for y > 0, x ∈ IR and n ≥ 1. The intuition behind this recursive approach is that if the sequence of boundaries (bn
X ,b

n
Y )

converges as n → ∞, the equations in the limit correspond to the integral equations satisfied by the exercise boundaries
(bX ,bY ).

The advantage of this method is that, at step n, the right-hand sides are fixed and do not depend on bn
X and bn

Y , and
the left-hand sides are increasing functions of bn

X (y) and bn
Y (x), respectively. Thus, there are unique solutions to both

equations. In fact, as G2 is affine in y, we have an explicit expression for bn
Y (x). The same is not true for G1, because

of its nonlinear structure, so that we have to solve that algebraic equation.
Let us now describe the natural candidate for the initial values of the sequence, namely (b0

X ,b
0
Y ). As we identified

lower bounds for (bX ,bY ), we define initial values as follows,

b0
X (y) =

{
bg

X , y < bg
X/b∞

X
b∞

X y, y ≥ bg
X/b∞

X
, (20)
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and

b0
Y (x) =

{
bw

Y , x < bw
Y /b∞

Y
b∞

Y x, x ≥ bw
Y /b∞

Y .
(21)

We then iterate for n = 1,2, ... until the variation
(
bn

X (y)−bn−1
X (y),bn

Y (x)−bn−1
Y (x)

)
falls below a predetermined

tolerance threshold. The complete details of the algorithm such as truncation, discretization, interpolation and extrap-
olation of the state space and boundaries are given in a separate work.
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Abstract. We suggest some constructions to develop the theory of boundary value problems on manifolds with a non-smooth
boundaries. We discuss basic principles for such a theory and describe main results that we have obtained to this time. Further, we
show how these results are related to the theory of boundary value problems on non-smooth manifolds.

INTRODUCTION

In this paper we would like to present basic ideas and results which can be useful for constructing the theory of
boundary value problems for elliptic pseudo-differential equations on manifolds with a non-smooth boundary.

There are a lot of books [1, 2, 3, 4, 5, 6] in which similar problems are discussed but they use distinct methods and
consider certain “singular manifolds” of other types.

Some papers are very closed to this text [7, 8, 9] but these are related to algebraical aspects of such a theory.
The paper [10] is classified as asymptotical aspect of such a theory, some author’s studies and results can be found

in [11, 12].
Author’s results were presented in the book [13]. Generally these results concerned to the two-dimensional situa-

tion. Here we present our main ideas and results which are under consideration last years [11, 12, 14, 15, 16, 17, 18]
and these latter considerations are related to multi-dimensional case especially. Here we continue these studies and
give certain concrete constructions for special boundary value problems.

BASIC PRINCIPLES

We use a few basic principles on which the theory holds. We will describe briefly all these postulates because these
are very simple and give the key for understanding the theory. As a model we will take the following operator

u(x) �−→
∫
D

A(x,x− y)u(y)dy, x ∈ D, (1)

where A(x,y) is “kernel” of the operator, i.e. A(x,y) = F−1
ξ→yÃ(x,ξ ), F is the Fourier transform,

ũ(ξ ) = (Fu)(ξ ) =
∫
Rm

eix·ξ u(x)dx,

D ⊂ R
m is a bounded domain (for simplicity) with a boundary ∂D. Such operator (1) is called a pseudo-differential

operator in D [19] with the symbol Ã(x,ξ ).
We will suppose here that the symbol A(x,ξ ) satisfies some smoothness properties (for example, A(x,ξ ) is contin-

uously differentiable on D×R
m) and the condition

c1(1+ |ξ |)α ≤ |A(x,ξ )| ≤ c1(1+ |ξ |)α , α ∈ R.

Let us note the latter condition guarantees the boundedness of the operator (1) in Sobolev–Slobodetskii spaces
Hs(D)→ Hs−α(D) [19].

The main problem of the theory is describing Fredholm properties of the operator (1).
Definition 1 Operator (1) is called an elliptic operator if

ess inf
x∈D,ξ∈Rm

|A(x,ξ )|> 0.
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Such symbol is called elliptic symbol.
It is convenient considering operators (1) in Sobolev–Slobodetskii spaces Hs(D) [19]. We will remind the definition

[19]. By definition, this space consists of functions (distributions) u from Hs(Rm) which supports belong to D. A
norm in the space Hs(D) is induced by the Hs(Rm)-norm

||u||s =
⎛
⎝∫
Rm

|ũ(ξ )|2(1+ |ξ |)2sdξ

⎞
⎠

1/2

,

where the sign ∼ over u denotes its Fourier transform

ũ(ξ ) =
∫
Rm

u(x(eix·ξ dx.

Everywhere below we consider only elliptic symbols, and H̃(D) denotes the Fourier image of the space H(D).

Local principle

This principle was introduced by I.B. Simonenko [20] more than a half-century ago. It asserts in a simplest form that
an operator of a special type operator of a local type) has Fredholm property iff all certain other operators (its local
representatives) have the same property. It seems there is no news but the essential point is that local representative
of an operator can have more simple structure than the starting general operator. As we will see below it is real fact.

This concept is related to the first principle. We will explain it for the case when the boundary ∂D is a smooth surface.
This case includes two types of local representatives. If the point x0 ∈ D is an inner point then a neighborhood of the

point is diffeomorphic to R
m and the local representative of the the operator (1) looks as follows

u(x) �−→
∫
Rm

A(x0,x− y)u(y)dy, x ∈ R
m. (2)

To obtain Fredholm property (= invertibility property) for such operator(2) in “local” Sobolev–Slobodetskii space
Hs(Rm) it is necessary and sufficient to require the ellipticity condition [19, 20].

If the point x0 ∈ ∂D is a boundary point then a neighborhood of the the point is diffeomorphic to half-space
Rm
+ = {x ∈ Rm : x = (x1, ...,xm),xm > 0} (rectification of a boundary), and the local representative of the the operator

(ref1) looks as follows

u(x) �−→
∫
R

m
+

A(x0,x− y)u(y)dy, x ∈ R
m
+. (3)

The latter operator (3) acts in “local” Sobolev–Slobodetskii spaces Hs(Rm
+). Such operators (3) are called usually

Wiener–Hopf operators. The ellipticity condition for their invertibility is not enough. Principal role takes factorization
technique based on classical Riemann boundary value problem [19]. The dimension of a kernel (co-kernel) of the
operator (3) is defined by so called index of factorization. We denote it by m−1(x0), generally it depends on the point

x0∈ ∂ D.

This idea was applied by the author earlier [13] and it related to a new type of local representatives of the operator
(1). They appear when the boundary ∂D includes some singular points in which smoothness property does not hold.
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For example, if x0 ∈ ∂D such that its neighborhood is diffeomorphic to a cone C ⊂ R
m and a neighborhood of ∂D

transforms to a neighborhood of ∂C then local representative of the operator (1) is the following

u(x) �−→
∫
C

A(x0,x− y)u(y)dy, x ∈C, (4)

and we need to study invertibility properties of the operator (4) in “local” Sobolev–Slobodetskii space Hs(C). There-
fore, if you want to do it or not you must invent how to find the inverse operator for (4).

Multidimensional Riemann boundary value problem and the wave factorization

For this purpose the author has studied a certain multidimensional variant of Riemann boundary value problem [13]. It
appears if we try to apply the Fourier transform to study the operator (4). As a result we obtain some multidimensional
singular integral equation with a special kernel; this equation is a generalization of one-dimensional singular integral
equation with the Cauchy kernel.

Bochner kernel Let C be a convex cone non-including a whole straight line. This kernel is defined by the formula

B(z) =
∫
C

eiy·zdy, z = x+ iτ, τ ∈ ∗
C,

where
∗
C= {x ∈ Rm : x · y > 0,y ∈ C}. The Bochner kernel is holomorphic function in radial tube domain T (

∗
C) =

Rm + i
∗
C⊂ Cm [21, 22, 23]. Only one cone exists in the real line, and for this case the Bochner kernel transforms into

Cauchy kernel.
Conjugation problem Up to now there is no any way to solve such singular integral equations excluding the

Wiener–Hopf method (= method of Riemann boundary value problem). This method is based on a special represen-
tation for coefficient of conjugation problem (or in other words for the symbol of a “local operator”). The author has
used this idea for the multidimensional Riemann boundary value problem and has introduced the concept of wave
factorization for an elliptic symbol.

If we consider the cone R
k ×Cm−k where Cm−k is a convex cone in R

m−k non-including a whole straight line then
the existence of k-wave factorization for the symbol Ã(·,ξ ) with respect to the cone Cm−k means the following. The
symbol A(·,ξ ) admits the representation

A(·,ξ ′′,ξ ′) = A 
=(·,ξ ′′,ξ ′) ·A=(·,ξ ′′,ξ ′),

where ξ ′′ = (ξ1, ·,ξk),ξ ′ = (ξk+1, ·,ξm), factors A
=(·,ξ ′′,ξ ′),A=(·,ξ ′′,ξ ′) admit holomorphic continuation with re-

spect to the ξ ′ (for fixed ξ ′′) into radial tube domains T (
∗

Cm−k),T (−
∗

Cm−k) respectively with some estimates in which
the index k of k-wave factorization takes part (one can find the rigorous definition in [13]). The value of the k is
essential for a solvability of corresponding conjugation problem.

Unfortunately, existence of k-wave factorization is one of main problems, that’s why this is the third postulate.

GENERAL CONCEPT: OPERATOR APPROACH

As we have seen there are distinct types of “local operators” (2),(3),(4) for the operator (1). We will denote all such
operators by unified formula

u(x) �−→
∫

Dx0

A(x0,x− y)u(y)dy, x ∈ Dx0
, (5)

meaning Dx0
as one of above domains.

It is convenient to consider the operator A on a manifold with such a family of local representatives in Sobolev–
Slobodetskii spaces Hs(D) for which its “local” variant will be the space Hs(Dx0

).
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Definition 2 Symbol of the operator (1) is called the operator function A(x) : D →{Ax}x∈D which is a family of local
representatives of the operator (1). The operator (1) is called an elliptic operator if its symbol consists of invertible
operators.

In other words, symbol of the operator (1) is operator family (5) when x0 varies in D.

k k

Definition 3 Canonical domains in Euclidean space R
m is such a domain which is diffeomorphic to one of the fol-

lowing cones: R
m,Rm

+,R
k ×Cm−k,k = 0,1, · · · ,m−2, where Cm−k is a convex cone in R

m−k non-including a whole
straight line.
Remark 1 �If we put by definition R

m×C0 ≡R
m,Rm−1×C1 ≡R

m
+,R

0×Cm ≡Cm then an arbitrary canonical domain

will be a cone of the type R
k ×Cm−k,k = 0,1, · · · ,m−2,m−1,m.

Definition 4 A model operator is called an operator of type (5) in some canonical domain with the symbol Ã(·,ξ )
non-depending on a spatial variable.

To define a domain (manifold) D with a singular boundary we will introduce different types of neighborhoods. For a

smooth compact manifold all neighborhoods {Uj} have the same type, these are diffeomorhic to R
m. But if a manifold

has a smooth boundary even then there are two types of neighborhoods related to a place of a neighborhood, namely

inner neighborhoods and boundary ones. For inner neighborhood U such that U ⊂ D̊ we have the diffeomorphism

ω : U → R
m. For a boundary neighborhood such that U ∩ ∂D 
= /0 we have another diffeomorphism ω1 : U → R

m
+.

May be this boundary ∂D has some singularities like conical points and wedges. A conical point at the boundary is

such a point for which its neighborhood is diffeomorphic to the cone Cm, a wedge point of codimension k,1 ≤ k ≤
m−2, is such a point for which its neighborhood is diffeomorphic to the cone R

k ×Cm−k. So if the manifold D has
such singularities we suppose that we can extract certain k-dimensional sub-manifolds, namely (m−1)-dimensional
boundary ∂ D, and k-dimensional wedges Dk,k = 0, · · · ,m− 2; D0 is a collection of conical points.

If D is a compact domain (manifold) then there is a partition of unity. It means the following. For every finite open

covering {Uj} j=1 of the manifold D there exists a system of functions {ϕ j(x)} j=1,ϕ j(x) ∈C∞(D), such that

• 0 ≤ ϕ j(x)≤ 1,

• supp ϕ j ⊂Uj,

•
k
∑
j=1

ϕ j(x) = 1.

So we have

f (x) =
k

∑
j=1

ϕ j(x) f (x)

for arbitrary function f defined on D.

Since an every set Uj is diffeomorphic to an open set D j
k = R

k ×Cm−k for some k we have corresponding diffeo-

morphisms ω j : Uj → D j
k. Further for a function f defined on D we compose mappings f j = f ·ϕ j and as far as

supp f j ⊂Uj we put f̂ j = f j ◦ω−1
j so that f̂ j : D j

k → R is a function defined in a domain of m-dimensional space R
m.

On the manifold D we fix a finite open covering and a partitions of unity corresponding to this covering {Uj, f j}n
j=1

and choose smooth functions {g j}n
j=1 so that supp g j ⊂Vj,Uj ⊂Vj, and g j(x)≡ 1 for x∈ supp f j,supp f j∩(1−g j)=

/0.
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Definition 5 The operator A on the manifold D can be represented in the form

A =
n

∑
j=1

f j · Â j ·g j +T,

where T : Hs(D)→ Hs−α(D) is a compact operator, Â j is one of model operators (5) in which the change of variables
ω j was done.

Invertibility of local operators First conclusion from the local principle is the following.
Theorem 1 The operator A has Fredholm property iff it is an elliptic operator.

Let us denote k(x) the indices of k-wave factorization of the symbol A(x,ξ ) with respect to the cone Cm−k at points
x ∈ Mk,k = 0,1, · · · ,m−2 and assume that the functions k(x),k = 0,1, · · · ,m−1, can be continued into Mk because it

is possible Mk ∩Mk−1 
= /0.

Proposition 1 Let the classical symbol A(x,ξ ) admits k-wave factorization with respect to the cone Cm−k with indices
k(x),k = 0,1, · · · ,m−2 satisfying the conditions

|k(x)− s|< 1/2, ∀x ∈ Mk, k = 0,1, · · · ,m−1. (6)

Then the operator A : Hs(M)→ Hs−α(M) has Fredholm property.
Remark 2 Let us note that (m− 1)-wave factorization is usual factorization in Eskin’s sense and it always exists
[19].

On boundary conditions Let us suppose that one of conditions (6) does not hold. It means that there is at list
one point xo ∈ ∂D. If x0 is a smoothness point at the boundary ∂D then you can look [19]. We suppose here that x0

is a conical point so that Dx0
= C and for this this convex cone C its boundary is given by the equation xm = ϕ(x′).

Moreover we suppose that 0(x0)− s = n+ ε, |ε| < 1/2. Then the local representative Ax0
is not invertible, but it is

possible to describe its kernel [16, 17].
Let C be a convex cone in the space R

m, and this cone does not include any whole straight line, it is important
because we use the theory of analytic functions of several complex variables [21, 22, 23]. Moreover we suppose that a
surface of this cone is given by the equation xm = ϕ(x′),x′ = (x1, · · · ,xm−1), where ϕ : Rm−1 →R is a smooth function
in R

m−1 \{0}, and ϕ(0) = 0.
Let us introduce the following change of variables⎧⎪⎪⎪⎨

⎪⎪⎪⎩

t1 = x1

t2 = x2

· · ·
tm−1 = xm−1

tm = xm −ϕ(x′)

and we denote this operator by Tϕ : Rm → R
m so that points from lower half-space will be fixed.

Theorem 2 A kernel of the operator Ax0
in the space Hs(C) consists of functions of the following type

A−1

= (ξ )V−ϕ F

(
n−1

∑
k=0

ck(x′)δ (k)(xm)

)
,

where A 
=(ξ ) is factor of 0-wave factorization for the symbol A(x0,ξ ), δ is the Dirac mass-function, and V−ϕ is a
special integral operator defined by changes of variables in m-dimensional space and the Fourier transform, ck(x′)
are arbitrary functions from the space where Hsk(Rm−1), sk = s− 0(x0)+ k+1/2, k = 0,1,2, ...,n−1.

We have the a priori estimate

||u||s ≤ const
n−1

∑
k=0

[ck]sk ,

where [·]sk denotes the Hsk(Rm−1)-norm.
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Therefore, to obtain invertibility for such operator Ax0
and to annihilate the kernel we need to add some additional

conditions. As a rule such conditions are chosen as boundary conditions.
Remark 3 It is very unpleasant but it may be happened that we need distinct number of conditions for different
placements of the point x0. But I think such a problem is now very far from nearest ones.

DESCRIPTION OF OPERATOR Vϕ AND ITS PROPERTIES

To obtain explicit expression for Vϕ we need to choice a concrete cone. We consider here C ≡ Ca
+ = {x ∈ R

m : x =
(x′,xm),xm > a|x′|,a > 0}, the notation Tϕ ≡ Ta,Vϕ ≡Va and use the transmutation formula

FT−1
a =V−aF.

Let us fix u ∈ S(Rm) and evaluate

(FT−1
a u)(ξ ) =

∫
Rm

eiy·ξ (T−1
a u)(y)dy =

∫
Rm

eiy·ξ ′
u(y′,ym +a|y′|)dy

=
∫
Rm

eix·ξ e−iξma|x′|u(x′,xm)dx′dxm =
∫
Rm

eix′·ξ ′
e−iξma|x′|û(x′,ξm)dx′,

where û(x′,ξm) denotes the Fourier transform of the function u(x′,xm) with respect to the variable xm. According to
properties of the Fourier transform we denote

Fx′→ξ ′(e−iξma|x′|)≡ Ka(ξ ′,ξm),

and obtain an integral representation for the operator V−a:

(FT−1
a u)(ξ ) =

∫
Rm

Ka(ξ ′ −η ′,ξm)ũ(η ′,ξm)dη ′,

where Ka(ξ ′,ξm) is the Fourier image of corresponding distribution.

Since the function e−iξma|x′| is not integrable in R
m−1 we need some regularization method , and we mean the latter

formula as follows

lim
τ→0

Fx′→ξ ′(e−izma|x′|), zm = ξm − iτ, τ > 0,

so that

(FT−1
a u)(ξ ) = lim

τ→0+

∫
Rm

Ka(ξ ′ −η ′,zm)ũ(η ′,ξm)dη ′,

According to above

Fx′→ξ ′(e−izma|x′|) =
∫

Rm−1

eix′·ξ ′
e−izma|x′|dx′,

and we cam use certain technical methods developed in [24] to find the following representation.
Proposition 2 The function Ka has the following form

Ka(ξ ′,zm) =
iazm2m−1π

m−2
2 Γ(m/2)(

ξ 2
1 +ξ 2

2 + · · ·ξ 2
m−1 −a2z2

m
)m/2

,

where zm = ξm − iτ,τ > 0.
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So, we have

(V−aũ)(ξ ) = lim
τ→0+

1

πm/2

∫
Rm−1

iazmΓ(m/2)ũ(η ′,ξm)dη ′

(|ξ ′ −η ′|2 −a2z2
m)

m/2
. (7)

Corollary 1 If a → 0 then

(V0ũ)(ξ ) = lim
a→0

lim
τ→0+

1

πm/2

∫
Rm−1

iazmΓ(m/2)ũ(η ′,ξm)dη ′

(|ξ ′ −η ′|2 −a2z2
m)

m/2
= ũ(ξ ′,ξm).

Corollary 2 If ξm → 0 then

lim
ξm→0

(V−aũ)(ξ ) = lim
ξm→0

lim
τ→0+

1

πm/2

∫
Rm−1

iazmΓ(m/2)ũ(η ′,ξm)dη ′

(|ξ ′ −η ′|2 −a2z2
m)

m/2
= ũ(ξ ′,0)

Theorem 3 The kernel of the equation (5) consists of functions of the following type

ũ(ξ ) = A−1

= (ξ )

(
n

∑
k=1

C̃k(ξ ,ξm)ξ k−1
m

)
,

where

C̃k(ξ ,ξm) = (V−ac̃k)(ξ ′,ξm).

Thus, for unique identification of the functions C̃k(ξ ′,ξm) we need some additional conditions. We consider some
variants below.

Case m = 2

First, we need to note that 2-dimensional case was studied without operator Vϕ , but to verify this way we have
constructed the operator Vϕ for this case also. Second, for 2-dimensional case we have only one type of a cone

(excluding rotations) Ca
+ = {x ∈ R

2 : x = (x1,x2),x2 > a|x1|,a > 0}. Thus, we have the following boundary function
ϕ(x1) = a|x1|. For this function we have evaluated the operator Vϕ [16] using analytic properties of the Fourier
transform, and it looks as follows

(Vaũ)(ξ ) =
ũ(ξ1 +aξ2,ξ2)+ ũ(ξ1 −aξ2,ξ2)

2

+v.p.
i

2π

+∞∫
−∞

ũ(η ,ξ2)dη
ξ1 +aξ2 −η

− v.p.
i

2π

+∞∫
−∞

ũ(η ,ξ2)dη
ξ1 −aξ2 −η

.

Case m = 3

We have a lot of cones in this case, and we consider some of them.
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4-sided angle. The boundary function for this case is the following ϕ(x) = a1|x1|+a2|x2|, i.e. the conical surface
is described by the equation x2 = a1|x1|+a2|x2|. The cone looks as follows Ca1a2

= {x ∈ R
3 : x2 > a1|x1|+a2|x2|}.

Let us introduce two operators defined on functions of three variables

(S1u)(ξ1,ξ2,ξ3) = v.p
i

2π

+∞∫
−∞

u(τ,ξ2,ξ3)dτ
ξ1 − τ

,

(S2u)(ξ1,ξ2,ξ3) = v.p
i

2π

+∞∫
−∞

u(ξ1,η ,ξ3)dη
ξ2 −η

.

If we will denote corresponding operator by Ta1a2
(change of variables) and its transmutation operator by Va1a2

then
we obtain

(Va1a2
ũ)(ξ1,ξ2,ξ3) =

ũ(ξ1 −a1ξ3,ξ2 −a2ξ3,ξ3)+ ũ(ξ1 +a1ξ3,ξ2 −a2ξ3,ξ3)

4

+
1

2
(S1ũ)(ξ1 +a1ξ3,ξ2 −a2ξ3,ξ3)− 1

2
(S1ũ)(ξ1 −a1ξ3,ξ2 −a2ξ3,ξ3)

+
ũ(ξ1 −a1ξ3,ξ2 +a2ξ3,ξ3)+ ũ(ξ1 +a1ξ3,ξ2 +a2ξ3,ξ3)

4

+
1

2
(S1ũ)(ξ1 +a1ξ3,ξ2 +a2ξ3,ξ3)− 1

2
(S1ũ)(ξ1 −a1ξ3,ξ2 +a2ξ3,ξ3)

+
(S2ũ)(ξ1 −a1ξ3,ξ2 +a2ξ3,ξ3)+(S2ũ)(ξ1 +a1ξ3,ξ2 +a2ξ3,ξ3)

2

+(S1S2ũ)(ξ1 +a1ξ3,ξ2 +a2ξ3,ξ3)− (S1S2ũ)(ξ1 −a1ξ3,ξ2 +a2ξ3,ξ3)

− (S2ũ)(ξ1 −a1ξ3,ξ2 −a2ξ3,ξ3)− (S2ũ)(ξ1 +a1ξ3,ξ2 −a2ξ3,ξ3)

2

−(S1S2ũ)(ξ1 +a1ξ3,ξ2 −a2ξ3,ξ3)+(S1S2ũ)(ξ1 −a1ξ3,ξ2 −a2ξ3,ξ3).

This case was studied in [17] (see also [25]) and here we give the final form only
Circle cone. According to the formula (7) we have for Ca

+

(V−aũ)(ξ1,ξ2,ξ3) = lim
τ→0+

1

π3/2

∫
R2

iaz3Γ(3/2)ũ(η1,η2,ξ3)dη1dη2(
(ξ1 −η1)2 +(ξ2 −η2)2 −a2z2

3

)3/2
.

There are a lot of cones in multidimensional Euclidean space which can be constructed from those that we have
considered. We will enumerate some of them.

• R
k ×Ca

+ ⊂ R
k+m;

• Ca1a2
×Ca

+ ⊂ R
m+3;

• (0,+∞)×Ca
+ ⊂ R

m+1;

• (0,+∞)×Ca
+×Ca1a2

⊂ R
m+4;

• R
k × (0,+∞)×Ca

+×Ca1a2
⊂ R

k+m+4.

For every of these cases we will obtain special type of the integral operator Vϕ , and every particular case will
generate its own formula for a general solution. We will consider such possibilities in forthcoming publications.
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INTEGRAL CONDITION AND SOLVABILITY

Taking into account Theorem 2 we consider the equation with a model operator

(Au)(x) = 0, x ∈Ca
+, (8)

in the cone Ca
+ with symbol A(ξ ) for n = 1. Then we have the following formula for a general solution in view of (7)

ũ(ξ ) = A−1

= (ξ )V−ac̃0(ξ ′)

with an arbitrary function c0 ∈ Hs−+1/2(Rm−1). Let us suppose that the following condition

+∞∫
−∞

u(x′,xm)dxm = g(x′), (9)

where g(x′) is given function from Hs+1/2(Rm−1). According to the Fourier transform properties we have

ũ(ξ ′,0) = g̃(ξ ′),

and taking into account Corollary 2 we can find c̃0(ξ ′) immediately from the equality

ũ(ξ ′,0) = A−1

= (ξ ′,0)c̃0(ξ ′),

more exactly

c̃0(ξ ′) = A 
=(ξ ′,0)g̃(ξ ′).

Therefore, we can formulate the following result.
Theorem 4 The boundary value problem (8), (9) has unique solution in the space Hs(Ca

+) for arbitrary given function
g(x′) ∈ Hs+1/2(Rm−1) of the following type

ũ(ξ ′,ξm) =
A−1

= (ξ ′,ξm)

πm/2
lim

τ→0+

∫
Rm−1

iazmΓ(m/2)A
=(η ′,0)g̃(η ′)dη ′

(|ξ ′ −η ′|2 −a2z2
m)

m/2
, zm = ξm − iτ, τ > 0.

A priori estimate

||u||s ≤ const[g]s+1/2

holds.

CONCLUSION

Here we have tried to show how much possibilities gives the developed approach, and how we can find some integral
representations for certain boundary value problems. General concepts of this approach was described in author’s
papers [26, 27] but as you see there are a lot of difficulties to realize these ideas. But we hope that this point of view
can be useful and can give a new impulse to develop the theory.
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Abstract. The optimal feedback control problem for the initial–boundary value problem describing a motion of a nonlinearly
viscous fluid is considered in the paper. The existence of an optimal solution that gives a minimum to a given quality functional
is proved. To prove the existence of an optimal solution the topological approximation method for investigation of hydrodynamic
problems is used.

INTRODUCTION

The motion of an incompressible nonlinearly viscous fluid in a bounded domain Ω ⊂ Rn, n = 2,3, on the time interval
[0,T ] (T < ∞) is described by the following initial–boundary value problem

∂v
∂ t

+
n

∑
i=1

vi
∂v
∂xi

−Div
[
2μ

(
I2(v)

)
ε(v)

]
+grad p = f , (1)

div v = 0, v|t=0 = v0(x), v|∂Ω×[0,T ] = 0. (2)

Here v(x, t) is a vector–function of the velocity of a fluid particle at a point x ∈ Ω at a time t ∈ [0,T ]; p is a pressure

function in a fluid; f is the density of external forces; ε is the strain rate tensor ε(v)=
(
εi j(v)

)
, εi j(v)=

1

2

( ∂vi

∂x j
+

∂v j

∂xi

)
,

tensor I2(v) is determined by the equality

I2
2 (v) = ε(v) : ε(v) =

n

∑
i, j=1

[εi j(v)]
2 .

Here for arbitrary square matrices A = (ai j) and B = (bi j) the symbol A : B = ∑n
i, j=1 ai jbi j is used. The symbol Div M

is denoting the divergence of the tensor M = (mi j), i.e. the vector

Div M =
( n

∑
j=1

∂m1 j

∂x j
, . . . ,

n

∑
j=1

∂mn j

∂x j

)
.

This mathematical model was in detail studied at works of Professor V.G. Litvinov (see [1]), where natural restric-
tions on the viscosity of a fluid under consideration are given through properties of the function μ : R+ → R. μ(s)
should be a continuously differentiable scalar function at s ≥ 0 for which inequalities

a) 0 <C1 ≤ μ(s)≤C2 < ∞;

b) −sμ ′(s)≤ μ(s) as μ ′(s)< 0;

c) |sμ ′(s)| ≤C3 < ∞
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are hold. Hereinafter, Ci denotes various constants.
The question of solutions existence for this problem have been considered at works of V.G. Litviniv (see, for

example, [1]), P.E. Sobolevskii [2], V.G. Zvyagin [3] and et al.
In this paper the optimal feedback control problem for the system of equations (1)–(2) is considered. A large

number of works have been devoted to the study of control problems (see [4, 5, 6]). However, while control problem
for linear systems is more or less studied, control problem for nonlinear systems remains a serious problem (even
for finite–dimensional or local domains). Control (optimal control) problem of a fluid motion using external forces
often arises in practice. Solving such problems a control is usually selected from some given (finite) set of controls.
In this paper we consider the control of external forces, which depend on the velocity of a fluid. Such problems are
called feedback problems (see, for example, [7, 8, 9, 10, 11, 12] and the bibliography therein). This allows us to more
accurately choose a control. Since in this case the control is not selected from a finite set of available controls but
belongs to the image of some multivalued map (it’s natural that some conditions are imposed on this map).

In this paper solutions existence to the feedback control problem for a nonlinearly viscous fluid model (1)–(2) is
studied. Also the existence of an optimal solution to the problem under consideration that gives a minimum to a given
bounded quality functional is proved.

STATEMENT OF THE PROBLEM AND MAIN RESULTS

Let introduce main notations and auxiliary statements.
By Lp(Ω), 1 � p < ∞, we denote the set of measurable p–integrable vector–functions v : Ω → R

n. By W m
p (Ω),

m � 1, p � 1, we denote the Sobolev spaces. By C∞
0 (Ω)n we denote the space of infinitely differentiable vector–

functions defined in Ω ranging in R
n and compactly supported in Ω. V is the set {v ∈ C∞

0 (Ω)n,divv = 0}. H is the

closure of V with respect to the norm L2(Ω) and V is the closure of V with respect to the norm W 1
2 (Ω).

Let consider the main space in which weak solutions of the problem under consideration will be studied:

W1 = {v : v ∈ L2(0,T,V )∩L∞(0,T ;H),v′ ∈ L1(0,T,V ∗)}.
The space W1 is considered with the norm

‖v‖W1
= ‖v‖L2(0,T,V ) +‖v‖L∞(0,T ;H) +‖v′‖L1(0,T,V ∗).

Let the multivalued map Ψ : W1 � L2(0,T,V ∗) which we will use to define feedback. We will specify restrictions
on the control. Assume that Ψ satisfies conditions:

(Ψ1) The map Ψ is defined on W1 and has nonempty compact convex values;

(Ψ2) The map Ψ is compact and upper semicontinuous (i.e. for any given v ∈ W1 and an open set Y ⊂ L2(0,T,V ∗)
with Ψ(v)⊂ Y there exists a neighborhood U(v) with Ψ(U(v))⊂ Y );

(Ψ3) The map Ψ is globally bounded; that is, there exists a constant C > 0 such that

‖Ψ(v)‖L2(0,T,V ∗) := sup{‖u‖L2(0,T,V ∗) : u ∈ Ψ(v)} ≤C for all v ∈W1;

(Ψ4) The map Ψ is weakly closed, which means that if {vl}∞
l=1 ⊂W1,vl ⇀ v0,ul ∈ Ψ(vl) and ul → u0 in L2(0,T,V ∗)

then u0 ∈ Ψ(v0).

We will consider a weak statement of the optimal feedback control problem for the initial–boundary value problem
(1)–(2). By feedback we understand the condition

f ∈ Ψ(v). (3)

Definition 1 A pair of functions (v, f ) ∈W1 ×L2(0,T,V ∗) is a weak solution to the feedback control problem (1)–(2),
if for every ϕ ∈V and almost all t ∈ [0,T ] it satisfies the identity

〈v′,ϕ〉−
∫
Ω

n

∑
i, j=1

viv j
∂ϕ j

∂xi
dx+2

∫
Ω

μ(I2(v))ε(v) : ε(ϕ)dx = 〈 f ,ϕ〉, (4)

the initial condition v(0) = v0 and the feedback condition (3).
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Hereinafter, 〈v′,ϕ〉= (
∂v
∂ t

,ϕ).
The first result of this paper is

Theorem 1 Let the multivalued map Ψ satisfies (Ψ1)− (Ψ4) and viscosity of the fluid under consideration satisfies
a)− c). Then there is at least one weak solution (v∗, f∗) ∈W1 ×L2(0,T,V ∗) to the feedback control problem (1)–(3).

Denote by Σ ⊂W1 ×L2(0,T ;V ∗) the set of all weak solutions to the feedback control problem (1)–(3). Consider an
arbitrary quality functional Φ : Σ → R satisfying conditions

(Φ1) There exists a number γ such that Φ(v, f )� γ for all (v, f ) ∈ Σ.

(Φ2) If vl ⇀ v∗ in W1 and fl → f∗ in L2(0,T ;V ∗), then Φ(v∗, f∗)� lim
m→∞

Φ(vl , fl).

As an example of this functional, we can take

Φ(v, f ) =
T∫

0

‖v(t)−u∗(t)‖V dt +
T∫

0

‖ f (t)‖2
V ∗ dt.

Here u∗ is some specified velocity field. This functional characterizes the deviation of velocity from the required, and
its minimum yields the minimal deviation of velocity from the one specified by the minimal control.

The main result of this paper is

Theorem 2 Let the multivalued map Ψ satisfies (Ψ1)–(Ψ4), viscosity of the fluid under consideration satisfies a)−c)
and quality functional Φ satisfies (Φ1),(Φ2). Then the optimal feedback control problem (1)–(3) has at least one weak
solution (v∗, f∗) such that

Φ(v∗, f∗) = inf
(v, f )∈Σ

Φ(v, f ).

The proof of Theorems 1 and 2 is based on the topological approximation method for hydrodynamic problems
investigation (see [13]). For this, at first, we obtain the operator interpretation of the problem under consideration
(operator inclusion) in suitable function spaces. Further, due to the fact that operators in the obtained operator in-
clusion do not have necessary properties we consider a problem that approximates the original one (in this case, it
is also an operator inclusion, but with better operators that have required properties and in better functional spaces).
Then, on the based of a priori estimates of solutions and the topological degree theory for multivalued vector fields
the solutions existence to the approximation problem is proved. And, finally, it is shown that from the sequence of
solutions to the approximation problem we can consider a subsequence that converges (in a sense) to a solution of the
original operator inclusion. After proving solvability of the control problem, it is shown that in the set of solutions
there is at least one solution that gives a minimum to a given quality functional (this is why this type of problem is
called the optimal feedback control problem for a fluid motion). The developed method has been successfully applied
in a number of fluid dynamics models to prove the existence of solutions, in feedback optimal control problems, in
problems of the existence of attractors and pullback attractors and others (see [8, 9, 10, 11, 14, 15, 16, 17]).
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Abstract F. Bracci, M.D. Contreras, S. Díaz Madrigal [3] proved that any evaluation family of order d is described by a generalized
Löwner chain. G. Ivanov and A. Vasil’ev considered randomized version of the chain and found a substitution which transforms
the chain to an Itô diffusion.We generalize their result to vector randomized Löwner chain and prove there are no other possibilities
to transform such Löwner chains to Itô diffusions.

INTRODUCTION

In [7] the authors introduce new evolution families of conformal maps on the unit disk satisfying an invariance property
typically associated with Schramm-Löwner evolution (SLE). In particular, they found a substitution which transforms
their evolution family into an Itô diffusion.

We refer to [2] for a nice survey and to [6] for another type of evolution families of conformal maps on the unit
disk.

In our work, we denote by Č the set of functions f (z,x) from Cn(D×R
n) such that these functions have continuous

derivatives up to order n, ∂ f
∂ z doesn’t vanish and H(D) is the set of analytic functions in unit disc D. Let function

p : D× [0,∞) → C measurable in t, holomorphic in z, p(0, t) = 1 and ℜ(p(z, t)) ≥ 0 for all z ∈ D and t ≥ 0 (such

functions p are called Herglötz functions). We take Herglötz function of p(w, t) = p̃
(

w
τ(t)

)
in this form and τ depends

on some independent Brownian motions, denotes by τ(t) = τ(Bt) where Bt = (B1
t ,B

2
t , . . . ,B

n
t ).

MAIN RESULTS

Theorem 1. Let us consider Löwner random differential equation

{
dφt (z,w)

dt = (τ1(t,w)−φt (z,w))2

τ1(t,w)
p̃( φt (z,w)

τ1(t,w)
)

φ0 (z,w) = z
(1)

where |τ1 (t,ω)| = 1 for each fixed w ∈ Ω (Ω is a sample space) and p̃ is an arbitrary Herglötz function. Suppose
ψt = m(φt ,B

(1)
t ,B(2)

t , . . . ,B(n)
t ) where B(i)

t are independent Brownian motions, m ∈ C̆ and τ1 (t,ω) = τ(Bt) then, ψt
is an n× 1 dimensional Itô diffusion with coefficients from H(D) for an arbitrary Herglötz function p̃ if and only if
τ(Bt) = ek·Bt where k = (k1, . . . ,kn) and k ∈ C

n.
Furthermore the infinitesimal generator of ψt (when it is an Itô diffusion) is given by this form

A =
(
− z

2
|k|2 +(1− z)2 p̃(z)

) d
dz

− 1

2
|k|2 z2 d2

dz2
. (2)

Proof. For n = 1 sufficiency part was proved by G. Ivanov and A. Vasilev. We use similar argument to prove suffi-
ciency for arbitrary n. By the complex Itô formula, the process

1

τ(Bt)
= e−ik1B(1)

t −ik2B(2)
t −...−iknB(n)

t
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satisfies the stochastic differential equation (SDE)

d(e−ik1B(1)
t −...−iknB(n)

t ) =−
n
∑
j=1

ik je−ik1B(1)
t −...−iknB(n)

t dB( j)
t

− 1
2

n
∑
j=1

k2
j e

−ik1B(1)
t −...−iknB(n)

t dt.

(3)

Let us denote ψt(z,w) =
φt (z,w)
τ(Bt )

. Applying the integration by parts formula for ψt , we obtain

d(ψt) = φtd(e−ik1B(1)
t −...−iknB(n)

t )+(e−ik1B(1)
t −...−iknB(n)

t )dφt

=−iψtk ·dBt +(−|k|2
2 ψt +(ψt −1)2 p̃(ψt))dt

(4)

So ψt is an Itô diffusion in R
n.

Now for the necessity part, from our supposition ψt = m(φt ,B
(1)
t , . . . ,B(n)

t ). Apply Itô formula;

d(ψt) =
∂m
∂x

dφt +
n

∑
i=1

∂m
∂yi

dB(i)
t +

1

2

n

∑
i=1

∂ 2m
∂y2

i
dt. (5)

and if (5) is an n×1 dimensional Itô diffusion with analytic coefficients then there are functions fi ∈ H(D) such that

∂m
∂yi

= fi(m(x,y)). (6)

Taking derivative of (6) with respect to y j we obtain

f ′i (m(x,y))
fi(m(x,y))

=
f ′j(m(x,y))
f j(m(x,y))

.

Hence

(ln fi(z))′ = (ln f j(z))′

and

fi(z) = ci j f j(z). (7)

Let us denote

fi(z) = ci f (z) (8)

and let F(z) be an antiderivative of 1
f (z) , hence

F(m(x,y)) = c ·y+q(x)

where c = (c1, . . . ,cn).
Since by supposition F ′ doesn’t vanish, there exists an inverse function F−1 and

m(x,y) = F−1(c ·y+q(x)). (9)

Let us denote

F−1(z) = G(z). (10)

Now for coefficients in dt, we have

∂m
∂x

dΦt +
1

2

n

∑
i=1

∂ 2m
∂y2

i
dt = g(G(c ·y+q(x))dt,
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where g is an analytic function in D. If we substitute (6), (8), and (10) then we get,

G′(c ·y+q(x))q′(x) dφt
dt + f ′(G(c ·y+q(x))) f (G(c ·y+q(x))) 1

2

n
∑

i=1
c2

i

= g(G(c ·y+q(x))),

(11)

G′(c ·y+q(x))q′(x)
(τ(y)− x)2

τ(y)
p̃(

x
τ(y)

) = g1(c ·y+q(x)), (12)

where we denote

g1(z) = g(z)− f ′(z) f (z)
1

2

n

∑
i=1

c2
i .

Definition of (9) shows that G′(c ·y+q(x)) doesn’t vanish. Hence g1(c ·y+q(x)) is not identically zero. So equation
(12) can be written as

q′(x)
(τ(y)− x)2

τ(y)
p̃(

x
τ(y)

) = H1(c ·y+q(x)), (13)

where H1(z) =
g1(z)
G′(z) .

Let us differentiate (13) with respect to x and yi. Then we obtain two equalities:

q′′(x) (τ(y)−x)2

τ(y) p̃( x
τ(y) )−2q′(x) (τ(y)−x)

τ(y) p̃( x
τ(y) )+q′(x) (τ(y)−x)2

τ2(y) p̃′( x
τ(y) )

= q′(x)H ′
1(c ·y+q(x))

(14)

and

q′(x)
(τ(y)−x) ∂τ(y)

∂yi
(τ(y)+x)

τ2(y) p̃( x
τ(y) )−q′(x)

(τ(y)−x)2 ∂τ(y)
∂yi

x

τ2(y) p̃′( x
τ(y) )

= ciH ′
1(c ·y+q(x)); i = 1,2, . . . ,n.

(15)

Now (14) and (15) imply,

q′′(x) (τ(y)−x)2

τ(y) p̃
(

x
τ(y)

)
−2q′(x) (τ(y)−x)

τ(y) p̃
(

x
τ(y)

)
+q′(x) (τ(y)−x)2

τ2(y) p̃′
(

x
τ(y)

)

= q′(x)
ci

[
q′(x)

(τ(y)−x) ∂τ(y)
∂yi

(τ(y)+x)

τ2(y) p̃
(

x
τ(y)

)
−q′(x)

(τ(y)−x)2 ∂τ(y)
∂yi

x

τ2(y) p̃′
(

x
τ(y)

)]
;

i = 1,2, . . . ,n.

(16)
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Take derivative of (16) with respect to yi again ;[
p̃′
(

x
τ(y)

) x ∂τ(y)
∂yi

τ2(y) (−q′′(x)(τ(y)− x)+3q′(x))− q′(x)x ∂τ(y)
∂yi

(τ(y)−x)

τ3(y) p̃′′
(

x
τ(y)

)

+q′′(x) ∂τ(y)
∂yi

p̃
(

x
τ(y)

)]
·
[

q′(x)
∂τ(y)
∂yi

(τ(y)+x)

τ(y) p̃
(

x
τ(y)

)
−q′(x)

(τ(y)−x) ∂τ(y)
∂yi

x

τ2(y) p̃′
(

x
τ(y)

)]

=

⎡
⎣q′(x)

∂2τ(y)
∂y

i2
τ(y)(τ(y)+x)−(

∂τ(y)
∂yi

)2x

τ2(y) p̃
(

x
τ(y)

)
− q′(x)

τ3(y) (x
∂ 2τ(y)

∂yi2
τ(y)(τ(y)− x)

+3x2( ∂τ(y)
∂yi

)2)p̃′
(

x
τ(y)

)
+q′(x)

(τ(y)−x))x2(
∂τ(y)
∂yi

)2

τ4(y) p̃′′
(

x
τ(y)

)]
·
[
q′′(x)(τ(y)− x) p̃

(
x

τ(y)

)

−2q′(x)p̃
(

x
τ(y)

)
+q′(x)(τ(y)− x) p̃′

(
x

τ(y)

)]
; i = 1,2, . . . ,n.

(17)

Observe that the functions (p̃′ (z))2, p̃′ (z) p̃(z), ( p̃(z))2, p̃′′ (z) p̃(z), p̃′′ (z) p̃′ (z) and ( p̃′′ (z))2
,where p̃ are ar-

bitrary Herglötz functions, are independent. In fact they are independent even for p̃(w) = 1
1−w + a,a > 0, what

can be checked by straightforward calculations. Hence coefficients in ( p̃′ (z))2, p̃′ (z) p̃(z), ( p̃(z))2, p̃′′ (z) p̃(z),
p̃′′ (z) p̃′ (z)and (p̃′′ (z))2

in the left and right hand part of (17) coincide.
In particular,

x
(

∂τ(y)
∂yi

)2

q′′(x) =−τ(y)
∂ 2τ(y)

∂y2
i

q′(x) (18)

and

q′(x) =−xq′′(x). (19)

Then

q(x) = α lnx, (20)

where α is a constant. If we substitute this in (18) then we obtain(
∂τ(y)

∂yi

)2

= τ(y)
∂ 2τ(y)

∂y2
i

,1 ≤ i ≤ n. (21)

It is easy to see that any solution of system (21) can be written as

τ(y) = h1(y2, . . . ,yn)ey1g1(y2,...,yn) = · ··= hn(y1, . . . ,yn−1)eyngn(y1,...,yn−1), (22)

where h1, . . . ,hn are sufficiently smooth functions.Then

∂ n lnτ(y)
∂y1 . . .∂yn

=
∂ n−1g1(y2, . . . ,yn)

∂y2 . . .∂yn
= · · ·= ∂ n−1∂gn(y1, . . . ,yn−1)

∂y1 . . .∂yn−1
= c. (23)

It gives the general solution of (23)

lnτ(y) = cyn . . .y1 + g̃1(y2, . . . ,yn)+ . . .+ g̃n(y1, . . . ,yn−1), (24)

where g̃1, . . . , g̃n are arbitrary sufficiently smooth functions. If we put this τ(y) in (16) and take coefficient of p̃′ (z),
then we obtain

ci

ti
=

n

∏
k=1

yk +
n

∑
k=1,k �=i

∂ g̃k(y1, ..., ỹi, ...,yn)

∂yi
. (25)
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Taking derivative ∂ n−1

∂y2...∂yn
of (25) with i = 1, we obtain c = 0.

Moreover we claim that (24) and (25) imply τ(y) = exp(K ·y). Indeed for n = 1 it follows immediately from (21).
For n > 1 we take derivative of (25) with respect to y2, . . . ,yn−1 we obtain

∂ n−1g̃n(y1, . . . ,yn−1)

∂y1 . . .∂yn−1
= 0.

Hence g̃n can be written as sum of functions of n−2 variables. By induction it implies τ(y) = exp(
n
∑

i=1
Ki(yi)), and

application of (21) finishes the proof of the necessity part.
We mainly use techniques of the Theorem 7.3.3. in [12] to prove formula (2) for the infinitesimal generator of ψt

(when it is an Itô diffusion). �
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Abstract. In this work, we consider approximation of nonlocal reverse parabolic problem with second kind boundary and integral
conditions. Stability and coercive stability estimates for solution of difference scheme are obtained. Some illustrations of numerical
results in examples of one and two dimensional reverse parabolic equations are presented.

INTRODUCTION

Some nonlocal boundary value problems for reverse parabolic differential equation are studied in [1-5] (see also
references therein). Let Ω be unit open cube in Rn with boundary ∂Ω, Ω = SΩ∪∂Ω, and

ai : Ω → R,ψ : Ω → R,μ : [0,1]→ R, f : (0,1)×Ω → R

be given functions, σ is known number (σ > 0), ∀x ∈ Ω, ∀i = 1, ...,n,ai(x)≥ a0 > 0.
In [4], nonlocal boundary value problem for multidimensional reverse parabolic equation with second kind bound-

ary and integral conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t)+
n
∑

r=1
(ar(x)uxr(x, t))xr

−σu(x, t) = f (x, t),x = (x1, ..,xn) ∈ Ω,0 < t < 1,

u(x,1) =
1∫
0

μ(s)u(x,s)ds+ψ(x), x ∈ Ω,

∂u
∂−→n (x, t) = 0, x ∈ ∂Ω,0 ≤ t ≤ 1

(1)

was investigated. In the paper [5], approximation for multidimensional reverse parabolic differential equation with
integral and Dirichlet boundary conditions was studied. Our purpose in this study is to construct stable difference
scheme for nonlocal boundary value problem (1).

Introduce the grid spaces Ω̃h by

Ω̃h = {xm = (h1m1, · · · ,hnmn),m = (m1, · · · ,mn),mi = 0, · · · ,Ni, Nihi = 1, i = 1, · · · ,n } .

Let us take Ωh = Ω̃h∩Ω,Sh = Ω̃h∩∂Ω. Let L2h and W 2
2h be spaces of the grid functions vh(x) defined on Ω̃h, equipped

with the corresponding norms

∥∥vh
∥∥

L2h
=

(
∑x∈Ω̃h

|vh(x)|2h1 · · ·hn

)1/2
,

∥∥vh
∥∥

W 2
2h
=

∥∥vh
∥∥

L2h
+
(

∑x∈Ω̃h
∑n

i=1

∣∣(vh(x))xixi, mi

∣∣2 hi

)1/2
.

It is well known that the following operator

Ax
huh(x) =−

n

∑
i=1

(
ai(x)uh

xi
(x)

)
xi, ji

+σuh(x),
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acting in the space of grid functions uh(x) which satisfies the condition Duh(x) = 0 on x ∈ Sh is a self-adjoint positive
definite operator in L2h (see [5]).

Applying Ax
h, nonlocal boundary value problem (1) can be replaced by the following difference scheme⎧⎪⎪⎪⎨⎪⎪⎪⎩

uh
k(x)−uh

k−1(x)
τ −Ax

huh
k−1(x) = f h(tk,x), 1 ≤ k ≤ N, x ∈ Ω̃h,

uh
N(x) =

N−1

∑
j=0

μ(t j)uh
j(x)τ +ψh(x),x ∈ Ω̃h.

(2)

Let τ and |h|=
√

n
∑

i=1
h2

i be small positive real numbers.

Theorem 1 Solution of difference scheme (2) obeys stability estimate:∥∥∥∥{uh
k

}N

1

∥∥∥∥
Cτ (L2h)

≤ M(μ,δ )

[∥∥∥ψh
∥∥∥

L2h
+

∥∥∥∥{ f h
k

}N

1

∥∥∥∥
Cτ (L2h)

]
,

where positive constant M(μ,δ ) does depend on μ,δ , but is independent of τ,ψh(x), f h
1 (x), · · · , f h

N−1(x).

Theorem 2 Solution of (2) satisfies the next coercive stability estimate:∥∥∥∥{τ−1(uh
k −uh

k−1)
}N

2

∥∥∥∥
C α

1 (L2h)

≤ M(μ,δ )

[∥∥∥ψh
∥∥∥

W 2
2h

+

∥∥∥∥{ f h
k

}N

1

∥∥∥∥
C α

1 (L2h)

]
,

where positive constant M(δ ,μ) does depend on μ,δ , but is independent of τ,ψh(x), f h
1 (x), · · · , f h

N−1(x).

The proofs of Theorems 1 and 2 are based on coercive stability estimate for the solution of the elliptic difference
problem with second kind boundary condition in L2h [7] and the estimates (13) and (17) of paper [5].

NUMERICAL RESULTS

Now, we present numerical results to boundary value problems for reverse parabolic differential equation with second
kind boundary and nonlocal integral conditions in 1D and 2D cases.

First, we consider boundary value problem for 1D reverse parabolic differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x, t)+(1+2x)2uxx(x, t)+4(1+2x) ux(x, t)−u(x, t) = f (x, t),

f (x, t)=−4e−2t cosx
(
1+ x+ x2

)−4(1+2x) e−2t sinx , 0 < x < π,0 < t < 1,

u(x,1) =
1∫
0

e−2γ u(γ,x) dγ +ψ(x) , ψ(x) = cosx
(

e−2 + e−4

4 − 1
4

)
,0 ≤ x ≤ π,

ux(0, t) = 0,ux(π, t) = 0, 0 ≤ t ≤ 1.

(3)

The exact solution of problem (3) is u(x, t) = e−2t cosx.
Applying (2), we get the following difference scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk
n−uk−1

n
τ +(1+2xn)

2 uk−1
n+1−2uk−1

n +uk−1
n−1

h2 +4(1+2xn)
uk−1

n+1−uk−1
n−1

2h −uk−1
n = f (xn, tk),

k = 1, · · · ,N, n = 1, · · · ,M−1,

uN
n =

N−1

∑
j=0

e−2t j u j
nτ + cosxn

(
e−2 + e−4

4 − 1
4

)
, n = 0, · · · ,M,

uk
1 = uk

0, uk
M = uk

M−1, k = 0, · · · ,N

(4)
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for approximate solution of problem (3).
System of equation (4) can be rewritten in the matrix form

Anun+1 +Bnun +Cnun−1 = Inψn, n = 1, · · · ,M−1,
u0 = u1,uM = uM−1.

(5)

Here, ψn is (N + 1)× 1 column matrix, In = I is identity matrix with (N + 1) rows, An, Bn, Cn are square matrices
with (N +1) rows and columns.

An =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
an 0 · · · 0 0
...

. . . · · · ...
...

0 0
. . . 0 0

0 0 · · · an 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,Cn =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
cn 0 · · · 0 0
...

. . . · · · ...
...

0 0
. . . 0 0

0 0 · · · cn 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Bn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−e−2t0τ −e−2t1 τ −e−2t2τ · · · −e−2tN−2 τ −e−2tN−1τ 1
bn s 0 · · · 0 0 0
0 bn s · · · 0 0 0
...

. . .
. . .

. . .
...

...
...

0 0 0
. . . s 0 0

0 0 0
. . . bn s 0

0 0 0 · · · 0 bn s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

an =
(1+2xn)

2

h2 + 2(1+2xn)
h , bn =− 1

τ − 2(1+2xn)
2

h2 −1,

cn =
(1+2xn)

2

h2 − 2(1+2xn)
h ,s = 1

τ ,

ψn =
[

ψ0
n ... ψN

n
]t
,u j =

[
u0

j ... uN
j
]t
, j = n−1,n,n+1,

ψ0
n = cosxn

(
e−2 + e−4

4 − 1
4

)
, n = 1, · · · ,M−1,

ψk
n = f (xn, tk), k = 1, · · · ,N, n = 1, · · · ,M−1.

One can use modified Gauss elimination method for solving difference equations (4) numerically (see [7]).
Approximate solution of (4) is evaluated by

un = αn+1un+1 +βn+1,n = M−1, · · · ,1,
where

uM = uM−1 = (AM−1 +BM−1 +CM−1αM−1)
−1 (IM−1ψM−1 −CM−1βM−1) ,

α1 = I, β1 is the column vector with (N +1) zeros, αn (n = 2, · · · ,M−1) are square matrices with (N +1) rows and
columns and βn (n = 2, · · · ,M−1) are column matrices with (N +1) rows such that

αn+1 =−(Bn +Cnαn)
−1 An,βn+1 = (Bn +Cnαn)

−1 (Inψn −Cnβn) .

Table 1 shows error computed by

EuN
M = max

1≤k≤N−1

(
M−1

∑
n=1

(u(xn, tk)−uk
n)

2h

) 1
2

for different values of (N,M).
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TABLE 1. Error output for DS (4).

(N,M) (10,10) (20,20) (40,40) (80,80) (160,160)
Error 0.6194 0.3819 0.2264 0.1218 0.0630

Second, we consider the next boundary value problem for 2D reverse parabolic differential equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(x,y, t)+(1+2x)2uxx(x,y, t)+4(1+2x)ux(x,y, t)

+uyy(x,y, t)− u(x,y, t) = f (x,y, t),

f (x,y, t) =−(
4+(1+2x)2

)
e−2t cosxcosy−4(1+2x)e−2t sinxcosy,

0 < x,y < π, 0 < t < 1,

u(1,x,y) =
1∫
0

e−2γ u(γ,x,y) dγ +ψ(x,y),

ψ(x,y) = cosxcosy(e−2 + e−4

4 − 1
4 ),0 ≤ x,y ≤ π,

ux(t,0,y) = 0,ux(t,π,y) = 0, 0 ≤ y ≤ π,0 ≤ t ≤ 1,

uy(t,x,0) = 0,uy(t,x,π) = 0,0 ≤ x ≤ π,0 ≤ t ≤ 1.

(6)

The exact solution of problem (6) is u(t,x,y) = e−2t cosxcosy .
Introduce notations:

ψm,n = ψ (xm,yn) , n,m = 0,M, f k
m,n = f (tk,xm,yn), k = 0,N, n,m = 0,M.

Applying (2), we get difference scheme for approximate solution of nonlocal boundary value problem (6) in the next
form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk
m,n−uk−1

m,n
τ +(1+2xm)

2 uk−1
m+1,n−2uk−1

m,n +uk−1
m−1,n

h2 +2(1+2xm)
uk−1

m+1,n−uk−1
m−1,n

h

+
uk−1

m,n+1−2uk−1
m,n +uk−1

m,n−1

h2 −uk−1
m,n = f k

m,n,1 ≤ k ≤ N −1,1 ≤ n,m ≤ M−1,

uk
0,n = 0, uk

M,n = 0, 1 ≤ k ≤ N −1,

uk
m,0 = 0, uk

m,M = 0,1 ≤ k ≤ N −1,1 ≤ n,m ≤ M−1,

uN
m,n =

N−1

∑
j=0

e−2t j u j
m,nτ + cosxn cosym(e−2 + e−4

4 − 1
4 ),1 ≤ n,m ≤ M−1.

(7)

Difference problem (7) can be rewritten in the matrix form (5). Here An, Bn, Cn , I are K×K square matrices, and I is
the identity matrix, f (n),un−1,un,un+1 are the K ×1 column matrices such that K = (N +1)(M+1),

f (n) =
[

f 0
0,n · · · f N

0,n f 0
1,n · · · f N

1,n · · · f 0
M,n · · · f N

M,n
]t
,

us =
[

u0
0,s · · · uN

0,s u0
1,s · · · uN

1,s · · · u0
M,s · · · uN

M,s
]t
,s = n±1,n.

Modified Gauss elimination method are used to evaluate solution of (7) via Matlab program. Error output for differ-
ence problem (7) is recorded for different values of (N,M) = (10,10),(20,20),(40,40) which are computed by

EuN
M = max

1≤k≤N−1

(
M−1

∑
n=1

M−1

∑
m=1

(u(xn,ym, tk)−uk
n,m)

2h2

) 1
2

.
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Calculated errors in Tables 1 and 2 point out sufficiently good agreement with theorems on stability solution of cor-
responding difference schemes of boundary value problems for reverse parabolic differential equation with Neumann
boundary and nonlocal integral conditions.

TABLE 2. Error output for DS (7).

(N,M) (10,10) (20,20) (40,40)
Error 0.6075 0.2957 0.1655
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Abstract. We estimate the Lebesgue constants of interpolation by rational functions on one or several intervals with fixed poles
having accumulation points on the interval(s). To prove it we use an analogue of the inverse polynomial image method for rational
functions with fixed poles.

INTRODUCTION

Interpolation by polynomials on real sets has a long history. Main books on interpolation theory (by A.A. Privalov [1]
and by J. Szabados, P. Vertesi [2]) contain many results about it.

Recently several results about Lebesgue constants of interpolation processes on finite unions of intervals were
obtained (see [3, 4]).

In [3] the authors used an estimate for Lebesgue constants of interpolation processes by rational functions with
fixed poles from [5].

Interpolation by rational functions with fixed poles is not so well developed as polynomial case. First results were
collected in A. Kh. Turetskii’s book [6]. Later some of them were rediscovered by G. Min (more references can be
found in [5, 7, 8].

One of the best choices for interpolation by polynomials on an interval is to use zeros of Chebyshev polynomials
as nodes of interpolation. Their analogues for rational functions with fixed poles are Chebyshev-Markov rational
functions deviated least from zero on an interval. Corresponding interpolation processes were introduced by V. N.
Rusak [9] and the most general estimate for related Lebesgue constants is due to A. P. Starovoitov. The last estimate
was generalized for the case of two intervals by second author in [10]. It included possible accumulation of fixed poles
to the ends of the convex hull of the intervals. The estimate for the case of three or more intervals from [5] didn’t allow
to fixed poles to accumulate on the convex hull of the intervals. Our first result gives a class of interpolation matrices
which allow an estimate of Lebesgue constants of interpolation by rational functions on several intervals with fixed
poles having accumulation points on the intervals.

To prove it we develop an analogue of the inverse polynomial image method for rational functions with fixed poles.
Our second result gives an improved answer to a hypothesis by G. Min about the existence of poles with accumu-

lation points on an interval which have an estimate of Lebesgue constants with logarithmic growth.

RESULTS

For any s ≥ 1 let

−1 = a1 < b1 < · · ·< as < bs = 1 (1)

be a finite partition of the interval [−1,1], and let

Js =
s⋃

i=1

[ai,bi] (2)

be the corresponding set of intervals.
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The Lebesgue function of interpolation on Js by rational functions with fixed poles from the matrix of their recip-
rocal values

A= {ak,n} ⊂ D= {z ∈ C : |z|< 1} (3)

for the matrix of interpolation nodes

M= {xk,n,xn,n < xn−1,n < · · ·x1,n} (4)

is defined as

λn(M,A,x) =
n

∑
k=1

|�k,n(M,A,x)|, (5)

where

�k,n(M,A,x) =
ϖn(x)

ϖ ′
n(xk,n)(x− xk,n)

, ϖn(x) =
n

∏
k=1

x− xk,n

1−ak,nx
.

Furthermore, the Lebesgue constant is given by

λn(M,A) = ‖λn(M,A,x)‖Js , (6)

where ‖ · ‖K is the supremum norm on any compact set K.

Definition 1 (see e.g. [11]) Let B be a domain in C such that its boundary consists of finitely many disjoint piecewise
smooth curves or arcs and let α be a closed subset of ∂B also consisting of arcs or curcves. We denote by ω(z,α,B)
a bounded harmonic function in B such that ω(z,α,B)→ 1 as z approaches interior points of α , and ω(z,α,B)→ 0
as z approaches interior points of ∂B \α . The function ω(z,α,B) is called the harmonic measure of α with respect
to B at a point z.

Definition 2 Matrix A from (3) is called regular with respect to Js, if for every j = 1, . . . ,s and n ≥ s the sum of the
harmonic measures of the interval [a j,b j] with respect to 1/ak,n is a positive integer, i.e.

n

∑
k=1

ω j(1/ak,n) = q j, q j ∈ N, j = 1, . . . ,s. (7)

Regularity of matrices of (reciprocal to) fixed poles is a natural notion, since it guarantees that for every n ≥ s Js
can be considered as an inverse image of an interval under suitable rational function of degree n with (reciprocal to)
fixed poles given by n-th row of A. This rational function is a direct generalization to the case of several intervals of
the Chebyshev-Markov rational functions. It can be written (up to a constant multiplier) in the form

ϖn(x) = cos

(
π

n

∑
k=1

ω(1/ak,n,Js ∩ [a1,x],C\Js)

)
. (8)

Denote

H(x) =
s

∏
j=1

(x−a j)(x−b j), (9)

γn(Js,Ax) =
√

−H(x)π
n

∑
k=1

ω ′(1/ak,n,Js ∩ [a1,x],C\Js), x ∈ intJs. (10)

Now we can formulate A.P. Starovoitov’s theorem and two theorems from earlier papers of second author in these
notations. We enumerate the reciprocal of poles in a row as follows: a1,n = . . .= aκn,n = 0 (here 1/0 = ∞), ak,n 	= 0,
k = κn +1, . . . ,n, Re ak,n > 0,k = κn +1, . . . ,n1, Re ak,n < 0,k = n1 +1, . . . ,n, and for Im ak,n > 0 Im ak+1,n =− Im
ak,n. Here we don’t indicate possible dependence of n1 of n.
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Theorem 1 ( [12], see also [10]) Let s = 1 and the matrix of reciprocal values of poles A has no accumulation points
on {|z| = 1} with possible exception for points {±1}, which can be attained by nontangent paths, and satisfies the
conditions

n1

∑
k=1

√
1−|ak,n|t

1−|ak,n|+ t2
≥C1 for

√
1− max

1≤k≤n1

|ak,n| ≤ t ≤ 1; (11)

n

∑
k=n1+1

√
1−|ak,n|t

1−|ak,n|+ t2
≥C2 for

√
1− max

n1+1≤k≤n
|ak,n| ≤ t ≤ 1. (12)

Then for the matrix M such that its n-th row consists of zeroes of ϖ from (8) the estimate

λn(M,A)≤C3 log‖γn(J1,A, ·)‖J1
(13)

holds.

Remark 1 It is funny that this result (which was proved in 1984) answers the question posed in 1998 by [13] (Remark
2, p. 129) as an open problem (indeed it is easy to see that a1,n = . . .= an,n = 1−1/n gives negative answer to Min’s
question).

Theorem 2 [10] Let s = 2, the matrix of reciprocal values of poles A is regular with respect to J2, has no accumu-
lation points on {|z| = 1} with possible exception for points {±1}, which can be attained by non-tangent paths, and
satisfies the conditions (11),(12),

min
x∈J2

γn(J2,A,x)√
(x−b1)(x−a2)γn(J2,A,(a2 +1)/2))

≥C4,n ≥ 2. (14)

Then for the matrix M such that its n-th row consists of zeroes of ϖ from (8) the estimate

λn(M,A)≤C5 log‖γn(J2,A, ·)‖J2
(15)

holds.

Theorem 3 [5] Let s ≥ 1, the matrix of reciprocal values of poles A⊂ {|z| ≤ r},0 < r < 1, is regular with respect to
Js. Then for the matrix M such that its n-th row consists of zeroes of ϖ from (8) the estimate

λn(M,A)≤C7 logn (16)

holds.

Our results are as follows.

Theorem 4 For any s ≥ 2 and for any system (2) there exists a class of matrices of reciprocal values of poles A which
are regular with respect to Js, the poles have accumulation points on Js, including all points of the partition (1) and
for the matrix M such that its n-th row consists of zeroes of ϖ from (8) the estimate

λn(M,A)≤C8 log‖γn(Js,A, ·)‖Js (17)

holds.
In particular, there is a subclass of that class of matrices with the estimate (16).

Theorem 5 Let F be a finite subset of [−1,1]. There exists a matrix of reciprocal values of poles such that every point
of F is an accumulation point of the poles and the Lebesgue constants of the Chebyshev-Markov rational functions
interpolation process on [−1,1] with those poles are estimated by (16).
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The proof of Theorem 4 is quite analogous to the proof of [4] (Theorem 1), where instead of the inverse polynomial
image of an interval it is necessary to consider inverse images of an interval by rational functions with fixed poles.

Concerning the proof of Theorem 5 one has to use the representation of the Chebyshev-Markov rational functions
on [−1,1] :

Mm(x) = cos

(
m

∑
j=1

arccos
x−a j

1−a jx

)
.

Now for F = {x1, . . . ,xN} and m > N it is possible to get

1

2π

m

∑
j=1

arccos
xk −a j

1−a jxk
∈ N, k = 1 . . . ,N,

by the inverse function theorem since the related determinant is equal to a multiple of the Cauchy determinant.

Finally, the rational function μb(Mm(x)), where μb(y) =
y−b
1−yb , b → 1+0, satisfies the conditions of Theorem 5 for

a suitable choice of a j (they need to have accumulation points at 1).
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Abstract. The mathematical model describing the dynamics of temperature field in electrical contacts at the initial stage of a
blow-off repulsion is presented. It is based on the Stefan problem for the disk of a short arc and two spherical domains for the
liquid and solid zones. All coefficients in the equations such as the thermal and electrical conductivities, density, thermal capacity
are dependent on the temperature. The analytical solution of this problem is obtained using the similarity principle. The results of
calculation are compared with the data obtained in published papers and with the experimental data.

INTRODUCTION

Mathematical modeling of the electrical arc is very important to understand its dynamics and to estimate arc pa-
rameters because experimental methods give as a rule only the resulting information about arcing and arc erosion
because of a fleeting process. General models describing phenomena in the arc plasma are based on the systems of
partial differential equations of the magneto-hydrodynamics (MHD) [1, 2, 3, 4]. These models are too complicated
for the practical investigation of the arc dynamics in electrical contacts. The non-stationary model presented in the
paper [5] describes temperature and electromagnetic fields in a short electrical arc taking into account near-electrode
phenomena. However, its application is also not so simple.

MATHEMATICAL MODEL

At the initial stage of the blow-off repulsion, when the arc is burning in the metal-dominated phase with following
transition to the gas-dominated phase, it can be considered as a short arc, i.e. the occupied by the arc domain DA has
the form of a thin disk which radius r = rA(t) is much greater than the thickness h = h(t) (Figure 1). The equation for

FIGURE 1. The axial contact cross-section of the spherical domains. DA - is the disk occupied by the arc, D0 - is the Holm sphere
of the ideal conductivity, D1 - is the sphere of metallic vapours, D2 - is the sphere of liquid metal, r > β (t) - is the solid zone
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the temperature field of the arc θA(r, t) can be written in the form

cA(θA)γA(θA)
∂θA

∂ t
=

1

r
∂
∂ r

(
λA(θA)r

∂θA

∂ r

)
+

j2

σA(θA)
−Wr(θA)−P(r, t). (1)

Here cA(θA),γA(θA),λA(θA),σA(θA) are the coefficients of the heat capacity, density, thermal and electrical conduc-

tivity, respectively, j =
I(t)

πr2
A(t)

is the arc current density, Wr(θA) and P(r, t) are the volumetric arc power radiation and

power losses due to the arc heat conduction into contacts.
The temperature dependence of the coefficients [7] is presented in Figure 2 and Figure 3. The metallic arc phase

FIGURE 2. Temperature dependence of the thermal and electrical conductivity and radiation losses for the arc burning in air
λ (W/mK), σ(103Ω−1m−1) and Wr(109W/m3)

continues up to the time t = tgi, when the temperature maximum at the center of the arc disk reaches the value of the

gas ionization (approximately about 70000K)

θA(0, tgi) = θgi . (2)

Thus, for equation (1) we consider the domain

DA : 0 < t < tgi, 0 < r < rA(t), (3)

FIGURE 3. Temperature dependence of γ and c for the arc burning in air 1 – γ,102kg/m3, 2 – c,103J/kg ·K
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for the temperature range

θmi < θA(r, t)< θgi, (4)

where θmi is the temperature of the metallic vapor ionization (approximately about 50000K).
As can be seen from Figure 2, the arc radiation Wr(θA) can be neglected in the temperature range (4) and we should

take into account only the power losses P(r, t) due to the arc heat conduction into the zone of metallic vapour D1 via
the zone of the ideal thermal and electrical conductivity D0 introduced by R. Holm [8]. This loss can be calculated
using the formula

P(r, t) =− 2λ1

h(t)
∂θ1

∂ r

∣∣∣∣
r=rA(t)

. (5)

It was shown in the paper [6] that the contact gap, i.e. the arc disk thickness h(t), increases in the initial stage of the
metallic arc phase at the blow-off repulsion due to the summary action of electromagnetic and vapor forces according
to the expression

h(t) = h0

√
t, (6)

where the constant h0 depends on the current amplitude I0.
For the considered time interval 0 ≤ t ≤ tgi it is possible to approximate the alternative current I(t) = I0 sin(ωt) by

the expression

I(t) = k
√

t, (7)

where

k =
I0 sin(ωtig)√

tig
. (8)

Substituting the expressions (5) – (8) into the equation (1), we get

cA(θA)γA(θA)
∂θA

∂ t
=

1

r
∂
∂ r

(
λA(θA)r

∂θA

∂ r

)

+
k2t

π2r4
A(t)σA(θA)

− 2λ1b

h0

√
t

∂θ1(rA(t), t)
∂ r

, DA : 0 < r < rA(t), 0 < t < t jg,

(9)

where λ1b = λ1(θ1(rA(t))) = λ1(θmi).
At the initial time the domain DA collapses into a point r = rA(0) = 0, where the temperature should be equal to the

threshold of metal ionization temperature θmi:

θA(0,0) = θmi. (10)

This temperature remains the same value on the boundary of the disk for t > 0:

θA(rA(t), t) = θmi. (11)

The arc heat flux passes through the sphere of ideal conductivity D0 without any power losses and enters into vapor
zone D1 through the spherical surface r = rA(t) which temperature is the same like (11):

θ1(rA(t),0) = θmi. (12)

The phenomena occurring in the vapor zone are too complicated for mathematical modeling in the frame of our
approach, thus let us consider this zone as the thermal resistivity between the arc zone DA and the liquid zone D2 with
a linearly decreasing temperature

θ1(r, t) = θmi − r− rA(t)
α(t)− rA(t)

(θmi −θb), rA(t)≤ r ≤ α(t). (13)
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The temperature fields of the liquid zone D2 and the solid zone D3 satisfy the heat equations

ci(θi)γi(θi)
∂θi

∂ t
=

1

r2

∂
∂ r

(
λi(θi)r2 ∂θi

∂ r

)
,

i = 2 → α(t)< r < β (t),
i = 3 → β (t)< r < ∞.

(14)

The Stefan conditions hold on the interfaces of the phase transformations:

θ2(α(t), t) = θb, θ2(β (t), t) = θ3(β (t), t) = θm,

−λb
∂θ2(α(t), t)

∂ r
= Lbγb

dα
dt

,

−λ2
∂θ2(β (t), t)

∂ r
=−λ3

∂θ3(β (t), t)
∂ r

+Lmγm
dβ
dt

.

(15)

Here Lb,Lm are specific heats of evaporation and melting

λb = λ (θb),

λ2 = λ (θm), for liquid,

λ3 = λ (θm), for solid,

γb = γ(θb), γm = γ(θm).

The last boundary condition for the solid zone is

θ3(∞, t) = 0. (16)

At the initial time all zones collapse into a point:

rA(0) = α(0) = β (0) = 0. (17)

The solution of the above-formulated problem can be found using the similarity principle.

SOLUTION OF THE PROBLEM

According to the similarity principle we represent the solution in the form

θA(r, t) = uA(η), θi(r, t) = ui(η), i = 1,2, (18)

where η =
r

2a
√

t
, rA(t) = a

√
t, α(t) = α0

√
t, β (t) = β0

√
t. Then we get

∂θA

∂ t
=− 1

2t
η

duA

dη
,

1

r
∂
∂ r

[
rλ (uA)

∂θA

∂ r

]
=

1

4a2t

[
λ (uA)u′A(η)+λ ′(uA)u′(η)2 +

λ (uA)

η
u′A(η)

]
,

(19)

1

r2

∂
∂ r

[
r2λ (θi)

∂θi

∂ r

]
=

1

4a2t

[
λ (ui)u′i(η)+λ ′(ui)u′i(η)2 +

2λ (ui)

η
u′i(η)

]
(20)

and equation (9) takes the form

λA(uA)u′A(η)+λ ′
A(uA)u′A(η)2

+

[
λA(uA)

η
+2a2cA(uA)γA(uA)η

]
u′A(η)

+
4k2

π2a2σA(uA)
, 0 < η <

1

2
.

(21)
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Similarly, the equations (14) can be written in the form

λi(ui)u′′i (η)+λ ′
i (ui)u′i(η)2 +2

[
λi(ui)

η
+aci(ui)γi(ui)η

]
u′i(η) = 0,

i = 2, → α0

2a
< η <

β0

2a
,

i = 3, → β0

2a
< η < ∞.

(22)

Thus, the problem is reduced to the solution of the ordinary differential equations (21), (22). The boundary conditions
(12), (15) for these substitutions transform into expressions

u′A(0) = 0, (23)

uA(1/2) = θmi, (24)

u2(α0/2a) = θb, (25)

u2(β0/2a) = u3(β0/2a) = θm, (26)

u3(∞) = 0, (27)

u′2(α0/2a) =−Lbγb

λba
, (28)

−λ2u′2(β0/2a) =−λ3u′3(β0/2a)+
Lmγm

a
. (29)

The problem (21) – (29) can be solved using the Runge-Kutta method.
Sometimes, for an analytical analysis of the temperature dynamics, it is more convenient to reduce this problem to

the system of the integral equations. In particular, equation (21) after the substitution

λAuA(η) =VA(η), (30)

can be written in the form

V ′
A(η)+LA(η)VA(η) = N(η), (31)

where

LA(η) =
1

η
+2a2MA(uA)η ,

MA(uA) =
cA(uA)γA(uA)

λA(uA)
,

(32)

NA(η) =− 4k2

πa2σA(uA)
. (33)

Equation (31) is equivalent to the non-linear integral equation

VA(η) = exp

[
−

η∫
0

LA(s)ds
] η∫

0

NA(s)exp

[
−

η∫
0

LA(s1)ds1

]
ds. (34)
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Similarly, the equations (22) can be written in the form

V ′
i (η)+Li(η)Vi(η) = 0, i = 2,3, (35)

where

Vi(η) = λiui(η), (36)

Li(η) =
1

η
+2a2Mi(ui)η ,

Mi(ui) =
ci(ui)γi(ui)

λi(ui)

(37)

or in equivalent form of integral equations

V2(η) = λbθb − exp

[
−

β0/2a∫
η

L2(η)dη
]
, (38)

V3(η) = λbθb − exp

[
−

η∫
β0/2a

L2(η)dη
]
. (39)

The integral equations (34), (38), (39) are the equations of the Volterra type, and if the kernels of integral operators
are differentiable, then these operators are contraction and the solution can be obtained by the iteration method.

CONCLUSION

1. The non-linear mathematical model of a short arc temperature at its transition from metallic to gaseous stages
describes the dynamics of the flow-off repulsion of electrical contacts in a good agreement with experimental data.
2. The dynamics of increase of the radii of interfaces between zones of the phase transformations can be described by
the self-similar law.
3. Generalizing of this model for the gaseous arc stage is possible by the replacement of the one-dimensional model
of the arc disc for the two-dimensional model of the arc cylinder.
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Abstract. We consider the motion of a multidimensional viscoelastic continuum which subjects some fractional constitutive law.
The weak solvability of a corresponding initial-boundary value problem is established.

INTRODUCTION

A wide range of deformable media in the one-dimensional case is determined by means of a constitutive equation of
the form (see [1])

n

∑
k=0

s

∑
i=0

akiD
βki
0t Dkσ =

m

∑
k=0

r

∑
i=0

bkiD
βki
0t Dkε, 0 ≤ βki < 1. (1)

Here ε is the deformation, σ means the stress, Dα
0t is a fractional Riemann-Liouville derivative of order α > 0,

Dk = dk/dtk, n,s,r,k ∈ N+. In the case of some βki ∈ (0,1) the equation (1) defines fractional models.
In contrast to the well-studied integer models (see, for example, [2, 3] and references therein), a nonlocal solvability

for models with fractional derivatives are known to us only for the simplest fractional models (see [4, 5, 6]).
For some of such models stress tensor σ can be explicitly expressed via the strain rate tensor. Substitution of σ

in the momentum equation leads to the appearance of integral terms. These integral terms exhibit the presence of
memory in every point in space.

For various reasons, it is more realistic to take into account stresses-strains relation alongside the velocity field
trajectories. In the case of a weak solvability this requires to the study of the corresponding Cauchy problem for
the system of ODE in Sobolev spaces. The application of RLF-theory as well as nonlinear functional analysis and
topological methods turns out to be productive to the study of some integer and fractional models (see [5, 7, 8]).

Our goal is to study the weak solvability of the second-grade fractional anti-Zener model (see [1]) with memory
along the velocity field trajectories.

STATEMENT OF PROBLEM

We consider the motion of a viscoelastic continuum of a constant density (it is equal to one, for simplicity) occupying
a bounded domain Ω ⊂ RN , N = 2,3, ∂Ω ∈C2 on QT = [0,T ]×Ω.

Let v(t,x) be the velocity field of the continuum and E (v) be the strain rate tensor, i.e. the matrix with elements
Ei j(v) = 1

2 (∂vi/∂x j + ∂v j/∂xi). Let σ be the deviator of the stress tensor and I be the unit matrix. The multi-
dimensional analogous of one-dimensional anti-Zener model AZ (see [1]) has the form

(I +a1Dα
0t)σ = (b1I1−α

0t +b2Dα
0t)E (v), 0 < α < 1.

Here Dα
0t and Iα

0t denote fractional derivatives and integral, respectively.

Let E(λ , t) = tα−1Eα,α(−λ tα) where the Mittag–Lefler function Eα,β (t) is defined by the expression Eα,β (t) =
∑+∞

k=0 tk(Γ(αk+β ))−1, t ∈ R1. Let

R1(t,τ) =
1

Γ(1−α)

∫ t

τ
E(a−1

1 , t − s)(s− τ)−α ds, (2)

R2(t,τ) = E(−a−1
1 , t − τ) = (t − τ)α−1Eα,α(−a−1

1 (t − τ)α). (3)
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The corresponding initial-boundary value problem has the form:

∂v/∂ t +
N

∑
i=1

vi∂v/∂xi −μ0DivE (v)−μ1Div

∫ t

0
R1(t,τ)E (v)(τ ,z(τ; t,x))dτ

−μ2Div

∫ t

0
R2(t,τ)E (v)(τ ,z(τ; t,x))dτ +∇p = f , divv = 0, (t,x) ∈ QT ;

(4)

z(τ; t,x) = x+
∫ τ

t
v(s,z(s; t,x))ds, 0 ≤ t,τ ≤ T, x ∈ Ω; (5)

v(0,x) = v0(x), x ∈ Ω; v|[0,T ]×∂Ω = 0. (6)

The presence of Cauchy problem (5) in (4)–(6) means that the memory along trajectories z(τ; t,x) of velocity field
v is taken into account.

AUXILIARY RESULTS AND NOTATIONS

Let C∞
0 (Ω)N be the set of infinitely differentiable compactly supported mappings of Ω in RN . Let V = {v : v ∈

C∞
0 (Ω)N , divv = 0}. Functional spaces H and V (see [9], section III.1.4) are defined as the closure of V in the spaces

L2(Ω)N and W 1
2 (Ω)N , respectively. We denote by V−1 the space conjugate to V .

Symbol 〈 f ,v〉 means the action of a functional f ∈V−1 on an element v ∈V .

Norms in the spaces H and L2(Ω)N will be denoted as | · |0, in V and W 1
2 (Ω)N as | · |1. Norms in the spaces V−1,

W−1
2 (Ω)N and W−1

2 (Ω)N×N will be denoted by | · |−1. Symbol (·, ·) stands for the inner product in the Hilbert spaces

L2(Ω), H, L2(Ω)N , L2(Ω)N×N . It is clear from the context in which of them the inner product is taken.

We consider the Cauchy problem (in integral form)

z(τ; t,x) = x+
∫ τ

t
v(s,z(s; t,x))ds, 0 ≤ t,τ ≤ T, x ∈ Ω. (7)

If a vector-valued function v ∈ L1(0,T ;C1
0(Ω)N) then the problem (7) has nonlocal unique solution in the classical

sense (see [10]). However, in the case of a summable vector function v the situation becomes more complicated and
one needs to use a more general concept of solution.

Definition 1 A regular Lagrangian flow (RLF) associated to divergence free v is a function z(τ; t,x), (τ; t,x)∈ [0,T ]×
[0,T ]×Ω which satisfies the following conditions: 1) for a.e. x ∈ Ω and every t ∈ [0,T ]) function γ(τ) = z(τ; t,x) is
absolutely continuous and satisfies the equation (7); 2) for every t,τ ∈ [0,T ] and an arbitrary Lebesgue-measurable
set B with the Lebesgue measure m(B) the relation m(z(τ; t,B)) = m(B) holds; 3) for every ti,∈ [0,T ], i = 1,2,3, and
a.e. x ∈ Ω the relation z(t3; t1,x) = z(t3; t2,z(t2; t1,x)) is valid.

The basics of the RLF Theory one can find e.g. in [11]. Here we give this definition in the special case of a bounded
domain Ω and divergence free field v.

The existence of unique RLF is known for v ∈ L1(0,T ;W 1
p (Ω)N) (see [11]).

MAIN RESULTS

Let W1(a,b) = {v : v ∈ L2(a,b;V )∩L∞(a,b;H), v′ ∈ L1(a,b;V−1)}. Here v′ denotes the derivative with respect to t
of a V−1-valued function v(t).
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Definition 2 Let f ∈ L2(0,T ;V−1) and v0 ∈ H. A weak solution to the problem (4)-(6) is a function v ∈ W1(0,T )
satisfying the initial condition from (6) and the identity

d(v,ϕ)/dt −
N

∑
i=1

(viv,∂ϕ/∂xi)+μ0(E (v),E (ϕ))+

μ1(
∫ t

0
R1(t,τ)E (v)(τ ,z(τ; t, ·))dτ ,E (ϕ)(·))+

μ2(
∫ t

0
R2(t,τ)E (v)(τ ,z(τ; t, ·))dτ ,E (ϕ)(·)) = 〈 f ,ϕ〉

(8)

for every ϕ ∈V and a.e. t ∈ [0,T ]. Here z is the RLF associated to v.

Let us note that since the weak solution v ∈W1(0,T ) then there exists the unique RLF z associated to v.

Theorem 1 Let f ∈ L2(0,T ;V−1), v0 ∈ H. Then the problem (4)–(6) has at least one weak solution.

SCHEME OF PROOF OF THE MAIN RESULT

Let S : D(S)→ H the Stokes operator, i.e. S(u) =−P
u, u ∈ D(S) =W 2
2 (Ω)N∩ ◦

W
1

2 (Ω)N ∩H. It is well known that
operator S is self-adjoint positively defined in H. Consider the sequence of regularized problems depending on the
numerical parameter n = 1,2, . . .

∂vn/∂ t +
N

∑
i=1

vn
i ∂ ((1+n−1|vn|2)−1vn)/∂xi −μ0DivE (vn)

−μ1Div

∫ t

0
R1(t,τ,n)E (vn)(τ ,zn(τ; t,x))dτ

−μ2Div

∫ t

0
R2(t,τ,n)E (vn)(τ ,zn(τ; t,x))dτ +∇pn = f , (t,x) ∈ QT ;

divvn = 0; (t,x) ∈ QT ;vn(0,x) = v0(x), x ∈ Ω, vn|[0,T ]×∂Ω = 0;

zn(τ; t,x) = x+
∫ τ

t
ṽn(s,zn(s; t,x))ds, 0 ≤ t,τ ≤ T, x ∈ Ω.

(9)

Here

R1(t,τ,n) =
1

Γ(1−α)

∫ t

τ
E(a−1

1 , t − s+n−1)(s− τ +n−1)−α ds, (10)

R2(t,τ,n) = (t − τ +n−1)α−1Eα,α(−a−1
1 (t − τ +n−1)α), (11)

ṽn = Snvn =: (I +n−1S)−1vnτ (12)

and zn is the RLF associated to the vector field ṽn.
A weak solution vn ∈W (0,T ) to the problem (9) is defined as a function v ∈W (0,T ) satisfying the initial condition

from (9) and the identity

d(vn,ϕ)/dt −
N

∑
i=1

(vn
i ((1+n−1|vn|2)−1vn,∂ϕ/∂xi)+μ0(E (vn),E (ϕ))

+μ1(
∫ t

0
R1(t,τ,n))E (vn)(τ ,zn(τ; t, ·))dτ ,E (ϕ)(·))

+μ2(
∫ t

0
R2(t,τ,n))E (vn)(τ ,zn(τ; t, ·))dτ ,E (ϕ)(·)) = 〈 f ,ϕ〉

(13)
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for every ϕ ∈V and a.e. t ∈ [0,T ].
It follows from (12) that ṽn ∈ W (0,T ) and therefore there exists RLF zn associated to ṽn. The weak solvability of

problem (9) follows from [10].
Hence, we have constructed the sequence of weak solutions vn ∈W (0,T ) to the problems (9).
Next, we establish the validity of estimates

sup
0≤t≤T

|vn(t, ·)|0 +‖vn‖L2(0,T ;V ) ≤ M(‖ f‖L2(0,T ;V−1) + |v0|0), (14)

‖(vn)′‖L1(0,T ;V−1) ≤ M(1+‖ f‖L2(0,T ;V−1) + |v0|0)2 (15)

where constant M that does not depend on n.
It follows from this that we can arrange the sequence vn, n = 1,2, . . . which converges to some v ∈W1(0,T ) weakly

in L2(0,T ;V ), ∗-weakly in L∞(0,T ;H), strongly in L2(0,T ;H) and (vn)′ converges to v′ in the sense of distributions.
The above mentioned properties of vn and corresponding convergence properties of zn (see [11]) allow to pass to

the limit in (13) as n →+∞ and get the weak solution v to problem (4)–(6) .
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Abstract. In the present paper, hyperbolic type involutory partial differential equations with the Neumann condition are studied.
The first and second order of accuracy difference schemes for the numerical solution of the initial boundary value problem for one
dimensional hyperbolic type involutory partial differential equations are presented. Some numerical results are provided.

INTRODUCTION

In the first time, in an experiment measuring the population growth of a species of water fleas, Nisbet( [1]) tried
to use delay differential equations with reversal time. He reversed time to get the solution of functional differential
equations with given value of unknown function on one point. Such type functional differential equations are called
the involutory differential equations. The time reversal problem is the special case of involutory problems.

Involutory partial differential equations have been studied in papers [2, 3]. The numerical algorithm for the solution
of the initial boundary value problem for one dimensional partial differential equations was presented. Some numerical
results were provided. Moreover, delay hyperbolic differential equations have been investigated by several authors in
(see, [4, 5, 6, 7]).

Involutory hyperbolic partial differential equations are not investigated before. The present paper is devoted to study
involutory hyperbolic partial differential equations. The first and second order of accuracy absolute stable difference
schemes for the numerical solution of the initial boundary value problem for one dimensional involutory hyperbolic
differential equations with the Neumann condition are constructed. Some numerical results are explained.

NUMERICAL ALGORITHM

We present the algorithm for the numerical solution of the initial boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

∂ 2u(t,x)
∂ t2 −uxx (t,x)−buxx (−t,x) =−bsin t cos(x) ,

x ∈ (0,π) ,−π < t < π,
u(0,x) = 0,ut(0,x) = cos(x), x ∈ [0,π],
ux(t,0) = ux(t,π) = 0, t ∈ [−π,π]

(1)

for the one dimensional hyperbolic type involutory partial differential equation with the Neumann condition. The
exact solution problem (1) is u(t,x) = sin t cos(x) ,0 ≤ x ≤ π,−π ≤ t ≤ π. For the construction of the approximate

solutions of problem (1), we define sets of grid points

[−T,T ]τ = {tk : tk = kτ,−N ≤ k ≤ N,Nτ = T} ,

[0, l]h = {xn : xn = nh, 0 ≤ n ≤ M,Mh = l},

[−π,π]τ × [0,π]h

= {(tk,xn) : tk = kτ,−N ≤ k ≤ N,Nτ = π,xn = nh, 0 ≤ n ≤ M,Mh = π}.
The construction difference schemes is based on Taylors decomposition on three points.
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Theorem 1 ( [8]) Let the function v(t) have a fourth order continuous derivative and tk, tk±1 ∈ [−T,T ]τ . Then the
following relation holds

v(tk+1)−2v(tk)+ v(tk−1) = τ2v
′′
(tk+1)+o(τ3), (2)

v(tk+1)−2v(tk)+ v(tk−1) =
τ2

2
v
′′
(tk)+

τ2

4

[
v
′′
(tk+1)+ v

′′
(tk−1)

]
+o(τ4). (3)

Now, we will give well-known approximation formulas for first and second order derivative for smooth functions

u
′′
(xn) =

u(xn+1)−2u(xn)+u(xn−1)

h2
+o(h2), (4)

⎧⎨
⎩

u
′
(0) = −u(2h)+4u(h)−3u(0)

2h +o(h2),

u
′
(π) = u(π−2h)−4u(π−h)+3u(π)

2h +o(h2),

(5)

v
′
(0) =

⎧⎨
⎩

v(τ)−v(0)
τ +o(τ),

−v(2τ)+4v(τ)−3v(0)
2τ +o(τ2).

(6)

Applying formulas (2), (3), (4), (5) and (6), we present the following first order of accuracy difference scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
n −2uk

n+uk−1
n

τ2 − uk+1
n+1−2uk+1

n +uk+1
n−1

h2 −b
u−k−1

n+1 −2u−k−1
n +u−k−1

n−1

h2

=−bsin tk+1 cos(xn) ,

−N +1 ≤ k ≤ N −1, 1 ≤ n ≤ M−1,

u0
n = 0, u1

n−u0
n

τ = cosxn, 0 ≤ n ≤ M,

uk
1 −uk

0 = 0, uk
M −uk

M−1 = 0, −N ≤ k ≤ N

(7)

and second of accuracy difference scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
n −2uk

n+uk−1
n

τ2 − uk
n+1−2uk

n+uk
n−1

2h2 − uk+1
n+1−2uk+1

n +uk+1
n−1

4h2

− uk−1
n+1−2uk−1

n +uk−1
n−1

4h2 −b
u−k

n+1−2u−k
n +u−k

n−1

2h2 −b
u−k+1

n+1 −2u−k+1
n +u−k+1

n−1

4h2

−b
u−k−1

n+1 −2u−k−1
n +u−k−1

n−1

4h2 =−bsin tk cosxn,
−N +1 ≤ k ≤ N −1, 1 ≤ n ≤ M−1,

u0
n = 0, −u2

n+4u1
n−3u0

n
2τ = cosxn, 0 ≤ n ≤ M,

−uk
2 +4uk

1 −3uk
0 = 0, −3uk

M +4uk
M−1 −uk

M−2 = 0, −N ≤ k ≤ N

(8)

for the approximate solution of problem (1)
They are systems of algebraic equations and they can be written in the matrix form

{
Aun−1 +Bun +Cun+1 = Dϕn, 1 ≤ n ≤ M−1,
u0 = u1, uM = uM−1

(9)

for difference scheme (7) and {
Aun−1 +Bun +Cun+1 = Dϕn, 1 ≤ n ≤ M−1,
3u0 = 4u1 −u2, 3uM = 4uM−1−uM−2

(10)
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for difference scheme (8). Here A,B,C are (2N +1)× (2N +1) matrices and D = I2N+1 is the identity matrix, ϕn and
us are (2N +1)×1 column vectors

Dϕn =

⎡
⎢⎢⎢⎣

0
τ cosxn

−bsin t−N+1 cos(xn)
·

−bsin tN−1 cos(xn)

⎤
⎥⎥⎥⎦
(2N+1)×1

, us =

⎡
⎢⎢⎢⎢⎣

u−N
s

u−N+1
s
·

uN−1
s
uN

s

⎤
⎥⎥⎥⎥⎦
(2N+1)×1

and

A =C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · 0 0 0 · 0 0 0 0
0 0 0 0 · 0 0 0 · 0 0 0 0
0 0 a 0 · 0 0 0 · 0 d 0 0
0 0 0 a · 0 0 0 · d 0 0 0
· · · · · · · · · · · · ·
0 0 0 0 · a 0 d · 0 0 0 0
0 0 0 0 · 0 a+d 0 · 0 0 0 0
0 0 0 0 · d 0 a · 0 0 0 0
· · · · · · · · · · · · ·
0 0 d 0 · 0 0 0 · 0 a 0 0
0 d 0 0 · 0 0 0 · 0 0 a 0
d 0 0 0 · 0 0 0 · 0 0 0 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2N+1)×(2N+1)

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · 0 1 0 · 0 0 0 0
0 0 0 0 · 0 −1 1 · 0 0 0 0
b c e 0 · 0 0 0 · 0 f 0 0
0 b c e · 0 0 0 · f 0 0 0
· · · · · · · · · · · · ·
0 0 0 0 · e 0 f · 0 0 0 0
0 0 0 0 · c e+ f 0 · 0 0 0 0
0 0 0 0 · b+ f c e · 0 0 0 0
· · · · · · · · · · · · ·
0 0 f 0 · 0 0 0 · c e 0 0
0 f 0 0 · 0 0 0 · b c e 0
f 0 0 0 · 0 0 0 · 0 b c e

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2N+1)×(2N+1)

,

a =− 1
h2 , b = 1

τ2 , c =− 2
τ2 ,d =− b

h2 ,e =
1
τ2 +

2
h2 and f = 2b

h2 for the difference scheme (7) and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · 0 0 0 · 0 0 0 0
0 0 0 0 · 0 0 0 · 0 0 0 0
b a b 0 · 0 0 0 · 0 d c d
0 b a b · 0 0 0 · d c d 0
· · · · · · · · · · · · ·
0 0 0 0 · a b+d c · 0 0 0 0
0 0 0 0 · b+d a+ c b+d · 0 0 0 0
0 0 0 0 · c b+d a · 0 0 0 0
· · · · · · · · · · · · ·
0 0 d c · 0 0 0 · b a 0 0
0 d c d · 0 0 0 · b a b 0
d c d 0 · 0 0 0 · 0 b a b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2N+1)×(2N+1)
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · 1 0 0 · 0 0 0 0
0 0 0 0 · −3 4 −1 · 0 0 0 0
f e f 0 · 0 0 0 · 0 t g t
0 f e f · 0 0 0 · t g t 0
· · · · · · · · · · · · ·
0 0 0 0 · e f + t g · 0 0 0 0
0 0 0 0 · f + t e+g f + t · 0 0 0 0
0 0 0 0 · g f + t e · 0 0 0 0
· · · · · · · · · · · · ·
0 0 d c · 0 0 0 · e f 0 0
0 d c d · 0 0 0 · f e f 0
d c d 0 · 0 0 0 · 0 f e f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2N+1)×(2N+1)

a = −1
2h2 ,b =− 1

4h2 ,c =
−b
2h2 ,d = −b

4h2 ,e =− 2
τ2 +

1
h2 , f = 1

τ2 +
1

2h2 ,g = b
h2 and t = b

2h2 for the difference scheme (8).
For the solutions of (9), we will apply modified Gauss elimination method by the following form

un = αn+1un+1 +βn+1, n = M−1, ...,1,

where uM = (I −αM)−1βM, α j ( j = 1, ...,M−1) are (2N +1)× (2N +1) square matrices, β j ( j = 1, ...,M−1)
are (2N +1)×1 column matrices,α1 = I, β1is zero matrices and{

αn+1 =−(B+Cαn)
−1A,

βn+1 = (B+Cαn)
−1(Dϕn +Cβn), n = 1, ...,M−1.

For the solutions of (10), we will apply same modified Gauss elimination method by formula

un = αn+1un+1 +βn+1, n = M−1, ...,1,

uM = ((B+4A)αM +C−3A)−1{−(B+4A)βM +DϕM−1},

where α j ( j = 1, ...,M−1) are (2N +1)× (2N +1) square matrices, β j ( j = 1, ...,M−1) are (2N +1)×1
column matrices defined by formula
,α1 =−(A−3C)−1(B+4C), β1 = (A−3C)−1Dϕ1 and⎧⎪⎨

⎪⎩
αn+1 =−(B+Cαn)

−1A,α1 =−(A−3C)−1(B+4C),

βn+1 = (B+Cαn)
−1(Dϕn +Cβn),β1 = (A−3C)−1Dϕ1

n = 1, ...,M−1.

NUMERICAL ANALYSIS

The different values of N and M are recorded to the numerical solutions, and uk
n represents the numerical solution of

these difference schemes at u(tk,xn). Table I is established for N = M = 40,80,160 respectively and the errors are
found by

EN
M = max

−N≤k≤N, 0≤n≤M
|u(tk,xn)−uk

n|. (12)

If N and M are doubled, the values of the errors between the exact and approximate solution are decreases by a factor
of approximately 1/2 for the first order difference scheme (7) and 1/4 for the second order of accuracy scheme (8).
We presented the errors in this table and it shows the accuracy of difference schemes. The accuracy increases with the
second order approximation.
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TABLE 1. Error Analysis EN
M

Difference schemes/N = M 40 80 160
(7) 0.0874 0.0365 0.0163
(8) 0.0080 0.0020 5.0452e−04
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Abstract. In the paper, we consider stationary, linearized by Picard’s iterations, Navier-Stokes equations governing the flow of a
incompressible viscous fluid in the convection form in non-convex polygonal domain. An Rν -generalized solution of the problem
is defined. A weighted finite element method for finding an approximate Rν -generalized solution is constructed. Numerically
shown that the convergence rate does not depend on a value of the reentrant corner in the norm of the weighted Sobolev space.

INTRODUCTION

In the paper, we consider stationary, linearized by Picard’s iterations, Navier-Stokes equations governing the flow of
a incompressible viscous fluid in the convection form in non-convex polygon domain. An Rν -generalized solution
[1, 2, 3, 4, 5, 6] of the problem is defined. It is well known that for the well-posedness of the incompressible flow
problem, the Ladyzhenskaya-Babus̆ka-Brezzi (LBB) condition plays important role. We formulate and prove the
weighted analogue of this condition in [7]. A weighted finite element method (see [7, 8, 9, 10, 11, 12]) for finding
an approximate Rν -generalized solution is constructed. A specially selected combination of them leads to an increase
the order of convergence rate of an approximate solution to the exact one in relation to the classical finite element
methods (FEM) or finite different schemes. The convergence rate is equal to one by the grid step in the norm of
Sobolev weight space W 1

2,ν(Ω). Another advantage of this method is the simplicity of the solution determination
which is an additional benefit for the numerical experiments.

PROBLEM STATEMENT. THE DEFINITION OF AN Rν -GENERALIZED SOLUTION

Let x = (x1,x2) be an element of R
2, where dx = dx1 dx2 and ‖x‖ =

√
x2

1 + x2
2 are the measure and norm of x,

respectively. Let Ω ⊂ R
2 be a bounded domain with a boundary Γ, Ω̄ = Ω∪Γ.

We write incompressible Navier-Stokes equations: find the velocity field u ≡ u(x, t) = (u1(x, t),u2(x, t)) and
kinematic pressure p ≡ p(x, t) which satisfy the system of differential equations, boundary and initial conditions

∂u
∂ t

− ν̄�u+ (u ·∇)u+∇p = f̂ , div u= 0 in Ω× (0,T ], (1)

u= g on Γ× (0,T ], u(x,0) = u0 in Ω (2)

with given force field f̂ = f̂(x, t) in Ω× (0,T ], u0 = u0(x) in Ω, g = g(x, t) on Γ× (0,T ] and viscosity ν̄ > 0. Let
�,∇ and div be the Laplace, gradient and divergence operators, respectively.

Using implicit time integration and linearization by Picard’s iterative procedure of Eq. (1) (see [13]) we have

−ν̄�u+α u+β ( curl U ×u)+η (U ·∇)u+∇P = f , div u= 0 in Ω, (3)

where U = (U1,U2) is approximation to u = (u1,u2), f is reformed force field. If a) α > 0,β = 1,η = 0,P =

p+ 1
2u

2, curl U = − ∂U1
∂x2

+ ∂U2
∂x1

, a×u = (−au2,au1)
T we have the Oseen problem in a rotation form; b) α = β =

η = 0,P = p — the Stokes problem; c) α > 0,β = 0,η = 1,P = p — the Oseen problem in a convection form.
The effective numerical approaches to solve a) and b) problems in non-convex polygonal domains were constructed

and studied in [12] and [7, 11], respectively. In our research, we solve the system of Eq. (3) with the conditions c), i.
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e.

−ν̄�u+α u+(U ·∇)u+∇P = f , div u= 0 in Ω, (4)

u= g on Γ,

where domain Ω has one internal corner greater than π on Γ with its vertex placed at the origin.

Denote by Ω′
δ = {x ∈ Ω̄ : ‖x‖ ≤ δ < 1,δ > 0} the part of a δ -neighborhood of the origin that lies in Ω̄. Let

ρ(x) be a weight function: ρ(x) = {‖x‖,x ∈ Ω′
δ ,δ ,x ∈ Ω̄ \Ω′

δ}. Let L2,γ(Ω) and W 1
2,γ(Ω) be weighted spaces of

functions w(x) with bounded norms

‖w‖2
L2,γ (Ω) =

∫
Ω

ρ2γ w2dx and ‖w‖2
W 1

2,γ (Ω)
= ∑|m|≤1

‖ργ |Dmw|‖2
L2(Ω), (5)

respectively, where Dmw = ∂ |m| w
∂x

m1
1 ∂x

m2
2

|m| = m1 +m2,m j ≥ 0, j = 1,2 – integer and γ ≥ 0. For w = (w1,w2) we

define spaces L2,γ(Ω) and W 1
2,γ(Ω) with norms ‖w‖2

L2,γ (Ω) =
2

∑
j=1

‖w j‖2
L2,γ (Ω) and ‖w‖2

W 1
2,γ (Ω)

=
2

∑
j=1

‖w j‖2
W 1

2,γ (Ω)
,

respectively. Let W 1
2,γ(Ω,δ ),γ > 0, be a set of function w(x) from the space W 1

2,γ(Ω) with a bounded appropriate
norm (5) satisfying the inequalities∫

Ω\Ω′
δ

ρ2γ w2dx≥C1 > 0, |Dsw(x)| ≤C2

( δ
ρ(x)

)γ+s
x ∈ Ω

′
δ , s = 0,1, (6)

where C2 > 0 be a constant independent of s. Denote by L2,γ(Ω,δ ) a set of functions from a space L2,γ(Ω) satisfying

inequalities (6) (for s = 0) with a bounded appropriate norm (5). Let L0
2,γ(Ω,δ ) = {w ∈ L2,γ(Ω,δ ) :

∫
Ω ργ wdx= 0}.

Denote by W 1,0
2,γ (Ω,δ )(W 1,0

2,γ (Ω,δ ) ⊂W 1
2,γ(Ω,δ )) a closure, with respect to the appropriate norm in (5), of infinitely-

differentiable compactly supported functions in Ω, that satisfy (6). Let W 1/2
2,γ (Γ,δ ) be a set of functions ϕ(x) on Γ:

ϕ(x)∈W 1/2
2,γ (Γ,δ ) if there exists an extension Φ(x) in Ω from a set W 1

2,γ(Ω,δ ) so that Φ(x)|Γ =ϕ(x), ‖ϕ‖
W 1/2

2,γ (Γ,δ )
=

infΦ|Γ=ϕ ‖Φ‖W 1
2,γ (Ω). If w= (w1,w2), then we define sets W 1

2,γ(Ω,δ ) = {w : w j ∈W 1
2,γ(Ω,δ )} and L2,γ(Ω,δ ) = {w :

w j ∈ L2,γ(Ω,δ )} with the norms of spaces W 1
2,γ(Ω) and L2,γ(Ω), respectively. Similarly, we define sets W 1,0

2,γ (Ω,δ )

and W
1/2
2,γ (Γ,δ ) in Ω and Γ, respectively. Known functions U ,f and g in (2), (4) satisfy the conditions

U ∈W 1
2,γ(Ω,δ ), f ∈L2,γ(Ω,δ ), g ∈W

1/2
2,γ (Γ,δ ), γ ≥ 0. (7)

Define the bilinear and linear forms

aν(u,v) =
∫

Ω

[
αρ2ν u ·v+ ν̄∇u ·∇(ρ2ν v)+ρ2ν(U ·∇)u ·v

]
dx,

bν(v,P) =−
∫

Ω
P div (ρ2νv)dx, cν(u,q) =−

∫
Ω

div u(ρ2ν q)dx, lν(v) =
∫

Ω
ρ2ν f ·vdx.

Definition 1 The pair (uν ,Pν) ∈W 1
2,ν(Ω,δ )×L0

2,ν(Ω,δ ) is called an Rν -generalized solution of the Oseen problem
in a convection form (4), uν satisfies a condition (2) on Γ, if integral equalities

aν(uν ,v)+bν(v,Pν) = lν(v), cν(uν ,q) = 0

hold for all pairs (v,q) ∈W 1,0
2,ν (Ω,δ )×L0

2,ν(Ω,δ ) and given functions U , f and g, which satisfying (7) and ν ≥ γ .

THE WEIGHTED FINITE ELEMENT METHOD

Now we construct a finite element scheme for the Oseen system (4), (2). We use the triangulation Th which is
barycenter refinement of a quasi-uniform triangulation ϒh of Ω̄. First, we divide Ω̄ into a finite quantity of triangles Li
with sides of order h, Li we call macro-elements. Second, we divide each Li ∈ ϒh into triangles Ki1 ,Ki2 and Ki3 using

the barycenter of Li,Ki j ∈ Th. So that, Ωh =
⋃

Li∈ϒh
Li =

⋃
Li∈ϒh

(⋃3
j=1 Ki j

)
=

⋃
Ks∈Th

Ks.
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TABLE 1. The behavior of the error ‖u−uh‖W 1
2 (Ωi)

of the generalized solution for different reentrant corners ω .

N 74 148 296
ω

1.125π 8.157e-2 4.672e-2 2.703e-2
1.25π 2.013e-1 1.251e-1 7.849e-2
1.5π 3.649e-1 2.488e-1 1.707e-1

Let Al and Bk be vertices and midpoints of the Ki j sides, respectively. Then, 1) Yh =Y Ω
h ∪Y Γ

h = {Al ∪Bk}, where Y Ω
h

and Y Γ
h are sets of nodes for the velocity components in Ω and Γ, respectively; 2) Zh = {Ni} is a set of nodes for the

pressure, where a node Ni coincides with a node Al on the corresponding Ki j . Now, we use Scott-Vogelius element pair
[14], i. e. polynomials of second and first degrees to approximate the velocity components and pressure respectively:
Sh = {wh ∈C(Ω) : wh|K ∈ P2(K),∀K ∈ Th} and Gh = {qh ∈ L2(Ω) : qh|K ∈ P1(K),∀K ∈ Th}. Then, we define special
sets of basis functions and describe a weighted finite element scheme. Nodes Ms ∈ Y Ω

h and Nm ∈ Zh are associated

with functions θs(x) = ρν∗
(x) ·ϕs(x) and χm(x) = ρμ∗

(x) ·ψm(x),s,m = 0,1, . . . , ϕs(x) ∈ Sh,ϕs(Mj) = δs j and

ψm(x) ∈ Gh,ψm(Nj) = δm j, s,m, j = 0,1, . . . , where δs j is Kronecker delta, ν∗ and μ∗ are real constants.

Let V h be a set of functions for the velocity components. If wν(x) = (wh
ν ,1(x),w

h
ν ,2(x)),w

h
ν ,i(x) ∈V h, then

wh
ν ,1(x) = ∑

k
r1

k ·θk(x), wh
ν ,2(x) = ∑

k
r2

k ·θk(x), ri
k = ρ−ν∗

(Mk) · r̂i
k, i = 1,2. (8)

Let V h
0 be a subset of V h, such that V h

0 = {wh ∈ V h : wh(Mk)|Mk∈Y Γ
h
= 0}. Denote by Qh a set of functions for a

pressure. If qh
ν(x) ∈ Qh, then

qh
ν(x) = ∑

l
tl ·χl(x), tl = ρ−μ∗

(Nl) · t̂l . (9)

Let V h =V h ×V h,V h
0 =V h

0 ×V h
0 and V h ⊂W 1

2,ν(Ωh,δ ),V h
0 ⊂W 1,0

2,ν (Ωh,δ ),Qh ⊂ L0
2,ν(Ωh,δ ). The coefficients

ri
k and tl in (8) and (9) are defined as a solution of a system (10) (see Definition 2 below) and coefficients r̂i

k and t̂l in

(8) and (9) are the values at the nodes Mk ∈ Y Ω
h and Nl ∈ Zh, respectively.

Definition 2 The pair (uh
ν ,P

h
ν ) ∈ V h ×Qh produced by the weighted FEM is called an approximate Rν -generalized

solution of the Oseen problem in a convection form (4), uh
ν satisfies a condition (2) at the nodes on Γ, if integral

equalities

aν(u
h
ν ,v

h)+bν(v
h,Ph

ν ) = lν(vh), cν(u
h
ν ,q

h) = 0 (10)

hold for all pairs (vh,qh) ∈ V h
0 ×Qh and given functions U ,f and g, which satisfying (7) and ν ≥ γ.

RESULTS OF NUMERICAL EXPERIMENTS

We present the results of numerical experiments to shaw advantage of our method to the Oseen problem (4), (2). Let
Ωi = (−1,1)× (−1,1) \ Ξ̄i (see Figs. 1-2) be non-convex polygon domains with one internal corner ωi greater than
π: ω1 = 1.125π,ω2 = 1.25π,ω3 = 1.5π on its boundary with the vertex located at the origin. We divide Ω̄i into a set
of triangles Lm ∈ Th, where Lm be a half of a square of the side h for ωi, i = 2,3, and a half of a closed square of the
side h in D̄1, D1 = (−1,1)× (0,1) and a half of a rectangle with sides h and 0.5h in Ω̄1 \D1 for a corner ω1. Denote
by N the positive even number, so that h ·N = 2.

We take as an exact solution (u,P) of (4), (2) such one, which exhibits corner singularity phenomena in a neigh-
borhood of a vertex located at the origin. In polar coordinates (r,ϕ) an exact solution has the following type

u1(r, ϕ) = rλi · ((1+λi)Θ(ϕ) · sin(ϕ)+Θ′(ϕ) · cos(ϕ)),u2(r, ϕ) = rλi · (Θ′(ϕ) · sin(ϕ)− (1+λi)Θ(ϕ) · cos(ϕ)),

P(r, ϕ) =−rλi−1 · (1+λi)
2 Θ′(ϕ)+Θ′′′(ϕ)

1−λi
,
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TABLE 2. The influence of ν ,δ and ν∗ on the behavior of ‖u−uh
ν‖W 1

2,ν (Ω1)
of the Rν -generalized solution, ω = 1.125π .

ν 1.5 1.8
δ 0.015 0.0175 0.015 0.0175
N 74 148 296 74 148 296 74 148 296 74 148 296

ν∗
λ1 −1 1.077e-4 5.360e-5 2.676e-5 1.513e-4 7.527e-5 3.758e-5 3.318e-5 1.650e-5 8.215e-6 4.196e-5 2.083e-5 1.037e-5
-0.175 1.005e-4 5.015e-5 2.493e-5 1.343e-4 6.700e-5 3.323e-5 3.084e-5 1.531e-5 7.611e-6 3.745e-5 1.853e-5 9.253e-6
-0.15 9.453e-5 4.695e-5 2.354e-5 1.173e-4 5.885e-5 2.914e-5 2.865e-5 1.418e-5 7.097e-6 3.364e-5 1.681e-5 8.374e-6
-0.125 9.351e-5 4.627e-5 2.313e-5 1.075e-4 5.320e-5 2.639e-5 2.747e-5 1.357e-5 6.789e-6 3.141e-5 1.574e-5 7.849e-6

-0.1 8.955e-5 4.488e-5 2.247e-5 1.014e-4 5.048e-5 2.509e-5 2.709e-5 1.334e-5 6.645e-6 3.103e-5 1.550e-5 7.690e-6
-0.075 9.312e-5 4.645e-5 2.311e-5 1.076e-4 5.315e-5 2.647e-5 2.721e-5 1.346e-5 6.683e-6 3.179e-5 1.575e-5 7.813e-6
-0.05 9.971e-5 4.958e-5 2.465e-5 1.106e-4 5.477e-5 2.725e-5 2.891e-5 1.435e-5 7.119e-6 3.243e-5 1.610e-5 8.008e-6
-0.025 1.076e-4 5.328e-5 2.656e-5 1.174e-4 5.808e-5 2.887e-5 3.094e-5 1.531e-5 7.613e-6 3.451e-5 1.704e-5 8.463e-6

TABLE 3. The influence of ν ,δ and ν∗ on the behavior of ‖u−uh
ν‖W 1

2,ν (Ω2)
of the Rν -generalized solution, ω = 1.25π .

ν 1.5 1.8
δ 0.015 0.0175 0.015 0.0175
N 74 148 296 74 148 296 74 148 296 74 148 296

ν∗
λ2 −1 2.232e-4 1.110e-4 5.481e-5 2.706e-4 1.344e-4 6.684e-5 6.476e-5 3.217e-5 1.601e-5 8.350e-5 4.146e-5 2.066e-5
-0.3 2.022e-4 1.009e-4 5.045e-5 2.529e-4 1.259e-4 6.254e-5 5.927e-5 2.954e-5 1.473e-5 7.693e-5 3.822e-5 1.917e-5

-0.275 1.892e-4 9.392e-5 4.699e-5 2.271e-4 1.136e-4 5.683e-5 5.547e-5 2.745e-5 1.370e-5 7.085e-5 3.531e-5 1.749e-5
-0.25 1.816e-4 9.042e-5 4.523e-5 2.152e-4 1.065e-4 5.269e-5 5.331e-5 2.651e-5 1.318e-5 6.751e-5 3.340e-5 1.664e-5
-0.225 1.784e-4 8.832e-5 4.394e-5 2.075e-4 1.027e-4 5.124e-5 5.175e-5 2.595e-5 1.285e-5 6.473e-5 3.209e-5 1.593e-5

-0.2 1.638e-4 8.210e-5 4.069e-5 2.081e-4 1.032e-4 5.137e-5 5.129e-5 2.563e-5 1.278e-5 6.048e-5 3.031e-5 1.514e-5
-0.175 1.801e-4 8.964e-5 4.448e-5 2.153e-4 1.079e-4 5.345e-5 5.123e-5 2.547e-5 1.266e-5 5.848e-5 2.899e-5 1.440e-5
-0.15 1.878e-4 9.328e-5 4.649e-5 2.249e-4 1.122e-4 5.558e-5 5.261e-5 2.603e-5 1.297e-5 6.232e-5 3.133e-5 1.556e-5
-0.125 2.017e-4 1.011e-4 5.006e-5 2.347e-4 1.167e-4 5.786e-5 5.641e-5 2.803e-5 1.397e-5 6.841e-5 3.413e-5 1.697e-5

-0.1 2.169e-4 1.078e-4 5.331e-5 2.458e-4 1.222e-4 6.075e-5 6.021e-5 3.004e-5 1.491e-5 7.293e-5 3.609e-5 1.784e-5

where Θ(ϕ) = sin((1+λi)ϕ)·cos(λiωi)
1+λi

− cos((1+ λi)ϕ)− sin((1−λi)ϕ)·cos(λiωi)
1−λi

+ cos((1− λi)ϕ) and λi is the smallest

positive root of the equation λ sin(ωi)+ sin(λ ωi) = 0, which represent about 0.8008 for ω1 = 1.125π, about 0.6736
for ω2 = 1.25π, about 0.5445 for ω3 = 1.5π . Also, parameters α and ν̄ are equal to 1, U = 0.95u.

Numerical experiments were carried out on meshes with different step sizes h. The errors (for the velocity field)
of the numerical approximations to the Rν -generalized and generalized (ν = 0, δ = 1,ν∗ = μ∗ = 0) solutions were
computed in the W 1

2,ν(Ωi) and W 1
2 (Ωi) norms, respectively, and as the module between exact and approximate

solutions at the nodes Mk. We denote by δ j a set of such nodes for the j-th component of the velocity field. The
results of numerical experiments are showed in Tables 1-4 and Figs. 1-2. The values of parameters ν ,ν∗ and δ were
derived numerically, the optimal values ν∗(μ∗ = ν∗) for ν and δ are presented in bold type in columns of Tables 2-4.

CONCLUSION

The approximate Rν -generalized solution (velocity field) by weighted FEM converges to the exact solution of the
Oseen system in a convection form (4), (2) with the rate O(h) in the W1

2,ν(Ωi) norm for all corners ωi and different

δ and ν , Tables 2-4, while the approximate generalized solution by classical FEM has an O(h0.8) rate of convergence
for a corner ω1 = 1.125π , O(h0.67) — for a ω2 = 1.25π , O(h0.55) — for a ω3 = 1.5π in the W1

2(Ωi) norm, Table 1.
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TABLE 4. The influence of ν ,δ and ν∗ on the behavior of ‖u−uh
ν‖W 1

2,ν (Ω3)
of the Rν -generalized solution, ω = 1.5π .

ν 1.5 1.8
δ 0.015 0.0175 0.015 0.0175
N 74 148 296 74 148 296 74 148 296 74 148 296

ν∗
λ3 −1 3.854e-4 1.915e-4 9.375e-5 5.195e-4 2.567e-4 1.276e-4 1.225e-4 6.064e-5 3.023e-5 1.845e-4 9.170e-5 4.557e-5
-0.425 3.481e-4 1.733e-4 8.609e-5 4.613e-4 2.278e-4 1.121e-4 1.114e-4 5.536e-5 2.756e-5 1.639e-4 8.124e-5 4.052e-5

-0.4 3.112e-4 1.540e-4 7.687e-5 4.141e-4 2.056e-4 1.030e-4 9.860e-5 4.876e-5 2.426e-5 1.498e-4 7.420e-5 3.688e-5
-0.375 3.034e-4 1.509e-4 7.534e-5 3.956e-4 1.963e-4 9.761e-5 9.435e-5 4.685e-5 2.334e-5 1.411e-4 7.021e-5 3.499e-5
-0.35 3.010e-4 1.499e-4 7.493e-5 3.883e-4 1.926e-4 9.556e-5 9.059e-5 4.490e-5 2.232e-5 1.266e-4 6.312e-5 3.147e-5
-0.325 2.964e-4 1.474e-4 7.298e-5 3.705e-4 1.846e-4 9.180e-5 8.429e-5 4.182e-5 2.087e-5 1.217e-4 6.049e-5 3.016e-5

-0.3 2.761e-4 1.372e-4 6.829e-5 3.896e-4 1.935e-4 9.618e-5 8.280e-5 4.097e-5 2.042e-5 1.128e-4 5.619e-5 2.810e-5
-0.275 2.951e-4 1.470e-4 7.299e-5 3.921e-4 1.949e-4 9.740e-5 7.862e-5 3.890e-5 1.936e-5 1.148e-4 5.743e-5 2.876e-5
-0.25 3.281e-4 1.631e-4 8.098e-5 4.249e-4 2.105e-4 1.042e-4 8.799e-5 4.354e-5 2.168e-5 1.213e-4 6.072e-5 3.027e-5
-0.225 3.548e-4 1.754e-4 8.732e-5 4.361e-4 2.165e-4 1.078e-4 9.716e-5 4.821e-5 2.399e-5 1.261e-4 6.276e-5 3.129e-5

-0.2 3.712e-4 1.846e-4 9.133e-5 4.702e-4 2.346e-4 1.170e-4 1.026e-4 5.103e-5 2.536e-5 1.303e-4 6.471e-5 3.227e-5

FIGURE 1. Distribution of the points Mk with errors δ 1 of the generalized (ν = 0,δ = 1,ν∗ = μ∗ = 0) solution: a) N=148,
b) N=296 and Rν -generalized solution (ν = 1.8,δ = 0.015,ν∗ = μ∗ =−0.175): c) N=148, d) N=296, ω1 = 1.125π .

FIGURE 2. Distribution of the points Mk with errors δ 2 of the generalized (ν = 0,δ = 1,ν∗ = μ∗ = 0) solution: a) N=148,
b) N=296 and Rν -generalized (ν = 1.8,δ = 0.015,ν∗ = μ∗ =−0.175) solution: c) N=148, d) N=296, ω2 = 1.125π .
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Abstract. A boundary value problem for the equations of heat and mass transfer in a half-space is considered, which contains
in the boundary conditions derivatives of a higher order than the order of the derivative of a system of equations. The solution of
the boundary problem is found in the form of a double layer potential. The lemma on finding the limit of the normal derivative of
the finite order of the function in the neighborhood of the hyperplane xn = 0 is given. Using the boundary conditions, a system of
integro-differential equations (SIDE) is obtained. The characteristic part of the SIDE is solved by the method of Fourier-Laplace
integral transforms. The conditions for the correctness and incorrectness of the problem, expressed in terms of the given constants
and boundary conditions, are found. Using the regularization method, the SIDE is reduced to a system of Volterra-Fredholm
integral equations. A theorem on the solvability of the boundary value problem for a parabolic system of heat and mass transfer
equations is presented.

STATEMENT OF THE PROBLEM

In the articles [1, 2], boundary value problems for the heat equation are considered, when the boundary conditions
contain derivatives of an order exceeding the order of the equation. Using the method of potentials, boundary value
problems are reduced to integro-differential equations. Under the condition of solvability, the existence of solutions
of boundary value problems is proved. In [3], a boundary value problem for an integro-differential equation in a
half-space is considered, which contains in the boundary condition derivatives of a higher order than the order of the
derivative of an equation. Using the regularization method, the boundary value problem is reduced to the Volterra-
Fredholm integral equation.

Find a regular solution to the system:

∂Uk(x, t)
∂ t

= λkΔUk (x, t) , k = 1, 2 (1)

in the domain QT ≡ {(x′,xn, t) : x′ ∈ Rn−1, xn ∈ R+, t ∈ ]0,T [
}

, with the initial and boundary conditions:

Uk (x,0) = 0, (2)

2

∑
k=1

[
ml

∑
kn=1

a(k)l,kn

∂ knUk (x, t)

∂xn
kn

+a(l)k Uk (x, t)

]
|xn=0 =ϕl

(
x′, t
)
, (3)

(
x′, t
) ∈ Q(1)

T = QT\xn, ml ≥ 1, l = 1,2 ,

where Δ is Laplace operator with respect to x = (x1,x2, . . . ,xn); λk are given positive constants, and 0 < λ1 < λ2; a(l)k

and a(k)l,kn
(k = 1,2) are given constants and ϕl (x′, t) ∈C2, 1

x′, t

(
Q(1)

T

)
.

INTEGRAL REPRESENTATION OF THE SOLUTION

The solution of the boundary value problem (1)-(3) is found in the following form [4, 5]:

Uk (x, t) =−Ψk ∗G(k)
xn [x, t] , k = 1,2 , (4)
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where

G(k) (x, t) =
2λkexp

[
− |x|2

4λkt

]
[
2
√

πλkt
]n , G(k)

xn (x, t) =
∂

∂xn
G(k) (x, t) ,

Ψk ∗G(k)
xn [x, t] =

∫ t

0
dτ
∫

Rn−1
Ψk(ξ ′,τ)G(k)

xn

(
x′ −ξ ′,xn, t − τ

)
dξ ′,

Rn−1 is (n−1)-dimensional Euclidean space of points x′ = (x1,x2, . . . ,xn−1) with the norm |x′|=
√

x2
1 + x2

2 + ...+ x2
n−1;

Ψk (x′, t) are unknown bounded continuous functions with partial derivatives of a sufficiently high order with respect
to the variable x′ and t.

REDUCING OF THE PROBLEM TO A SYSTEM OF INTEGRO-DIFFERENTIAL
EQUATIONS (SIDE)

The functions Uk (x, t) defined by (4) satisfy the system and the initial conditions. The unknown functions Ψk (x′, t)
must be defined so that the functions Uk (x, t) satisfy the boundary conditions (3).

We introduce the definitions of certain classes of functions denoted by C
mi, [

mi
2 ]

x′, t

(
Q(1)

T

)
and Ċ

mi, [
mi
2 ]

x′, t

(
Q(1)

T

)
.

Definition 1 The functions Ψi (x′, t) ∈C
mi, [

mi
2 ]

x′, t

(
Q(1)

T

)
, if Ψi (x′, t) and all its derivatives Fkn

i

[
Dk′

x′Ψi (x′, t)
]

(
|k′|= 0, mi −2kn, kn = 0,

[mi
2

])
are continuous, where k′ = (k1,k2, . . . ,kn−1); |k′|= k1 + k2 + · · ·+ kn−1;

Dk′
x′ = Dk1

x1
,Dk2

x2
, . . . ,Dkn−1

xn−1
, Dxi =

∂
∂xi

(
i = 1,n−1

)
; F1 ≡ ∂

∂ t −λ1Δx′ , . . . ,F
kn
i ≡

(
∂
∂ t −λiΔx′

)kn
, F0

i is a unitary opera-

tor; Δx′ = ∑n−1
k=1

∂ 2

∂x2
k
;
[mi

2

]
= mi

2 or mi−1
2 depending on whether mi is an even or odd number.

Definition 2 The functions Ψi (x′, t) ∈ Ċ
mi, [

mi
2 ]

x′, t

(
Q(1)

T

)
, if Ψi (x′, t) ∈C

mi, [
mi
2 ]

x′, t

(
Q(1)

T

)
and satisfy the conditions

Fkn
i

[
Dk′

x′Ψi
(
x′, t
)] |t=0 = 0,

(∣∣k′∣∣= 0, mi −2kn, kn = 0,
[mi

2

])
.

Using Definitions 1 and 2, we state the Lemma.

Lemma 1 If the functions Ψk (x′, t) ∈ Ċ
mi, [

mi
2 ]

x′, t

(
Q(1)

T

)
, then

lim
xn→0

∂ 2kn−1Uk (x, t)

∂xn
2kn−1

=− 1(√
λk

)2kn
Fk

kn [Ψk]∗G(k) [x′,0, t] , (5)

lim
xn→0

∂ 2knUk (x, t)

∂xn
2kn

=
1

(
√

λk)
2kn

Fk
kn [Ψk] . (6)

To define Ψk (x′, t), the functions Uk (x, t) are substituted in the boundary conditions (3), using (5)-(6) and the proper-
ties of the double layer potentials, we obtain the SIDE:

2

∑
k=1

⎡⎣[ml
2 ]

∑
kn=0

a(k)l, 2kn

(
√

λk)
2kn

Fkn
k

[
Ψk
(
x′, t
)]− [

ml
2 ]

∑
kn=1

a(k)l, 2kn−1

(
√

λk)
2kn−1

Fkn
k [Ψk]∗G(k) [x′,0, t]+a(l)k Ψk

(
x′, t
)⎤⎦= ϕl

(
x′, t
)
,

(l = 1,2) . (7)
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Let us consider the characteristic part of the system:

2

∑
k=1

[
al, ml (−1)ml

(
√

λk)
ml

F
ml
2

k

[
Ψk
(
x′, t
)]]

= Φl
(
x′, t
)
, (l = 1,2) , (8)

where

Φl
(
x′, t
)
= ϕl
(
x′, t
)− 2

∑
k=1

a(l)k Ψk
(
x′, t
)− 2

∑
k=1

⎡⎣ml−1

∑
ν=0

a(k)l,ν (−1)ν

(
√

λk)
ν F

ν
2

k

[
Ψk
(
x′, t
)]⎤⎦. (9)

Considering the right-hand side of the system (8) as a known function and assuming that Fourier integral transforms
with respect to x′ and Laplace transform with respect to t can be applied to the functions Ψk (x′, t) and Φk (x′, t), we
obtain:

2

∑
k=1

⎡⎣ a(k)l, ml

(
√

λk)
ml (√

2π
)n−1

∫ ∞

0

(∫
Rn−1

F
ml
2

k

[
Ψk
(
x′, t
)]

exp
[
i
(
x′,s′
)]

dx′
)

exp [−pt]dt

⎤⎦= Φ̃l
(
s′, p
)
, (10)

where

Φ̃l
(
s′, p
)
=

1(√
2π
)n−1

∫ ∞

0

(∫
Rn−1

Φ1

(
x′, t
)
exp
[
i
(
x′,s′
)]

dx′
)

exp [−pt]dt.

Integrating in (10) over the variable x′ - m times, over the variable t -
[m

2

]
times and using the following equality

1(√
2π
)n−1

∫ ∞

0

(∫
Rn−1

F
ml
2

k

[
Ψk
(
x′, t
)]

exp
[
i
(
x′,s′
)]

dx′
)

exp [−pt]dt =
(

p+λk
∣∣s′∣∣2)ml

2 Ψ̃k
(
s′, p
)
,

we can find

2

∑
k=1

a(k)l, ml

(
√

λk)
ml

(√
p+λk|s′|2

)ml

Ψ̃k
(
s′, p
)
= Φ̃l

(
s′, p
)
. (11)

The main determinant Δ(s′, p) of the system:

Δ̃
(
s′, p
)
=

∣∣∣∣∣∣∣∣
a(1)1, m1

(
√

λ1)
m1

(√
p+λ1|s′|2

)m1 a(2)1, m1

(
√

λ2)
m1

(√
p+λ2|s′|2

)m1

a(1)2, m2

(
√

λ1)
m2

(√
p+λ1|s′|2

)m2 a(2)2, m2

(
√

λ2)
m2

(√
p+λ2|s′|2

)m2

∣∣∣∣∣∣∣∣ .
If Δ(s′, p) 	= 0, then the problem is well posed and using the composition of operators

Uk (x, t) = Φ1, λk

[
F
−ml

2

λ
[
ϕk
(
x′, t
)
,xn
]]

the problem reduces to a system of the Volterra-Fredholm type integral equations of the second kind with respect to
unknown densities with an integrable singularity. The method of successive approximations is applied.

If Δ(s′, p) = 0, then the well-known Lopatinsky condition is not fulfilled, therefore, it is necessary to study the roots
of the equation:

Δ1

(
s′, p
)
= a(2)1, m1

a(1)2, m2

⎛⎝√ p+λ1|s′|2
λ1

⎞⎠m1
⎛⎝√ p+λ2|s′|2

λ2

⎞⎠m2

Δ0

(
s′, p
)
= 0, (12)

where

Δ0

(
s′, p
)
=

a(1)1, m1
a(2)2, m2

a(2)1, m1
a(1)2, m2

−
⎛⎝√λ1

λ2

⎞⎠m1−m2
⎛⎝
√

p+λ1|s′|2√
p+λ2|s′|2

⎞⎠m1−m2

.
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It follows from (12) that the Lopatinsky condition is not satisfied if

a(1)1, m1
a(2)2, m2

(
√

λ1)
m1−m2

− a(2)1, m1
a(1)2, m2

(
√

λ2)
m1−m2

= 0. (13)

If
∣∣∣a(1)1, m1

a
(2)
2, m2

∣∣∣+ ∣∣∣a(2)1, m1
a(1)2, m2

∣∣∣ 	= 0, then we can assume that a(2)1, m1
a(1)2, m2

	= 0. Then

a(1)1, m1
a(2)2, m2

a(2)1, m1
a(1)2, m2

−
(

λ1

λ2

)m1−m2
2

⎡⎣
√

p
|s′|2 +λ2√

p
|s′|2 +λ1

⎤⎦m1−m2

= 0. (14)

If m1 −m2 = 2ν +1, then ⎡⎣
√√√√ p

|s′|2 +λ2

p
|s′|2 +λ1

⎤⎦2ν+1(
λ1

λ2

) 2ν+1
2

= γ, (15)

where γ =
a(1)1, m1

a(2)2, m2

a(2)1, m1
a(1)2, m2

.

Applying a replacement

√
p

|s′|2 +λ2√
p

|s′|2 +λ1

= z to the last expression, where z = h1+ ih2, h1 > 0 and taking into account that

p
|s′|2 = λ1z2−λ2

1−z2 , it is necessary that

Re
p

|s′|2 =

[
λ1

(
h2

1 −h2
2

)−λ2

](
1−h2

1 +h2
2

)−4λ1h2
1h2

2

(1−h1 +h2)
2 +4h2

1h2
2

> 0,

that is {
λ1

(
h2

1 +h2
2

)− (λ1 +λ2)
(
h2

1 −h2
2

)
+λ2 < 0,

h1 > 0.
(16)

Thus, the Lopatinsky condition is not fulfilled if the equation(
λ1

λ2

) 2ν+1
2

z2ν+1 = γ (17)

has roots in the domain (16). The roots of the equation (17) are

zk =

√
λ2

λ1
|γ| 1

2ν+1 exp
[

i
2θ +2kπ

2v+1

]
,

where k = 0, 2v , θ =

{
0, γ ≥ 0,
π
2 , γ < 0.

Substituting zk into the inequalities (15), we obtain{
λ2
λ1
|γ| 4

2v+1 − λ1+λ2
λ1

|γ| 2
2v+1 cos

4(θ+kπ)
2v+1 +1 < 0,

cos
2(θ+kπ)

2v+1 > 0,

which must be true for at least one of k = 0, 2v.
Since

L̃2v+1

(
s′, p
)
=

1(√
p

λ1
+ |s′|2

)2

⎡⎣γ −
(√

p
λ2

+|s′|2√
p

λ1
+|s′|2

)2v+1
⎤⎦ , (18)
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using the residue theory, we can find

L̃2v+1

(
s′, t
)
=

2v

∑
k∗=0

res

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ept

(√
p

λ1
+ |s′|2

)2

⎡⎣γ −
(√

p
λ2

+|s′|2√
p

λ1
+|s′|2

)2v+1
⎤⎦ , p =−qk

∣∣s′∣∣2, qk =
λ1z2

k −λ2

z2
k −1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

where k∗ are those numbers of k, for which Re zk > 0 in (17). So,

L̃2v+1

(
s′, t
)
=

2v

∑
k∗=0

λ2

2v+1
2 e−ak|s′|2t

λ1

2v−1
2

lim
z→zk

(z− zk)(z+ zk)(
1− z2

k

)(
z2v+1

k − z2v+1
) ,

or

L̃2v+1

(
s′, t
)
=

2v

∑
k∗=0

2
(√

λ2

)2v+1e−qk|s′|2t

(2v+1)
(√

λ1

)2v−1 (
1− z2

k

)
z2v−1

k

. (19)

Applying the inverse Fourier transform with respect to the variable s′, assuming that qk > 0, we obtain

L2v+1

(
x′, t
)
=

2v

∑
k∗=0

2
(√

λ2

)2v+1(
1− z2

k

)n−3exp
[
−|x′|2

4qkt

]
(2v+1)

(√
λ1

)2v−1z2v−1
k (2

√
πqkt)n−1

. (20)

Using (20) and the known relation

1(√
p+λk|s′|2

)α :→ t
α
2 −1

Γ
(α

2

)exp
[
−λk
∣∣s′∣∣2t
]

and also the Riemann-Mellin formula, from the system of equations (11) we can find

Ψk
(
x′, t
)
=

2

∑
α=1

∫ t

0
dτ
∫

Rn−1
Hk, α

(
x′ −ξ ′, t − τ

)
Φα
(
ξ ′,τ
)

dξ ′, (21)

where the kernels Hk, α (x′, t) satisfy the estimate:

∣∣Hk, α
(
x′, t
)∣∣≤ M

exp
[
−δ |x′|2

t

]
(√

t
)n , (22)

here M and δ are positive constants.

REGULARIZATION OF THE SYSTEM (8)

Substituting the values of Φα (x′, t) from (9) into the system (8), we obtain:

Ψk
(
x′, t
)
= Φk

(
x′, t
)
+

2

∑
α=1

∫ t

0
dτ
∫

Rn−1
H(1)

k, α
(
x′ −ξ ′, t − τ

)
Ψα
(
ξ ′,τ
)

dξ ′, (23)

where

Φk
(
x′, t
)
=

2

∑
α=1

∫ t

0
dτ
∫

Rn−1
Hk, α

(
x′ −ξ ′, t − τ

)
ϕα
(
ξ ′,τ
)

dξ ′, (24)
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the kernels H(1)
k, α (x′, t) satisfy the following estimate:

∣∣∣H(1)
k, α
(
x′, t
)∣∣∣≤ M1

exp
[
−δ1

|x′|2
t

]
(√

t
)n , (25)

here M1 and δ1 are positive constants.
The system of integral equations (23) can be solved by the method of successive approximations based on the

estimate (25).
The following theorem holds.

Theorem 2 If ϕk (x′, t)∈C2, 1
x′, t

(
Q(1)

T

)
and qk =

λ1z2
k−λ2

z2
k−1

> 0 (zk are roots of the characteristic equation), then the solu-

tion of the problem (1)-(3) exists and Uk(x, t) ∈C
mk, [

mk
2 ]

x, t (QT ), where the unknown functions Ψk (x′, t) are determined
from the system of integral equations (23).
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Abstract. In this extended abstract, considering the differential equations on hyperbolic plane, we investigate and establish the
well-posedness of boundary value problem for hyperbolic equations in Hölder spaces. Furthermore, we establish new coercivity
estimates in various Hölder norms for the solutions of such boundary value problems for hyperbolic equations.

INTRODUCTION

In the study of boundary value problems for partial differential equations, the role played by the well-posedness
(coercivity inequalities) in the study of boundary value problems for partial differential equations is well known (see,
e.g. [1, 2, 3]).

The well-posedness of nonlocal boundary value problems for partial differential equations of hyperbolic type in in
the Euclidean space has been studied extensively (see, e.g. [4, 5, 6, 7, 8, 9, 10, 11, 12] and the references therein). By
considering the differential equations on hyperbolic plane, the present extended abstract investigates and establishes
the well-posedness of nonlocal boundary value problems in Hölder spaces. Moreover, it establishes new coercivity
estimates in various Hölder norms for the solutions of such boundary value problems for hyperbolic equations.

LAPLACE-BELTRAMI OPERATOR OF RIEMANNIAN MANIFOLD

The reader is referred to [13, 14] and the references therein for more information and unexplained subjects.

For an n−dimensional Riemannian manifold (M ,g) , the Laplace-Beltrami operator Δ
M

on real valued functions

of M is locally −1√
g ∑n

i, j=1
∂

∂xi

(
gi j√g ∂

∂x j

)
, where

√
g =

√
det(gi j), (gi j) is the inverse of (gi j), and gi j = g

(
∂

∂xi
, ∂

∂x j

)
.

Consider the 2−dimensional hyperbolic plane H
2 =

{
(x1,x2,x3) ∈ R

3,x3 > 0 | x2
1 + x2

2 − x2
3 =−1

}
in the geodesic

polar coordinates, namely, ξ : (0,∞)× (0,2π) → H
2, x1 = sinh(r)cosθ , x2 = sinh(r)sinθ , x3 = cosh(r) , where

0 < r < ∞, 0 < θ < 2π. We have

g
H2 =

[
1 0

0 sinh2(r)

]
,

√
detg

H2 = sinh(r), g−1
H2 =

[
1 0

0 1

sinh2(r)

]
.

Furthermore, the Laplace-Beltrami operator of H2 in geodesic polar coordinates is

Δ
H2 =

−1

sinh(r)

{
∂
∂ r

(
a0(r,θ)

∂
∂ r

)
+

∂
∂θ

(
a1(r,θ)

∂
∂θ

)}
,

where a0 = sinh(r) and a1 =
1

sinh(r) .

Stokes’ Theorem and Divergence Theorem for manifolds state as follows.

Theorem 1 (Stokes’ Theorem) If M is an oriented complete Riemannian n−manifold with boundary, α ∈Ωn−1 (M )
with compact support, and if i : ∂M → M is the inclusion map, then

∫
∂M i∗α =

∫
M dα.
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Theorem 2 (Divergence Theorem) Let M be a Riemannian manifold with boundary ∂M and X be a C1−vector
field on M . Then,

∫
M divg(X) dVg =

∫
∂M 〈X ,ν〉g dσg, where divg denotes the divergence operator on (M ,g), dVg

denotes the natural volume element on (M ,g), and ν denotes the unit vector normal to ∂M .

From these theorems it follows

Theorem 3 (Green’s Theorem) If (M ,g) is an oriented complete Riemannian manifold with boundary ∂M , if ψ ∈
C1

(
M

)
and ϕ ∈ C2

(
M

)
, then

∫
M ψ · Δ

M
φ dVg =

∫
M

〈
∇gψ,∇gφ

〉
dVg −

∫
∂M ψ · ∂φ

∂ν dσg. Here, ∇g denotes the
gradient operator on the Riemannian manifold (M ,g).

Green’s Theorem yields

Theorem 4 [13, 14] Assume (M ,g) is a complete Riemannian manifold without boundary. Then,

1. (Formal self-adjointness):
〈
ψ,Δ

M
φ
〉

L2(M ,dVg)
=
〈
φ ,Δ

M
ψ
〉

L2(M ,dVg)
,

2. (Positivity):
〈
Δ

M
φ ,φ

〉
L2(M ,dVg)

≥ 0.

Here, L2(M ,dVg) denotes the Hilbert space { f : M → R;〈φ ,φ〉L2(M ,dVg)
:=

∫
M φ 2(x) dVg(x)< ∞}.

Recall that for the simply connected constant (−1) Gaussian curvature space H2 we have λ (Ω)≥ 1
4 , where Ω ⊂H

2

is a normal domain [13].

NONLOCAL HYPERBOLIC DIFFERENTIAL EQUATION ON HYPERBOLIC PLANE

We consider the following relatively compact domain in the hyperbolic plane H
2

Ω = ξ ((a,b)× (c,d)) = {(sinh(r)cosθ ,sinh(r)sinθ ,cosh(r)) ∈H
2 : 0 < a < r < b < ∞,0 < c < θ < d < 2π}.

Let us consider the mixed boundary value problem for hyperbolic equations in H
2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt (t,x)+Δ
H2u(t,x) = f (t,x), (t,x) ∈ [0,1]×Ω,

u(0,x) =
p

∑
j=1

α ju(λ j,x)+ϕ(x), x ∈ Ω,

ut(0,x) =
p

∑
j=1

βkut (λk,x)+ψ(x), x ∈ Ω,

0 < λ1 ≤ λ2 ≤ ·· · ≤ λp ≤ 1,

u(t,x) = 0, x ∈ ∂Ω, 0 ≤ t ≤ 1

(1)

under the assumption

p

∑
j=1

|α j +β j|+
p

∑
j=1

|α j|
p

∑
m=1, m�= j

|βm|<
∣∣∣∣∣1+

p

∑
j=1

α jβ j

∣∣∣∣∣ . (2)

Here, Δ
H2 denotes the Laplace-Beltrami operator on (H2,g

H2).
We prove

Theorem 5 The solutions of problem (1) satisfy the following stability inequalities

max
0≤t≤1

(
‖ uφ (t, ·) ‖L2

(
Ω,dVg

H2

) + ‖ uθ (t, ·) ‖L2

(
Ω,dVg

H2

))≤ M
[

max
0≤t≤1

‖ f (t, · ‖
L2

(
Ω,dVg

H2

)

+

(
‖ ϕφ ‖

L2

(
Ω,dVg

H2

) + ‖ ϕθ ‖
L2

(
Ω,dVg

H2

))+ ‖ ψ ‖
L2

(
Ω,dVg

H2

)] ,
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max
0≤t≤1

(
‖ uφφ (t, ·) ‖L2

(
Ω,dVg

H2

) + ‖ uθθ (t, ·) ‖L2

(
Ω,dVg

H2

))

+ max
0≤t≤1

‖ utt(t, ·) ‖L2

(
Ω,dVg

H2

)≤ M
[

max
0≤t≤1

‖ ft(t, ·) ‖L2

(
Ω,dVg

H2

)

+ ‖ f (0, ·) ‖
L2

(
Ω,dVg

H2

) +
(
‖ ϕφφ ‖

L2

(
Ω,dVg

H2

) + ‖ ϕθθ ‖
L2

(
Ω,dVg

H2

))+

(
‖ ψφ ‖

L2

(
Ω,dVg

H2

) + ‖ ψθ ‖
L2

(
Ω,dVg

H2

))] .
Here, M is independent of f (t,x), ϕ(x), and ψ(x).

We consider problem (1) as the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Utt(t)+LU(t) = F(t), 0 ≤ t ≤ 1,

U(0) =
p

∑
j=1

α jU (λ j)+ϕ ,

Ut(0) =
p

∑
j=1

βkUt (λk)+ψ ,

0 < λ1 ≤ λ2 ≤ ·· · ≤ λp ≤ 1

(3)

in the Hilbert space H = L2

(
Ω,dVg

H2

)
with the self-adjoint positive definite operator L=Δ

H2 . Here, ‖U‖
L2

(
Ω,dVg

H2

)=(∫
Ω U2(x)dVg

H2
(x)

)1/2
, dVg

H2
is the natural volume element of H2 obtained from metric tensor g

H2 .

The proof of Theorem 5 is based on Theorem 6 with H = L2

(
Ω,dVg

H2

)
, and Theorem 7 on the coercivity inequality

for the solution of the elliptic differential problem in L2

(
Ω,dVg

H2

)
.

Theorem 6 ( [11, 12]) Let A be a self adjoint positive definite operator on a Hilbert space H, ϕ ∈D(A), ψ ∈D(A1/2),
and g(t) be continuously differentiable on [0,1], and let the assumption (2) hold. Then, there exists a unique solution
of ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtt(t)+Av(t) = g(t), 0 ≤ t ≤ 1,

v(0) =
p

∑
j=1

α jv(λ j)+ϕ ,

vt(0) =
p

∑
j=1

βkvt (λk)+ψ ,

0 < λ1 ≤ λ2 ≤ ·· · ≤ λp ≤ 1

and the following stability inequalities

‖ v ‖C(H) ≤ M
[
‖ ϕ ‖H + ‖ A−1/2ψ ‖H + ‖ A−1/2g ‖C(H)

]
,

‖ A1/2v ‖C(H) ≤ M
[
‖ A1/2ϕ ‖H + ‖ ψ ‖H + ‖ g ‖C(H)

]
,

‖ v′′ ‖C(H) + ‖ Av ‖C(H) ≤ M
[
‖ Aϕ ‖H + ‖ A1/2ψ ‖H + ‖ g(0) ‖H

∫ t

0
‖ g′(t) ‖H dt

]
are valid. Here, M is independent of g(t), t ∈ [0,1], ϕ,ψ, and C(H) is the Banach space of the continuous functions
v(t) defined on [0,1] with values in H, equipped with the norm

‖v‖C(H) = max
0≤t≤1

‖v(t)‖H .
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Theorem 7 For the solutions of the elliptic differential problem⎧⎨
⎩

Δ(r,θ)
H2

u(x(r,θ)) = ω(ξ (r,θ)), (r,θ) ∈ (a,b)× (c,d),

u(ξ (r,θ)) = 0, (r,θ) in boundary o f [a,b]× [c,d]

the following coercivity inequality holds:

‖urr‖L2

(
Ω,dVg

H2

)+∥∥uθθ

∥∥
L2

(
Ω,dVg

H2

) ≤ M||ω ||
L2

(
Ω,dVg

H2

).
The proof of Theorem 7 is based on the following theorem.

Theorem 8 [5] For the solutions of the elliptic differential problem⎧⎨
⎩

Aξ u(ξ ) = ω(ξ ), ξ ∈ (α1,β1)× (α2,β2),

u(ξ ) = 0, ξ in boundary [α1,β1]× [α2,β2]

the following coercivity inequality

2

∑
r=1

∥∥uξr ξr

∥∥
L2((α1,β1)×(α2,β2))

≤ M||ω ||L2((α1,β1)×(α2,β2))

is valid, where Aξ =
2

∑
r=1

∂
∂ξr

(
ar(ξ ) ∂

∂ξr

)
and ar ≥ a > 0.
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Abstract. Ternary semigroup is a universal algebra with an associative ternary operation. We give a characterization of bounded
closed sets with nonempty interior of finite-dimensional Euclidean spaces by ternary semigroups of pairs of homeomorphic trans-
formations.

INTRODUCTION

The theory of ternary algebraic systems was introduced by Lehmer in [1]. He investigated algebraic systems called
triplexes. Sioson [6] studied ternary semigroups with special reference to ideals and radicals . Santiago and Sri
Bala [11], [12] developed regular and completely regular ternary semigroups. In [10], Dutta, Kar and Maity studied
intra-regular ternary semigroups. In [7], Wagner studied semiheaps. Regularity, Greens equivalences, complete
simplicity (Gluskin [3]) have been studied for semiheaps. In [8] and [9] Mustafaev studied semiheaps of continuous
and homeomorphic maps. In [2] Gluskin showed that semigroups of topological transformations of bounded closed
sets with nonempty interior of finite-dimensional Euclidean spaces define those sets exactly up to homeomorphism.
This paper is devoted to characterization of pairs of bounded closed sets with nonempty interior of finite-dimensional
Euclidean spaces by ternary semigroups of pairs of homeomorphic maps between those sets.

A ternary semigroup is a nonempty set T together with a ternary operation [abc] satisfying the associative law
[[abc]de] = [a [bcd]e] = [ab [cde]] for every a,b,c,d,e ∈ T . For convenience we shall denote by [ABC] the set of all

elements [abc] where a ∈ A,b ∈ B,c ∈C. The set [AAA] is often denoted by A[3]. As an example, any semigroup can be
made into a ternary semigroup by defining the ternary product to be [abc] = abc. The set of all odd permutations under
composition is a ternary semigroup. A nonempty subset A of a ternary semigroup T is called a ternary subsemigroup
of T if A[3] ⊆ A. A nonempty subset L of a ternary semigroup T is called a left (right, lateral) ideal of T if [T T L]⊆ L
([LT T ]⊆ L, [T LT ]⊆ L). A nonempty subset A of a ternary semigroup T is called a two sided ideal of T if it is a left
and right ideal of T . A nonempty subset A of a ternary semigroup T is called an ideal of T if it is a left, right and
lateral ideal of T . If the intersection K of all the ideals of a ternary semigroup T is not empty, we shall call K the
kernel of T .

Let X and Y be two nonempty sets and let F (X ,Y ) be the set of all pairs of functions (η ,φ), where η : X → Y and
φ : Y → X . The set F (X ,Y ) is a ternary semigroup with respect to the ternary operation

[(η1,φ1)(η2,φ2)(η3,φ3)] = (η1φ2η3,φ1η2φ3) ,

where (η1φ2η3)x = η1 (φ2 (η3 (x))) and (φ1η2φ3)y = φ1 (η2 (φ3 (y))).

CHARACTERIZATION OF BOUNDED CLOSED SETS WITH NONEMPTY INTERIOR
OF EUCLIDEAN n−SPACES BY TERNARY SEMIGROUPS OF HOMEOMORPHIC

TRANSFORMATIONS

Let R be a finite-dimensional Euclidean space with the standard topology. Let Ω1 and Ω2 be two bounded closed sets
of R such that IntΩi �=∅ for (i = 1,2). Denote by HTi (Ωi) the set of all homeomorphic maps from Ωi to Ω j, where
i, j = 1,2,(i �= j). Let Bi (Ωi) denote the set of all a ∈ HTi (Ωi) for which there is an n−sized element Ea ⊂ Ω j (a set
homeomorphic to some closed n−ball) such that aΩi ⊂ IntEa, Ea ⊂ IntΩ j. Let HT (Ω1,Ω2) = HT1 (Ω1)×HT2 (Ω2)
be the set of all pairs of homeomorphic maps (a,b), where a ∈ HT1 (Ω1), b ∈ HT2 (Ω2). The set HT (Ω1,Ω2) is a
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ternary semigroup with respect to the ternary operation

[(a1,b1)(a2,b2)(a3,b3)] = (a1b2a3,b1a2b3) .

Clearly, the set B(Ω1,Ω2) = B1 (Ω1)×B2 (Ω2) is a ternary subsemigroup and even an ideal of the ternary semigroup
HT (Ω1,Ω2).

If a1 (Ω1)⊆ a2 (Ω1) and b1 (Ω2)⊆ b2 (Ω2) for some (a1,b1) ,(a2,b2)∈HT (Ω1,Ω2) we will write (a1,b1)(Ω1,Ω2)⊆
(a2,b2)(Ω1,Ω2).

Theorem 1 Let R and R′ be finite-dimensional Euclidean spaces. Let Ω1 and Ω2 be bounded closed sets of a finite-
dimensional Euclidean space R and let Ω′

1 and Ω′
2 be bounded closed sets of a finite-dimensional Euclidean space R′

such that IntΩi �= ∅, IntΩ′
i �= ∅ for (i = 1,2). The ternary semigroups B(Ω1,Ω2) and B(Ω′

1,Ω
′
2) are isomorphic if

and only if the spaces Ωi and Ω′
i are homeomorphic (i = 1,2).

Proof. Let Ω1 and Ω2 be bounded closed subsets of a finite-dimensional Euclidean space R and Ω′
1 and Ω′

2 be bounded
closed subsets of a finite-dimensional Euclidean space R′ . Suppose that ξ1 : Ω1 → Ω′

1 is a homeomorphism of Ω1

onto Ω′
1 and ξ2 : Ω2 → Ω′

2 is a homeomorphism of Ω2 onto Ω′
2. Then the mapping ϕξ1,ξ2

: B(Ω1,Ω2)→ B(Ω′
1,Ω

′
2)

defined by

ϕξ1,ξ2
(a,b) =

(
ξ2aξ−1

1 ,ξ1bξ−1
2

)
is an isomorphism from B(Ω1,Ω2) onto B(Ω′

1,Ω
′
2). The proof of the necessary condition follows from Lemmas 2-11.

Throughout this paper, the symbol ϕ denotes the isomorphism ϕ : B(Ω1,Ω2)→ B(Ω′
1,Ω

′
2).

Lemma 2 Let (a,b) be any element of B(Ω1,Ω2), and let (α,β ) be an arbitrary point in (IntΩ1 \bΩ2)×(IntΩ2 \aΩ1).
Then there are (x,y) ,(u,v) ∈ B(Ω1,Ω2) such that

[(a,b)(x,y)(a,b)] = [(a,b)(u,v)(a,b)] ,and (x,y)(α,β ) �= (u,v)(α,β ) .

Proof. Let (a,b) and (x,y) be any elements in B(Ω1,Ω2) and (α,β ) an arbitrary point in (IntΩ1 \bΩ2)×
(IntΩ2 \aΩ1). The sets (IntΩ1 \bΩ2) and (IntΩ2 \aΩ1) contain closed m−balls E1 and E2 centered at the points
α and β respectively, such that E1 ⊂ (IntΩ1 \bΩ2) and E2 ⊂ (IntΩ2 \aΩ1). Let fi be an arbitrary homoemorphism
of Ei, (i = 1,2) onto itself which maps each boundary point to itself and f1 (α) �= α, f2 (β ) �= β . Denote by zi
the maps of Ωi onto itself defined as zi (ηi) = ηi if ηi ∈ Ωi \Ei and zi (ηi) = fi (ηi) if ηi ∈ Ei, (i = 1,2). Clearly,
the maps zi are the homeomorphisms of Ωi onto itself, (i = 1,2). If u = xz1, v = yz2 then (u,v) ∈ B(Ω1,Ω2) and
(u,v)(α,β ) �= (x,y)(α,β ), but (x,y)(η1,η2) = (u,v)(η1,η2) for every (η1,η2)∈ (Ω1 \E1)×(Ω2 \E2), in particular,
for every (η1,η2) ∈ bΩ2 ×aΩ1. Consequently, [(a,b)(x,y)(a,b)] = [(a,b)(u,v)(a,b)].

Lemma 3 Let (a1,a2) ,(b1,b2) ∈ B(Ω1,Ω2). The condition

∀(x1,x2) ,(y1,y2) ∈ B(Ω1,Ω2) , [(a1,a2)(x1,x2)(a1,a2)] = [(a1,a2)(y1,y2)(a1,a2)] (1)

→ [(b1,b2)(x1,x2)(b1,b2)] = [(b1,b2)(y1,y2)(b1,b2)]

is a necessary and sufficient for

(b1,b2)(Ω1,Ω2)⊆ (a1,a2)(Ω1,Ω2)

Proof. Let (b1,b2)(Ω1,Ω2) ⊆ (a1,a2)(Ω1,Ω2) and [(a1,a2)(x1,x2)(a1,a2)] = [(a1,a2)(y1,y2)(a1,a2)]. Then for
every point (α1,α2) ∈ IntΩ1 × IntΩ2 there exists a point (β1,β2) ∈ IntΩ1 × IntΩ2 such that (b1,b2)(α1,α2) =
(a1,a2)(β1,β2). Furthermore, we have a1x2a1 = a1y2a1 and a2x1a2 = a2y1a2. Then it follows that x2a1 = y2a1and
x1a2 = y1a2. Thus

b1y2b1 (α1) = b1y2a1 (β1) = b1x2a1 (β1) = b1x2b1 (α1) ,

b2y1b2 (α2) = b2y1a2 (β2) = b2x1a2 (β2) = b2x1b2 (α2) .
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The latter means that [(b1,b2)(x1,x2)(b1,b2)] = [(b1,b2)(y1,y2)(b1,b2)].
Conversely, let (a1,a2) ,(b1,b2) be any pairs of B(Ω1,Ω2) and suppose that condition (1) is valid for every

(x1,x2) ,(y1,y2) ∈ B(Ω1,Ω2), but (b1,b2)(Ω1,Ω2)\ (a1,a2)(Ω1,Ω2) �= /0. Pick the point (α1,α2) = (b1,b2)(β1,β2)

in (b1,b2)(Ω1,Ω2)\ (a1,a2)(Ω1,Ω2). It would then follow from Lemma 2 that

[(a1,a2)(x1,x2)(a1,a2)] = [(a1,a2)(y1,y2)(a1,a2)] ,

(x1,x2)(α1,α2) �= (y1,y2)(α1,α2) ,

for some (x1,x2) ,(y1,y2) ∈ B(Ω1,Ω2). Then

(b1x2b1,b2x1b2)(β1,β2) �= (b1y2b1,b2y1b2)(β1,β2) ,

or

[(b1,b2)(x1,x2)(b1,b2)] �= [(b1,b2)(y1,y2)(b1,b2)] .

The latter inequality contradicts to condition (1). Therefore, (b1,b2)(Ω1,Ω2)⊂ (a1,a2)(Ω1,Ω2), or b1Ω1 \a1Ω1 �= /0
and b2Ω2 \a2Ω2 = /0, or b1Ω1 \a1Ω1 = /0 and b2Ω2 \a2Ω2 �= /0. Let, for example, b1Ω1 \a1Ω1 �= /0, b2Ω2 \a2Ω2 = /0
hold. Clearly, b2Ω2 ⊂ a2Ω2. Pick the point β ∈ b1Ω1 \a1Ω1 ⊂ Ω2 \a1Ω1 and the point α ∈ Ω1 \a2Ω2. It would then
follow from Lemma 2 that there exist (x,y) ,(u,v) in B such that

[(a1,a2)(x,y)(a1,a2)] = [(a1,a2)(u,v)(a1,a2)] ,

(x,y)(α,β ) �= (u,v)(α,β ) .

Clearly, there exists γ ∈ Ω1 such that β = b1γ . Then b1yb1 (γ) = b1y(β ) �= b1v(β ) = b1v(γ), that is

[(b1,b2)(x,y)(b1,b2)] �= [(b1,b2)(u,v)(b1,b2)] ,

which contradicts to condition (1). We can prove analogous statement for the case b1Ω1\a1Ω1 = /0 and b2Ω2\a2Ω2 �=
/0.

Lemma 4 If Ei is any closed ball in IntΩi and αi is an arbitrary point in IntEi, then there exists (c1,c2) ∈ B(Ω1,Ω2)
such that αi ∈ Intc jΩ j,ciΩi ⊂ IntE j, where i, j = 1,2,(i �= j).

Lemma 5 Let (a1,b1) ,(a2,b2) ∈ B(Ω1,Ω2) such that

(a2,b2)(Ω1,Ω2)⊆ (a1,b1)(Ω1,Ω2) .

Then

ϕ (a2,b2)
(
Ω′

1,Ω
′
2

)⊂ ϕ (a1,b1)
(
Ω′

1,Ω
′
2

)
.

Proof. Let (a1,a2) ,(b1,b2) be any two elements in B(Ω1,Ω2) such that

(a2,b2)(Ω1,Ω2)⊆ (a1,b1)(Ω1,Ω2) .

If [
ϕ (a1,b1)

(
x′1,y

′
1

)
ϕ (a1,b1)

]
=
[
ϕ (a1,b1)

(
x′2,y

′
2

)
ϕ (a1,b1)

]
(2)

is valid for some (x′1,y
′
1) ,(x

′
2,y

′
2) ∈ B(Ω′

1,Ω
′
2) then there would have to be elements (x1,y1) ,(x2,y2) ∈ B(Ω1,Ω2)

such that ϕ (x1,y1) = (x′1,y
′
1) and ϕ (x2,y2) = (x′2,y

′
2) and therefore

[ϕ (a1,b1)ϕ (x1,y1)ϕ (a1,b1)] = [ϕ (a1,b1)ϕ (x2,y2)ϕ (a1,b1)] .

From this we have

ϕ [(a1,b1)(x1,y1)(a1,b1)] = ϕ [(a1,b1)(x2,y2)(a1,b1)]
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and since ϕ is an isomorphism of B(Ω1,Ω2) onto B(Ω′
1,Ω

′
2) we have

[(a1,b1)(x1,y1)(a1,b1)] = [(a1,b1)(x2,y2)(a1,b1)] .

Then it follows from Lemma 3 that

[(a2,b2)(x1,y1)(a2,b2)] = [(a2,b2)(x2,y2)(a2,b2)]

or

[ϕ (a2,b2)ϕ (x1,y1)ϕ (a2,b2)] = [ϕ (a2,b2)ϕ (x2,y2)ϕ (a2,b2)]

or [
ϕ (a2,b2)

(
x′1,y

′
1

)
ϕ (a2,b2)

]
=
[
ϕ (a2,b2)

(
x′2,y

′
2

)
ϕ (a2,b2)

]
.

Since the last equality is valid for every (x′1,y
′
1) ,(x

′
2,y

′
2) ∈ B(Ω′

1,Ω
′
2) satisfying (2), we have by Lemma 3 that

ϕ (a2,b2)(Ω′
1,Ω

′
2)⊂ ϕ (a1,b1)(Ω′

1,Ω
′
2).

Lemma 6 Let (a1,b1) ,(a2,b2) ∈ B(Ω1,Ω2). If

(a1,b1)(Ω1,Ω2)∩ (a2,b2)(Ω1,Ω2) �=∅

then ϕ (a1,b1)(Ω′
1,Ω

′
2)∩ϕ (a2,b2)(Ω′

1,Ω
′
2) �=∅.

Lemma 7 Let (a1,b1) ,(a2,b2) be arbitrary elements of B(Ω1,Ω2) and (u,v) be some fixed element of B(Ω1,Ω2).
The equation

[(a1,b1)(u,v)(x,y)] = (a2,b2)

has a solution (x,y) ∈ B(Ω1,Ω2) if and only if there exist n−sized elements E1 ⊂ Intb1uΩ1 and E2 ⊂ Inta1vΩ2 such
that

(a2,b2)(Ω1,Ω2)⊂ (IntE1, IntE2) .

Let (α,β ) ∈ IntΩ1 × IntΩ2. We say that an infinite sequence {(ai,bi)}∞
i=1 of elements (ai,bi) ∈ B(Ω1,Ω2) has a

limit (α,β ) if the following conditions are satisfied:
a) (∩∞

i=1biΩ2,∩∞
i=2aiΩ1) = (α,β ) ,

b) for every i there exists an element (xi+1,yi+1) such that

[(ai+1,bi+1)(ai,bi)(xi+1,yi+1)] = (ai+2,bi+2) .

A sequence {(ai,bi)}∞
i=1 of elements (ai,bi) ∈ B(IntΩ1, IntΩ2)converging to the point (α,β ) ∈ IntΩ1× IntΩ2 can be

constructed, for example, as follows. Suppose that E1 ⊂ IntΩ1 is a closed n−ball centered at α and T1 ⊂ IntΩ2 is a
closed n−ball centered at β . By Lemma 4 there exists (a1,b1) ∈ B(Ω1,Ω2) such that α ∈ b1Ω2 ⊂ IntE1,β ∈ a1Ω1 ⊂
IntT1. Suppose now that E2 is a closed n−ball in b1Ω2 and centered at α and T2 is a closed n−ball in a1Ω1 and
centered at β . According to Lemma 4 there exists an element (a2,b2) ∈ B(Ω1,Ω2) such that α ∈ b2Ω2 ⊂ IntE2,β ∈
a2Ω1 ⊂ IntT2. Let α1 = (b2a1)

−1 (α) and β1 = (a2b1)
−1 (β ). Let A1 ⊂ IntΩ1 be a closed n−ball centered at α1 and

B1 ⊂ IntΩ2 be a closed n−ball centered at β1. Clearly, α ∈ b2a1A1 ∩E2,β ∈ a2b1B1 ∩T2. Let E3 ⊂ Int (b2a1A1 ∩E2)
be a closed n−ball centered at α , and let T3 ⊂ Int (a2b1B1 ∩T2) be a closed n−ball centered at β . According to
Lemma 4 there exists an element (a3,b3) ∈ B(Ω1,Ω2) such that α ∈ b3Ω2 and b3Ω2 ⊂ IntE3,β ∈ a3Ω1 and a3Ω1 ⊂
IntT3. By Lemma 7 x2 = (a2b1)

−1 a3,y2 = (b2a1)
−1 b3 is the solution of the equation [(a2,b2)(a1,b1)(x2,y2)] =

(a3,b3). Assume now that the first n terms of the sequence are already found. Denote αn−1 = (bnan−1)
−1 (α) and

βn−1 = (anbn−1)
−1 (β ). Suppose that An−1 ⊂ IntΩ1 is a closed n−ball centered at αn−1 and Bn−1 ⊂ IntΩ2 is a closed

n−ball centered at βn−1. Clearly, α ∈ bnan−1An−1 ∩En,β ∈ anbn−1Bn−1 ∩Tn. Let En+1 ⊂ Int (bnan−1An−1 ∩En) be
a closed n−ball centered at α , and let Tn+1 ⊂ Int (anbn−1Bn−1 ∩Tn) be a closed n−ball centered at β . According to
Lemma 4 there exists an element (an+1,bn+1)∈ B(Ω1,Ω2) such that α ∈ bn+1Ω2 and bn+1Ω2 ⊂ IntEn+1,β ∈ an+1Ω1

and an+1Ω1 ⊂ IntTn+1. By Lemma 7 xn = (anbn−1)
−1 an+1,yn = (bnan−1)

−1 bn+1 is the solution of the equation
[(an,bn)(an−1,bn−1)(xn,yn)] = (an+1,bn+1). This sequence satisfies condition (b) and satisfies condition (a) if the
sequences of radii of En and Tn converge to zero.
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Lemma 8 If the ternary semigroups B(Ω1,Ω2) and B(Ω′
1,Ω

′
2) are isomorphic, then there exist a bijective map f

from IntΩ1 × IntΩ2 onto IntΩ′
1 × IntΩ′

2 and bijective maps ξi from IntΩi onto IntΩ′
i (i = 1,2) such that f (α,β ) =

(ξ1α,ξ2β ) for every (α,β ) ∈ IntΩ1 × IntΩ2, .

Proof. Let (α,β ) be any point in IntΩ1 × IntΩ2 and let {(ai,bi)}∞
i=1 be a sequence of elements (ai,bi) ∈ B(Ω1,Ω2)

converging to the point (α,β ).Denote ϕ (ai,bi) by (a′i,b′i).The sequence {(a′i,b′i)}∞
i=1 converges to the point (α ′,β ′).

Define a map f : (Ω1,Ω2)→ (Ω′
1,Ω

′
2) by f (α,β ) = (α ′,β ′). The point (α ′,β ′) does not depend on the choice of the

sequence {(ai,bi)}∞
i=1 of elements (ai,bi) ∈ B(Ω1,Ω2) converging to the point (α,β ). The map f is one-to-one and

there are one-to-one maps ξi from Ωi onto Ω′
i for (i = 1,2) such that ∀(α,β ) ∈ IntΩ1× IntΩ2, f (α,β ) = (ξ1α,ξ2β ).

Lemma 9 For every (α,β ) ∈ IntΩ1 × IntΩ2 and for every (a,b) ∈ B(Ω1,Ω2) if (α,β ) ∈ Int (a,b)(Ω1,Ω2) then
f (α,β ) = (ξ1α,ξ2β )∈ Intϕ (a,b)(Ω′

1,Ω
′
2). The map f is a homeomorphism from IntΩ1× IntΩ2 onto IntΩ′

1× IntΩ′
2

and the maps ξi are homeomorphisms from IntΩi onto IntΩ′
i for i = 1,2.

Lemma 10 Let (x,y) be an arbitrary element of B(Ω1,Ω2) and (u,v) some fixed element of B(Ω1,Ω2). The following
equality holds for an arbitrary point (α,β ) ∈ IntΩ1 × IntΩ2

ϕ (x,y){ϕ (u,v) [(ξ1,ξ2)(α,β )]}= (ξ1,ξ2){(x,y) [(u,v)(α,β )]} .
Lemma 11 The following equality holds for every (a,b) ∈ B(Ω1,Ω2)

ϕ (a,b)
(
Ω′

1,Ω
′
2

)
= (ξ1,ξ2)(a,b)(Ω1,Ω2) ,

and so the spaces Ωi and Ω′
i are homeomorphic (i = 1,2).

Theorem 12 The ternary semigroup B(Ω1,Ω2) is the kernel of the ternary semigroup HT (Ω1,Ω2).

Proof. The theorem is proved if we can show that B(Ω1,Ω2) has no proper ideals. Let (a1,a2) ,(b1,b2) be any two
elements of B(Ω1,Ω2). Show that there are (x1,x2) ,(y1,y2)∈B(Ω1,Ω2) such that [(x1,x2)(a1,a2)(y1,y2)] = (b1,b2).
Let E be a closed n−ball containing the set Ω1 and let E1 be a closed n−ball contained in Inta2Ω2. Let b1Ω1 ⊂ IntE2,
where E2 is an n−sized element in IntΩ2. Further, let E3 and E4 be closed n−balls in IntΩ1 such that E3 ⊂ IntE4.
Denote by f a homeomorphism of an n−sized element E2 onto E3. Clearly, the set f b1 (Ω1) is a closed set contained
in IntE3. Then there is a closed n−ball E5 ⊂ IntE3 such that f b1 (Ω1) ⊂ IntE5. We denote the n−sized element

f−1 (E5) by E6. Denote by g a homeomorphism of an n−ball E onto E3 such that g(E1) = E5. Take x1 = a−1
2 g−1 f b1

and y1 = f−1g. It is clear that y1a2x1 = b1. We can analogously select x2 and y2 such that x2a1y2 = b2. Thus,
B(Ω1,Ω2) is the kernel of the ternary semigroup HT (Ω1,Ω2).

Theorem 13 Let Ω1 and Ω2 be bounded closed subsets of a finite-dimensional Euclidean space R and Ω′
1 and Ω′

2 be
bounded closed subsets of a finite-dimensional Euclidean space R′such that IntΩi �= /0, IntΩ′

i �= /0 for i = 1,2. The
ternary semigroups HT (Ω1,Ω2) and HT (Ω′

1,Ω
′
2) are isomorphic if and only if the spaces Ωi and Ω′

i are homeomor-
phic (i = 1,2).

Proof. Let Ω1 and Ω2 be bounded closed subsets of a finite-dimensional Euclidean space R and Ω′
1 and Ω′

2 be bounded
closed subsets of a finite-dimensional Euclidean space R′ . Suppose that ξ1 : Ω1 →Ω′

1 is a homeomorphism of Ω1 onto
Ω′

1 and ξ2 : Ω2 → Ω′
2 is a homeomorphism of Ω2 onto Ω′

2. Then the mapping ϕξ1,ξ2
: HT (Ω1,Ω2)→ HT (Ω′

1,Ω
′
2)

defined by

ϕξ1,ξ2
(a,b) =

(
ξ2aξ−1

1 ,ξ1bξ−1
2

)
is an isomorphism from HT (Ω1,Ω2) onto HT (Ω′

1,Ω
′
2). On the other hand, if the ternary semigroups HT (Ω1,Ω2)

and HT (Ω′
1,Ω

′
2) are isomorphic then it follows from Theorem 12 that the spaces Ωi and Ω′

i are homeomorphic
(i = 1,2).
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Abstract. In many engineering and science fields sensitivity analysis has become highly interesting. For the mathematical
modeling of biological phenomena, researchers use sensitivity and uncertainty analysis because of its usefulness for defining
important parameters for performance of the model. It can also help in the process of experimental analysis, reducing model order,
estimating parameters, taking decisions or developing recommendations for decision-makers. Here, we illustrated the use of the
local sensitivity analysis to explain the effect of various parameters on a threshold parameter, R0, resulting from the study of a
dynamics model inside the human-host. And it is confirmed from computed elasticity indices that the most sensitive parameter to
basic reproduction number is (vector contact rate) followed by rates of transmission. Moreover, a detailed parameter estimation of
the model parameters and model fitting presented with the use of field data cases from Northern Nigeria using least-square fitting
method. Finally, the sensitivity analysis results shows that improving the rate of environmental hygiene and facial cleanliness
will attract a consequential decrease in the size of basic reproduction number, which results in the declination of the disease
transmission.

INTRODUCTION

Trachoma was one of 17 preventable diseases (NTDs) that the World Health Organization (WHO) prioritized for
surveillance and elimination through protective therapies or improved prevention and treatment approaches [1]. NTDs
appear to have been primarily responsible for chronic infectious diseases causing immense comorbidities. Neverthe-
less, long-term impairment in contrast with acute communicable diseases [1, 2] found to be relatively low deaths.
Poverty-related lifestyles like substandard housing, insufficient sanitary conditions, inadequate access to clean water
encourage the transmission of contagious disease [3].

C. Trachomatis can indeed spread through 2 primary ways. The first one is direct interaction with an infectious
individual or garments interaction that had already encountered [4] infected eye discharges. Other paths involve spread
through an eye-seeking fly [musca sobens] by contacting the leakage from such an afflicted person’s face or nose [5].
The study provides alternative tools that can be used by planning officers to design a trachoma control program to
achieve global eradication of trachoma as a public heath challenge as targeted by the world health organization.

Background

Mathematical models are used to understand the dynamics of the preventable diseases (particularly, Trachoma). Such
approaches not just described the mathematical tool of contagious diseases but they often offer better information
about the possible control and spread of the disease [6].
For the novel SEIR-SEI Trachoma model, the current study proposed a comprehensive local sensitivity analysis that
considers both transmission to display the effect of different parameters in controlling epidemic so that the goal of
the World Health Organization can be made feasible to eradicate trachoma as a public health problem by 2030. Some
simulation results were obtained as a function of two different biological parameters with the aid of mesh plots for the
reproductive number. Our new research article complimented some of the previously mentioned literary studies.
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METHODOLOGY

TABLE 1. The state variables values (Month−1) used in the model (1).

Variables Interpretation

Sh(t) Population of susceptible humans
Eh(t) Population of exposed humans
Ihs(t) Class of infected individuals with early stages of trachoma
Ihc(t) Class of infected individuals with TT and CO stages of trachoma
Rh(t) Population of recovered humans
S f (t) Class of exposed flies
E f (t) Population of exposed flies
I f (t) Class of infected flies

TABLE 2. The state parameters values (Month−1) used in the model (1).

Parameters Interpretation Value Source

Πh Human recruitment rate 25 [7, 8]
μh Natural death rate of human 0.0014 [7, 8]
μ f Natural death rate of eye-seeking fly(musca sorvens) 1.354 [9, 10]

Π f Flies recruitment rate 1.5×106 Assumed
βh Rate of transmission from vector to host 0.08353 [7]
β f Rate of transmission from host to vector 0.07258 Assumed
δ1 Progression rate from Eh to Ihs 4.72 [9, 10]
δ2 Progression rate from Ihs to Ihc 0.0299 [7, 10]
τ Progression rate from E f to I f 2.21 [9, 10]
ϕ Rate at which human looses immunity 0.5 [11, 12]
σ f Vector Rate of biting 0.29 Assumed
ψ1 Human recovery rate from exposed class 0.3 [11, 13, 14]
ψ2 Human recovery rate from Ihs 0.1 [11, 13, 14]
ψ3 Human recovery rate from Ihc 0.1428 [11, 13, 14]

LOCAL SENSITIVITY ANALYSIS

In this section, the local sensitivity analysis approach is employed to demonstrate the sensitivity of the R0 in relation to
individual parameters of the model. The basic reproduction number has been derived and characterized as the model’s
parameter-dependent output and the indicator of severity for the disease.

In this way, it was crucially involved and inspired to examine the monotonicity between the model parameters and
the basic reproduction number. Earlier, the model’s basic properties were demonstrated, detailing the positivity, and
well-posedness of solutions. Our primary concern now is only to comprehend the sensitivity of the basic number of
the reproduction in relation to the model’s parameters. Here the basic reproduction number is

R0 =

√
P2P1P3P4Πhτ Π f β f βhδ1μh (P3 +δ2)σ f

P2P1P3P4Πhμ f
.

Meanwhile, we have the calculation of standardized local sensitivity index values of RT
0 proportional to the param-

eters in the trachoma model, where the parameters input relative to RT
0

ρ =
{

Πh,μh,ψ3,δ2,ψ2,δ1,ψ1,τ,Π f β f ,βh,σ f ,μ f
}
.

Then, we display a normalized forward sensitivity index of RT
0 due to variance of the parameters.
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By ΓωRT
0 , we denote the normalized local sensitivity index of the RT

0 performance with respect to a (ω) parameter,
where ω ∈ ρ is defined as

ΓRT
0

ω =
∂ ln(RT

0 )

∂ ln(ω)
.

[15, 16, 17, 18]. Using the above definition we computed the following indices for the output RT
0 with respect to

every parameter presented in Table 2.

ΓRT
0

σ f =
∂ ln(RT

0 )

∂ ln(σ f )
= 1,

ΓRT
0

βh
=

∂ ln(RT
0 )

∂ ln(βh)
=

1

2
,

ΓRT
0

β f
=

∂ ln(RT
0 )

∂ ln(β f )
=

1

2
,

ΓRT
0

Πh
=

∂ ln(RT
0 )

∂ ln(Πh)
=−1

2
,

ΓRT
0

Π f
=

∂ ln(RT
0 )

∂ ln(Π f )
=

1

2
,

ΓRT
0

τ =
∂ ln(RT

0 )

∂ ln(τ)
=

1

2

μh

μh + τ
,

ΓRT
0

δ1
=

∂ ln(RT
0 )

∂ ln(δ1)
=

1

2

μh +ψ1

δ1 +μh +ψ1
,

ΓRT
0

δ2
=

∂ ln(RT
0 )

∂ ln(δ2)
=

1

2

(ψ2 −ψ3)δ2

(δ2 +μh +ψ2)(μh +ψ3 +δ2+)
,

ΓRT
0

ψ1
=

∂ ln(RT
0 )

∂ ln(ψ1)
=−1

2

ψ1

(δ1 +μh +ψ1)
,

ΓRT
0

ψ2
=

∂ ln(RT
0 )

∂ ln(ψ2)
=−1

2

ψ2

(δ2 +μh +ψ2)
,

ΓRT
0

ψ3
=

∂ ln(RT
0 )

∂ ln(ψ3)
=−1

2

(δ2ψ3)

(μh +ψ3)(μh +ψ3 +δ2)
,

ΓRT
0

μ f =
∂ ln(RT

0 )

∂ ln(μ f )
=−1.

Based on the elasticity analysis above, one can quickly perceive whenever there is an increase in σ f by 5%and all

other parameters remained fixed, it will attract an increase of 5%to RT
0 demonstrated a good relation between RT

0 )
and the model’s parameters. In a similar manner, it clearly shows that adjusting the transmission rates, β f , βh, and
recruitment rates of fly Π f by 10% each, and maintaining other parameters unchanged, will generate an increase of 5%
in R0, that will also boost the incidence rate of trachoma in the populace. Likewise, increasing the parameter values
τ and δ1 by 1.0% (one point) in the simple reproduction amount RT

0 would correspondingly gain less than 1 point
increment. Meanwhile, raising the parameter values μ f and Πh by 10% each will attract corresponding decreases of

10%and 5% respectively in RT
0 . Similarly, whenever we introduce increments of δ1, ψ1, ψ2, ψ3and μh by 1.0 percent,

this will give us a consequential decrease of less than 1.0 percent in the basic reproduction number. Therefore, later
are the most sensitive parameters to be targeted to achieve the goal of Global Trachoma Elimination as a Public Health
Problem.
Using the produced coefficients of the normalized local sensitivity indices to illustrate the relative influences of each
of the parameters on RT

0 is now quite enough used.
From 1, the elasticity indices recorded in the chart can be interpreted on the basis of the values given earlier in

Table 1 and Table 2. It reveals that in changing the size of the basic reproduction number RT
0 the most sensitive
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and influential parameter is σ f (the contact rate of the eye-seeking flies or the musca sovens) whose index value is
+1.0000.

FIGURE 1. The local elasticity indices of Ro with respect to parameters of the model as presented in Table 1 and Table 2.

RESULTS AND DISCUSSION

R0 is the most important quantity for understanding the extent to which an epidemic spreads. It is revealed that
the effective use of the control scheme (SAFE) adopted by the WHO plays an important role in attaining desired
elimination of trachoma as a major public health problem. Various kinds of biological parameters of the proposed
Trachoma model have also been investigated. We obtained some numerical results using mesh plot and the parameter
values in Table 2. The result as shown shows the significant increase in some model parameters with the variation.

CONCLUSION

We have considered a compartmental model of (Kermack-Mckenderick) type for the dynamics of chlamydia tra-
chomatis earlier developed by (Salisu M.M. and Evren Hincal, 2020), where they confirmed that the local asymptotic
stability of the disease-free equilibrium and the global asymptotic stability of the unique endemic equilibrium when-
ever the computed basic reproduction number R0 is below unity and R0 greater than one respectively. We have esti-
mated the model parameters and fit the model with the use of field data cases from Northern Nigeria using least-square
fitting method.

Moreover, we displayed the significance of the model parameters in changing the size of the basic reproduction
number RT

0 . It is confirmed from computed elasticity indices that the most sensitive parameter to basic reproduction
number is σ f (vector contact rate), followed by rates of transmission (βh and β f ), then the rest.

It shows that the effective use of the control scheme (SAFE) adopted by the WHO plays an important role in achiev-
ing targeted trachoma eradication by the WHO as a public health challenge over the next 10 years. We also obtained
some simulation results as a function of two different biological parameters using mesh plots for the reproductive
number R0.
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Abstract. In the present paper we consider the nonlocal boundary value perturbation problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2 ∂ 2u(t,x)
∂ t2 − (a(x)ux (t,x))x +δu(t,x) = f (t,x),

0 < t < T,x ∈ (0, l) ,
u(0,x) = αu(T,x)+ϕ (x) ,x ∈ [0, l] ,
u
′
(0,x) = βu

′
(T,x)+ψ (x) ,x ∈ [0, l] ,

u(t,0) = u(t, l),ux(t,0) = ux(t, l),0 ≤ t ≤ T

for hyperbolic equation with an arbitrary ε ∈ (0,∞) parameter multiplying the derivative term. An asymptotic formula for the
solution of this problem with a small ε parameter is presented.

INTRODUCTION

Singular perturbation problems are important in many fields such as quantum mechanics, fluid dynamics, solid me-
chanics, reaction–diffusion processes, aerodynamics etc. Asymptotic solutions are useful in various problems (see,
e.g., [1, 2, 3, 4, 5]). In modeling some physical phenomena and problems in engineering, classical boundary con-
ditions cannot describe the phenomenon precisely. Therefore, mathematical models of various physical, chemical,
biological, or environmental processes often involve non-classical conditions, which are usually identified as nonlocal
boundary conditions. This type of conditions project the cases when data on the domain boundary cannot be measured
directly or when data on the boundary depend on the data inside the domain.

In this work, the nonlocal boundary value perturbation problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε2 ∂ 2u(t,x)
∂ t2 − (a(x)ux (t,x))x +δu(t,x) = f (t,x),

0 < t < T,x ∈ (0, l) ,
u(0,x) = αu(T,x)+ϕ (x) ,x ∈ [0, l] ,
u
′
(0,x) = βu

′
(T,x)+ψ (x) ,x ∈ [0, l] ,

u(t,0) = u(t, l),ux(t,0) = ux(t, l),0 ≤ t ≤ T

(1)

for hyperbolic equation is considered. Here a(x) ,ϕ (x) ,ψ (x), and f (t,x) are given sufficiently smooth functions,
δ > 0 is the sufficiently large number, ε > 0 is the arbitrary positive number. We will assume a(x) ≥ a > 0 and
a(l) = a(0).

Stable difference schemes for nonlocal parabolic, hyperbolic, and elliptic problems, without parameter (ε = 1) ,
have been investigated by many authors (see, e.g., [6, 7, 8, 9, 10, 11, 12]).

ASYMPTOTIC FORMULA

In this section, we study the asymptotic formula for the solution of problem (1) under the assumption

|α +β |< |1+αβ |. (2)
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Theorem 1 Suppose that assumption (2) is satisfied and the function f (t,x) has 2m+3 derivatives with∥∥∥ f (2m+3)(t, ·)
∥∥∥

L2[0,l]
≤ M,0 ≤ t ≤ T.

Then for small ε and even number m the following (m+2)-nd order asymptotic formula

u(t,x) =
m

∑
i=0

ε i
[

ui (t,x)+ vi

( t
ε
,x
)
+ωi

(
T − t

ε
,x
)]

+o
(
εm+2

)
(3)

for the solution of problem (1) holds and for small ε and odd number m the following (m+1)-st order asymptotic
formula

u(t,x) =
m

∑
i=0

ε i
[

ui (t,x)+ vi

( t
ε
,x
)
+ωi

(
T − t

ε
,x
)]

+o
(
εm+1

)
(4)

for the solution of problem (1) holds, where the functions ui (t,x), vi
( t

ε ,x
)
, and ωi

(T−t
ε ,x

)
for i∈ {1,2, ...,m}, x∈ [0, l]

are defined by the following formulas

u0 (t,x) = A−1 f (t,x) ,u1 (t,x) = 0, (5)

ui (t,x) =−A−1u
′′
i−2 (t,x) , i = 2, ...,m, (6)

(vi)ξ ξ (ξ ,x)+Avi (ξ ,x) = 0, i = 0,1, ...,m, (7)

(ωi)μμ (μ,x)+Aωi (μ,x) = 0, i = 0,1, ...,m, (8)

vi (0,x)+ωi

(
T
ε
,x
)
−α

(
vi

(
T
ε
,x
)
+ωi (0,x)

)
=−ui(0,x)+αui(T,x),1 ≤ i ≤ m, (9)

v0 (0,x)+ω0

(
T
ε
,x
)
−α

(
v0

(
T
ε
,x
)
+ω0 (0,x)

)
= ϕ(x)−u0(0,x)+αu0(T,x), (10)

(vi)ξ (0,x)− (ωi)μ

(
T
ε
,x
)
−β

(
(vi)ξ (0,x)− (ωi)μ

(
T
ε
,x
))

= u
′
i−1(0,x)−βu

′
i−1(T,x),2 ≤ i ≤ m, (11)

(v0)ξ (0,x)− (ω0)μ

(
T
ε
,x
)
−β

(
(v0)ξ (0,x)− (ω0)μ

(
T
ε
,x
))

= 0, (12)

(v1)ξ (0,x)− (ω1)μ

(
T
ε
,x
)
−β

(
(v1)ξ (0,x)− (ω1)μ

(
T
ε
,x
))

= ψ(x)−u
′
0(0,x)+βu

′
0(T,x). (13)

Here, M is a positive constant.

The proof of Theorem 1 is based on the self-adjointness and positivity in L2 [0, l] of a differential operator A defined
by the formula

Au(x) =− d
dx

(
a(x)

du
dx

)
+δu(x)
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with domain D(A) =
{

u ∈W 2
2 [0, l] : u(0) = u(l) ,u′ (0) = u′ (l)

}
, and on estimates

‖c(t)‖L2[0,l]→L2[0,l] ≤ 1, ‖A
1
2 s(t)‖L2[0,l]→L2[0,l] ≤ 1, t ≥ 0.

Here {c(t) , t ≥ 0} is a strongly continuous cosine operator-function (see, [13], [14]) defined by the formula

c(t) =
eitA1/2

+ e−itA1/2

2
,

and {s(t) , t ≥ 0} is a strongly continuous sine operator-function defined by the formula

s(t)u =

t∫
0

c(s)uds.

Then, it follows the formula

s(t) = A−1/2 eitA1/2 − e−itA1/2

2i
.

CONCLUSION

In this work, an asymptotic formula for the solution of nonlocal boundary value perturbation problem for hyperbolic
equation is presented.
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Abstract. In the present paper, we establish the well-posedness of an identification problem for determining the unknown space-
dependent source term in the hyperbolic-parabolic equation with nonlocal conditions. The difference scheme is constructed for
the approximate solution of this source identification problem. The stability estimates for the solution of the difference scheme are
presented.

INTRODUCTION

The problems for determining the unknown parameters in the partial differential equations have been studied exten-
sively by many authors (see, e.g., [1, 2, 3, 4, 5, 6, 7] and the references given therein). Various source identification
problems for hyperbolic-parabolic equations and the corresponding difference schemes for their approximate solu-
tions have been recently investigated by the authors (see [8, 9, 10, 11]). However, source identification problems for
hyperbolic-parabolic equations with nonlocal conditions have not been investigated well so far.

The present paper is devoted to the identification problem for finding the unknown space-dependent source term in
the hyperbolic-parabolic differential and difference equations with nonlocal conditions. The stability of these source
identification hyperbolic-parabolic problems is established.

STABILITY OF DIFFERENTIAL EQUATION

We consider the following source identification problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(t,x)−
(
a(x)ux(t,x)

)
x +δu(t,x) = p(x)+ f (t,x), 0 < x < �, 0 < t < 1,

ut(t,x)−
(
a(x)ux(t,x)

)
x +δu(t,x) = p(x)+g(t,x), 0 < x < �, −1 < t < 0,

u(t,0) = u(t, �), ux(t,0) = ux(t, �), −1 ≤ t ≤ 1,

u(0+,x) = u(0−,x), ut(0
+,x) = ut(0

−,x), 0 ≤ x ≤ �,

u(−1,x) = ϕ(x),
1∫

0

u(s,x)ds = ψ(x), 0 ≤ x ≤ �

(1)

for one-dimensional hyperbolic-parabolic differential equation with nonlocal boundary conditions. Under compatibil-
ity conditions problem (1) has a unique smooth solution

(
u(t,x), p(x)

)
for the given smooth functions a(x) ≥ a > 0,

x ∈ (0, �), a(�) = a(0), ϕ(x), ψ(x), x ∈ [0, �], f (t,x), t ∈ [0,1], x ∈ [0, �], g(t,x), t ∈ [−1,0], x ∈ [0, �] and constant
δ ≥ 2.

Theorem 1 Suppose that ϕ,ψ ∈W 2
2 [0, �]. Let function f (t,x) be continuously differentiable in t on [0,1]× [0, �] and

function g(t,x) be continuously differentiable in t on [−1,0]× [0, �]. Then the solution of the identification problem
(1) satisfies the stability estimates

‖u‖C([−1,1],L2[0,�])
+
∥∥(Ax)−1 p

∥∥
L2[0,�]

≤ M1(δ )
[
‖ϕ‖L2[0,�]

+‖ψ‖L2[0,�]
+‖ f‖C([0,1],L2[0,�])

+‖g‖C([−1,0],L2[0,�])

]
, (2)
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‖u‖C(2)([0,1],L2[0,�])
+‖u‖C(1)([−1,0],L2[0,�])

+‖u‖C([−1,1],W 2
2 [0,�])

+‖p‖L2[0,�]

≤ M2(δ )
[
‖ϕ‖W 2

2 [0,�]
+‖ψ‖W 2

2 [0,�]
+‖ f‖C(1)([0,1],L2[0,�])

+‖g‖C(1)([−1,0],L2[0,�])

]
,

(3)

where M1(δ ) and M2(δ ) do not depend on ϕ(x), ψ(x), f (t,x) and g(t,x).

Here, the Sobolev space W 2
2 [0, �] is defined as the set of all functions u(x) defined on [0, �] such that u(x) and the

second order derivative function u′′(x) are both locally integrable in L2[0, �], equipped with the norm

‖u(x)‖W 2
2 [0,�]

=

⎛
⎝ �∫

0

|u(x)|2 dx

⎞
⎠

1
2

+

⎛
⎝ �∫

0

∣∣u′′(x)∣∣2 dx

⎞
⎠

1
2

.

Problem (1) can be written in the following abstract form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′′(t)+Au(t) = p+ f (t), 0 < t < 1,

u′(t)+Au(t) = p+g(t), −1 < t < 0,

u(0+) = u(0−), u′(0+) = u′(0−),

u(−1) = ϕ,
1∫

0

u(s)ds = ψ

in a Hilbert space L2[0, �] with self-adjoint positive definite operator A = Ax defined by the formula

Axu(x) =−(a(x)ux)x +δu (4)

with domain

D(Ax) = {u(x) | u(x),ux(x),(a(x)ux)x ∈ L2[0, �],u(�) = u(0),ux(�) = ux(0)} . (5)

Here, f (t) = f (t,x) and g(t) = g(t,x) are given abstract functions, u(t) = u(t,x) is unknown function and p = p(x)
is the unknown element of L2[0, �]. Therefore, the proof of Theorem 1 is based on the self-adjointness and positive
definiteness of the space operator Ax with the domain D(Ax)⊂W 2

2 [0, �] (see [12]).

STABILITY OF DIFFERENCE SCHEME

We construct the first order of accuracy difference difference scheme in t for the approximate solution of source
identification problem (1). The discretization of source identification problem (1) is carried out in two steps.

In the fist step, the spatial discretization is carried out. We define the grid space

[0, �]h = {x = xn | xn = nh, 0 ≤ n ≤ M, Mh = �}.
Let us introduce the Hilbert space L2h = L2([0, �]h) of the grid functions φ h(x) = {φ n}M

0 defined on [0, �]h, equipped
with the norm

‖φ h‖L2h =

(
∑

x∈[0,�]h
|φ h(x)|2h

)1/2

.

To the differential operator Ax defined by the formula (4) with domain (5), we assign the difference operator Ax
h by the

formula

Ax
hφ h(x) = {−(a(x)φ n

x )x +δφ n}M−1
1 , (6)

acting in the space of grid functions φ h(x) = {φ n}M
0 and satisfying the following conditions

φ 0 = φ M, φ 1 −φ 0 = φ M −φ M−1.
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Here

φ n
x̄ =

φ n −φ n−1

h
, 1 ≤ n ≤ M, φ n

x =
φ n+1 −φ n

h
, 0 ≤ n ≤ M−1.

It is well-known that Ax
h, defined by (6), is a self-adjoint positive definite operator in L2h. With the help of Ax

h, the first
step of the discretization process results in the following identification problem⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

uh
tt(t,x)+Ax

huh(t,x) = ph(x)+ f h(t,x), x ∈ [0, �]h, 0 < t < 1,

uh
t (t,x)+Ax

huh(t,x) = ph(x)+gh(t,x), x ∈ [0, �]h, −1 < t < 0,

uh(0+,x) = uh(0−,x), uh
t (0

+,x) = uh
t (0

−,x), x ∈ [0, �]h,

uh(−1,x) = ϕh(x),
1∫

0

uh(s,x)ds = ψh(x), x ∈ [0, �]h.

(7)

In the second step, we replace the identification problem (7) with the following first order of accuracy difference
scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1(x)−2uh

k(x)+uh
k−1(x)

τ2
+Ax

huh
k+1(x) = ph(x)+ f h

k (x), f h
k (x) = f h(tk,x), x ∈ [0, �]h, 1 ≤ k ≤ N −1,

uh
k(x)−uh

k−1(x)
τ

+Ax
huh

k(x) = ph(x)+gh
k , gh

k(x) = g(tk,x), x ∈ [0, �]h, −N +1 ≤ k ≤ 0,

Nτ = 1, tk = kτ, −N ≤ k ≤ N, uh
1(x)−uh

0(x) = uh
0(x)−uh

−1(x), x ∈ [0, �]h,

uh
−N(x) = ϕh(x),

N

∑
k=1

uh
k(x)τ = ψh(x), x ∈ [0, �]h.

(8)

Theorem 2 Let τ and h be sufficiently small numbers. Then, for the solution
{{

uh
k(x)

}N
−N , ph(x)

}
of difference

scheme (8) the following stability estimates

max
−N≤k≤N

‖uk‖L2h
+
∥∥∥(Ax

h)
−1 ph

∥∥∥
L2h

≤ M1(δ )
[∥∥∥ϕh

∥∥∥
L2h

+
∥∥∥ψh

∥∥∥
L2h

+ max
−N+1≤k≤0

∥∥∥gh
k

∥∥∥
L2h

+ max
1≤k≤N−1

∥∥∥ f h
k

∥∥∥
L2h

]
,

max
1≤k≤N−1

∥∥∥∥∥uh
k+1 −2uh

k +uh
k−1

τ2

∥∥∥∥∥
L2h

+ max
−N+1≤k≤0

∥∥∥∥∥uh
k −uh

k−1

τ

∥∥∥∥∥
L2h

+ max
−N≤k≤N

∥∥∥uh
k

∥∥∥
W 2

2h

+
∥∥∥ph

∥∥∥
L2h

≤ M2(δ )

⎡
⎣∥∥∥ϕh

∥∥∥
W 2

2h

+
∥∥∥ψh

∥∥∥
W 2

2h

+
∥∥∥gh

0

∥∥∥
L2h

+ max
−N+1≤k≤−1

∥∥∥∥∥gh
k −gh

k−1

τ

∥∥∥∥∥
L2h

+
∥∥∥ f h

1

∥∥∥
L2h

+ max
2≤k≤N−1

∥∥∥∥∥ f h
k − f h

k−1

τ

∥∥∥∥∥
L2h

⎤
⎦

hold, where M1(δ ) and M2(δ ) do not depend on τ , h, f h
k , 1 ≤ k ≤ N −1, gh

k , −N +1 ≤ k ≤ 0, ϕh(x) and ψh(x).

Difference scheme (8) can be written in the following abstract form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1 −2uh

k +uh
k−1

τ2
+Ahuh

k+1 = ph + f h
k , 1 ≤ k ≤ N −1,

uh
k −uh

k−1

τ
+Ahuh

k = ph +gh
k , −N +1 ≤ k ≤ 0,

uh
1 −uh

0 = uh
0 −uh

−1, uh
−N = ϕh,

N

∑
k=1

uh
kτ = ψh

in a Hilbert space L2h with operator Ah =Ax
h defined by formula (6). Here, f h

k = f h
k (x) and gh

k = gh
k(x) are given abstract

functions, uh
k = uh

k(x) is unknown mesh function and ph = ph(x) is the unknown mesh element of L2h. Therefore, the
proof of Theorem 2 is based on the self-adjointness and positive definiteness of the space operator Ah in L2h (see [12]).

020016-3



REFERENCES

1. M. Choulli and M. Yamamoto, J. Inverse Ill-Posed Probl. 7, 241–254 (1999).

2. A. Ashyralyev and D. Agirseven, Nonlinear Anal. Model. Control 19, 335–349 (2014).

3. A. Ashyralyev and C. Ashyralyyev, Nonlinear Anal. Model. Control 19, 350–366 (2014).

4. A. Ashyralyev and A. S. Erdogan, Appl. Math. Comput. 226, 212–228 (2014).

5. C. Ashyralyyev, Filomat 28, 947–962 (2014).

6. G. Blasio and A. Lorenzi, J. Inverse Ill-Posed Probl. 15, 709–734 (2007).

7. S. Jator, American Journal of Computational Mathematics 5, 175–185 (2015).

8. A. Ashyralyev and M. A. Ashyralyyeva, Contemporary Analysis and Applied Mathematics 3, 88–103 (2015).

9. M. A. Ashyralyyeva and A. Ashyralyyev, AIP Conference Proceedings 1676, 020024 (2015).

10. M. A. Ashyralyyeva and M. Ashyraliyev, Bulletin of the Karaganda University-Mathematics 91, 69–74 (2018).

11. M. Ashyralyyeva and M. Ashyraliyev, AIP Conference Proceedings 1997, 020048 (2018).

12. A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations (Birkhauser Verlag, 2004).

020016-4



Comparative Analysis of the Weighted Finite Element Method
and FEM with Mesh Refinement

Viktor A. Rukavishnikova) and Elena I. Rukavishnikova

Computing Center, Far-Eastern Branch, Russian Academy of Sciences, Kim-Yu-Chen str. 65, Khabarovsk, 680000, Russian
Federation

a)Corresponding author: vark0102@mail.ru

Abstract. In this paper a comparative analysis of the absolute errors of the weighted finite element method and FEM with refined
meshes is performed for a model boundary value problem for the Lamé system in an L-shaped domain. For the weighted finite
element method an absolute error value is by one or two orders of magnitude less than for the approximate generalized solution
obtained by the FEM with graded meshes in the overwhelming majority of nodes.

INTRODUCTION

In [1, 2, 3, 4, 5, 6, 7] the definition of an Rν -generalized solution was introduced and its differential properties were
studied for boundary value problems with a singularity caused by degeneration of the initial data or the presence of
reentrant corners at the boundary of the domain. Weighted and weighted vector finite element methods were developed
for finding an approximate Rν -generalized solution [8, 9, 10, 11, 12, 13]. These methods make it possible to find an
approximate solution without loss of accuracy regardless of the singularity of the boundary value problem.

The finite element method with mesh refinement to a singularity point for finding an approximate generalized
solution of a boundary value problem with a corner singularity with a convergence rate of O(h) is treated in [14, 15,
16]. We performed a comparative numerical analysis of the weighted finite element method and FEM with mesh
refinement for finding an approximate solutions of model problems of elasticity theory in the L-shaped domain. A
weighted FEM allows one to find a solution with theoretical accuracy on meshes of high dimension. The finite element
method with mesh refinement fails at mesh high dimensions and the same calculation conditions [17]. In this paper
we carry out a comparative analysis of the absolute errors of these methods for a model boundary value problem for
the Lamé system in an L-shaped domain.

PROBLEM STATEMENT. MODEL PROBLEM

Let Ω = (−1,1)× (−1,1)\[0,1]× [−1,0]⊂ R2 be a domain with boundary ∂Ω and Ω̄ = Ω
⋃

∂Ω. The boundary ∂Ω
contains reentrant corner 3π

2 .

We consider a boundary value problem for the Lamé system with respect to the vector function u = (u1,u2):

−(2div(με(u))+∇(λ divu)) = f, x ∈ Ω, (1)

ui = qi, i = 1,2, x ∈ ∂Ω. (2)

Here coefficients λ and μ are constants, ε(u) is a strain tensor with components εi j(u) = 1
2

(
∂ui
∂x j

+
∂u j
∂xi

)
.

Model problem A. We performed numerical experiments for model problem (1), (2) with coefficients μ = 5, λ = 3
and an exact solution:

u1 = cosx1cos2x2(x2
1 + x2

2)
0.3051

,

u2 = cos2x1 cosx2(x2
1 + x2

2)
0.3051

.

Singularity order of the u1, u2 corresponds to size of the reentrant corner 3π/2 on the domain boundary (see [18]).
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THE WEIGHTED FINITE-ELEMENT METHOD

We define a weight function ρ(x) that equals the distance to the origin in Ω′ = {x ∈ Ω : (x2
1 + x2

2)
1/2 ≤ δ < 1} and

equals δ for x ∈ Ω̄\Ω̄′.
A function uν is called an Rν -generalized solution of problem (1), (2) if it satisfies boundary condition (2) almost

everywhere on ∂Ω and for any v from
◦

W 1
2,ν(Ω,δ ) the integral identity

a(uν ,v) = l(v)

holds for any fixed ν satisfying the inequality ν ≥ 0.
Here a(u,v) = (a1(u,v),a2(u,v)), l(v) = (l1(v), l2(v)) and

a1(u,v) =
∫
Ω

[
(λ +2μ)

∂u1

∂x1

∂ (ρ2ν v1)

∂x1
+μ

∂u1

∂x2

∂ (ρ2ν v1)

∂x2
+λ

∂u2

∂x2

∂ (ρ2ν v1)

∂x1
+μ

∂u2

∂x1

∂ (ρ2ν v1)

∂x2

]
dx,

a2(u,v) =
∫
Ω

[
λ

∂u1

∂x1

∂ (ρ2ν v2)

∂x2
+μ

∂u1

∂x2

∂ (ρ2ν v2)

∂x1
+(λ +2μ)

∂u2

∂x2

∂ (ρ2ν v2)

∂x2
+μ

∂u2

∂x1

∂ (ρ2ν v2)

∂x1

]
dx,

l1(v) =
∫
Ω

ρ2ν f1v1dx, l2(v) =
∫
Ω

ρ2ν f2v2dx.

The function uν is determined from the set W1
2,ν(Ω,δ ). The definition of spaces, sets, the proof of the existence

and uniqueness theorem of an Rν -generalized solution are given in [7].
Comment.
The weight function coincides with the distance to the singular point in her neighborhood. The role of this function

is in suppressing of the solution singularity caused by the problem features. Such approach allowed one to decrease
the influence of singularity to the accuracy of calculation of approximate solution and to archive the convergence rate
O(h) in the weighted norm without mesh refinement towards singularity point.

We construct a weighted finite element method for finding an approximate an Rν -generalized solution of problem
(1), (2). For this purpose, we construct quasi-uniform triangulation of the domain Ω and introduce special weighted
basis functions.

The domain Ω is divided into squares by lines parallel to coordinate axis’s, with distance equal 1/N between them,
where N is the number of partitions of segment [0,1]. Each square is subdivided into two triangles by the diagonal. In

this case size of the mesh-step h =
√

2/N.

Let P={Pk}k=n
k=1 is the set of triangulation internal nodes, and P1 = {Pk}k=N1

k=n+1 is the set of nodes belonging to the
∂Ω. Each node Pk ∈ P is associated with a function ψk of the form

ψk(x) = ρν∗
(x)ϕk(x), k = 1, . . . ,n,

where ϕk(x) is linear on each finite element and ϕk(Pj) = δk j, k, j = 1, . . . ,n, δk j is the Kronecker delta, and ν∗ is a
real number.

We introduce the vector set Vh = [V h]
2
, where V h is the linear span of the system of basis functions {ψk}k=n

k=1. Also

let
◦
V h =

{
v ∈ Vh,vi(Pk)|Pk∈∂Ω = 0, i = 1,2

}
.

A function uh
ν in the set V h satisfying boundary condition (2) in the nodes of the boundary ∂Ω and the equality

a(uh
ν ,v

h) = l(vh) ∀vh(x) ∈ ◦
V h

is called the approximate Rν -generalized solution of problem (1), (2) by the weighted finite element method. Here
uh

ν = (uh
ν ,1,u

h
ν ,2) and

uh
ν ,1 =

n

∑
k=1

d2k−1ψk, uh
ν ,2 =

n

∑
k=1

d2kψk, d j = ρ−ν∗
(P[ j+1

2

])c j, j = 1, . . . ,2n.

In [19], it was shown that convergence rate of the approximate Rν -generalized solution to the exact one is equal to
O(h) for weighted finite element method.
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NUMERICAL EXPERIMENTS AND COMPARATIVE ANALYSIS

In this section we present results of absolute errors analysis of finding Rν -generalized solution by the weighted finite
element method and generalized solution by the FEM with graded meshes for model problem A.

Weighted finite element method. For calculations the approximate Rν -generalized solution we used the weighted
finite element method with optimal values of the parameters ν , ν∗, δ . We call as optimal values such intervals of the
parameters ν , ν∗, δ for which changing speed of the approximate solution relative error calculated in the weighted
norm in not less than theoretical convergence rate O(h) when the mesh in refined. We created the code for numerical
analysis of model problem (1), (2) and finding the optimal parameters [20].

FEM with graded meshes. We used for find the generalized solution the finite element method with graded meshes
of two kinds (for detailed information about graded meshes, see [15, 21, 22]).

Mesh I. This mesh was built by the following scheme

1. For a given N regular mesh was constructed (see previous section).

2. For each node we determined the level l = max
i=1,2

(|N − [(xi +1)N]|). Here xi (i = 1,2) are node coordinates on

the regular mesh, [·] means integer part of the number.

3. We calculated new coordinates of nodes of the graded mesh by formula ([(xi+1)N]−N)l−1(l/N)1/κ (i = 1,2).

Mesh II. The process of constructing this mesh differs from mesh 1 in the way that level l is determined. Here

l =
2

∑
i=1

|N − [(xi +1)N]|. For this mesh new coordinates are determined only for nodes with l ≤ N.

The approximate solution by the finite element method on graded meshes converges to the exact one with the rate
of the first order on the mesh step when the value of the parameter κ is less than the order of singularity [15, 21].

In [17] we established that FEM with graded meshes failed on meshes of high dimension N and weighted finite
element method stably found approximate solution with theoretical accuracy for large values of N under the same
computational conditions. We explain the reason of this failure of FEM with graded meshes by smallness of refined
mesh steps in the neighborhood of the singular point.

Calculations were performed for weighted finite element method at N = 4096, and for FEM with graded meshes at
N = 1024 and κ = 0.5. For each mesh node we calculated the absolute errors |eν ,1|= |u1 −uh

ν ,1|, |eν ,2|= |u2 −uh
ν ,2|

and |e1,II | = |u1 − uh
1,II |, |e2,II | = |u2 − uh

2,II | of approximation the Rν -generalized solution uh
ν = (uh

ν ,1,u
h
ν ,2) and of

the approximation the generalized solution on mesh II. Table 1 contain number of nodes and its percentages where
absolute errors |e1,II |, |e2,II |, |eν ,1|, |eν ,2| are not less than given limit values e. We present distribution of the absolute
errors |e1,II |, |e2,II | and |eν ,1|, |eν ,2| on Fig. 1.

TABLE 1. Number of nodes, percentage equivalence, where absolute errors |e1,II |, |e2,II |, |eν ,1|, |eν ,2| are not less than given limit
values.

limit values
|e1,II | |e2,II | |eν ,1| |eν ,2|

% number % number % number % number

e = 5e−6 0.001 6 0.001 6 0.033 4102 0.033 4102
e = 1e−6 35.524 278645 35.479 278292 0.764 96075 0.764 96075
e = 5e−7 13.631 106920 13.770 108011 2.457 308985 2.457 308985
e = 1e−7 33.363 261697 33.377 261808 21.704 2729186 21.704 2729186
e = 5e−8 7.020 55066 6.984 54782 12.589 1582976 12.589 1582974
e = 0 10.461 82051 10.389 81486 62.454 7853397 62.454 7853399

The numerical results have demonstrated that for the weighted finite element method, an absolute error value is by
one or two orders of magnitude less than for the approximate generalized solution obtained by the FEM with graded
meshes in the overwhelming majority of nodes.
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2N
|e1,II | |e2,II |

limit values 2N
|eν ,1| |eν ,2|

distribution distribution

1024

≥ 5e−6

4096

≥ 1e−6

≥ 5e−7

≥ 1e−7

≥ 5e−8

≥ 0

FIGURE 1. Distribution of the absolute errors |e1,II |, |e2,II | for the approximate generalized and |eν ,1|, |eν ,2| for the approximate
Rν -generalized solutions
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Abstract. In this note we characterize the optimal investment strategy for the choice between different types of power production
technologies: the coal-fired plants as the representative power generation source for traditional fuels and wind power for the
representative renewable source.

INTRODUCTION

This work is devoted to understand the choice between different types of energy production technologies. We focus
on coal power plants as a typical source of power generation for traditional fuels. This reflects the fact that natural
coal has become the most efficient source of energy production from fossil fuels. The considered renewable energy
source is wind. Wind power was the second fastest growing segment in this space (after SPV) and had the second
largest share in global electricity production from all renewable energy sources (after hydropower) in 2015. Thus,
we consider an operator with a license to build a power plant and who seeks to choose between the construction of
a coal power plant or a wind power plant. Since licenses are usually valid for extended periods of time, the timing
of the decision to build is flexible. In addition, each of these choices includes the subsequent timing of operations.
Therefore, the licensee has a real American-style option on a maximum of two asset values, which in themselves are
conditional American-style claims. Some of the fundamental issues that arise in this context are as follows. What
is the optimal time frame for making a decision on construction? Under what conditions is it best to invest in the
production of energy from renewable sources? Are existing incentive schemes sufficient to stimulate investment in
this sector? What is the sensitivity of investments in electricity production in relation to the relevant determinants, for
example, price uncertainty, interest rates, incentives and technological parameters.

PRODUCTION FROM TRADITIONAL FUELS: COAL-FIRED PLANT

The operation of a coal-fire plant generates a cash flow equal to the spread between the electricity price and the cost
of fuels, in this instance coal. The spread, which is called the spark spread, equals X = Y −κG, where Y,G are the
respective prices of electricity and coal, and κ is the heat rate, i.e., the amount of coal necessary to generate 1MWh
of electricity. To simplify the analysis, we model the spark spread directly, assuming that it follows an arithmetic
Brownian motion (ABM) with drift under risk-neutral measure (see [3])

dXt = μX dt +σX dBt , X0 = x, (1)

where B is a standard Brownian motion, and the parameters μX and σX > 0 represent the drift and volatility, respec-
tively. We can rewrite μX = r− δX where δX is an implicit dividend yield. The production model assumes that the
coal-fired plant can operate indefinitely (infinite horizon) and that it can be in two states: idle (0) and operating (1).
There are running cost rates k0 and k1 associated with each state, and there are also fixed switching costs c0 and c1, to
pass from state 0 to 1 and conversely. We also assume that the coal plant has capacity factor γg ∈ (0,1]. The value of
the plant in each state can therefore be described as follows:

V0(x) = sup
τ≥0

Ex

[
−
∫ τ

0
e−rsk0ds+ e−rτ(V1(Xτ)− c0)

]
, (2)
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V1(x) = sup
ζ≥0

Ex

[∫ ζ

0
e−rs(γgXs − k1)ds+ e−rζ (V0(Xζ )− c1)

]
(3)

for x ∈ IR. The value of the plant in the idle state, V0(x) consists in two parts. The first one is the present value of
the maintenance cost incurred until operation resumes. The second one is the value created by resuming operations
at the future time τ , i.e., the value of the option to resume. The plant maximizes value by choosing the best time τ
to resume operations. Likewise, the value V1(x) of the plant in the operating mode has two components: the value
of the net spark spread X − k1 collected while running the plant and the value of idling at the future time ζ , i.e., the
value of the option to idle. Value is maximized by choosing the best time ζ to idle. As the timing of the options to
operate and idle are endogenous, the two options are American-style. The two values depend on each other. The pair
(V0(x),V1(x)) solves the coupled optimal stopping time problem described above.

Solving the Coal-Fired Plant Problem

The operator of the plant has the possibility of switching back and forth between the two states of operation described
above. The optimal switching decisions are determined by two thresholds, b0 > b1. When the plant is idle, it becomes
optimal to turn the system on when Xt hits b0 from below. When it operates, it becomes optimal to cease production
when Xt reaches b1 from above.

Standard arguments show that the value of idling satisfies the following ODE

σ2
X

2
V ′′

0 (x)+μXV ′
0(x)− rV0(x)− k0 = 0 (4)

for x < b0. The general solution to this ODE is given by

V0(x) = A0eαx +B0eα̃x − k0

r
, (5)

where A0, B0 are constants, and α̃ < 0 < α are the roots of the quadratic equation

σ 2
X α2

2
V ′′

0 (x)+μX α − r = 0. (6)

As V0 is bounded, we have that B0 = 0 and thus,

V0(x) = A0eαx − k0

r
(7)

for x < b0. It is also clear that V0(x) =V1(x)− c0 for x ≥ b0 and both continuity and smooth pasting conditions hold
at b0.

Likewise, the value of operating satisfies

σ2
X

2
V ′′

1 (x)+μXV ′
1(x)− rV1(x)+ γgx− k1 = 0 (8)

for x > b1. The solution to this ODE is given by

V1(x) = B1eα̃x +
γgx+ γgμX/r− k1

r
(9)

as V1 is bounded and where B1 is some constant. We also have that V1(x) = V0(x)− c1 for x ≤ b1. Again, continuity
and smooth fit conditions are satisfied at b1.

Given the candidate value functions above and using the continuity and smooth pasting conditions at b0 and b1,
leads to the system of four algebraic equations with four unknown variables (b0,b1,A0,B1)

A0eαb0 − k0

r
= B1eα̃b0 +

γgb0 + γgμX/r− k1

r
− c0, (10)
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αA0eαb0 = α̃B1eα̃b0 +
γg

r
, (11)

A0eαb1 − k0

r
− c1 = B1eα̃b1 +

γgb1 + γgμX/r− k1

r
, (12)

αA0eαb1 = α̃B1eα̃b1 +
γg

r
. (13)

Clearly, this system has a unique solution and can be solved numerically. The standard verification arguments shows
that the solution to this system provides the value functions and optimal operation rules in (2)-(3).

The Value of a Coal-Fired Plant

The value of the coal-fired plant is an increasing convex function of the spark spread as follows

Vcont(x) = Ex

[∫ ∞

0
e−rs(γgXs − k1)ds

]
=

γgx+ γgμX/r− k1

r
(14)

for x > 0. It can be seen that the premium V1 −Vcont due to the operational flexibility and possibility of shutting down

is simply B1eα̃x for x > b1. It has substantial value when the spark spread X is low.

The value function V1 converges to an affine function as the spark spread goes to infinity. Value increases when the
volatility and drift of the spark spread increase, and decreases when the costs of operations and switching increase.

SOLVING WIND PLANT PROBLEM

The profit generated by a wind power plant depends on the price of electricity, the subsidy for generation from
renewable and the cost of operating the plant. We assume that the price of electricity follows a geometric Brownian
motion process under a risk-neutral measure

dYt = μYYtdt +σYYtdZt , Y0 = y, (15)

where Z is a standard Brownian motion positively correlated with B, and the parameters μY and σY > 0 represent the
expected return and the return volatility, respectively. We can also rewrite μY = r− δY , where δY > 0 is an implicit
yield for electricity. The subsidy for clean electricity generation is a premium on top of the market price, assumed to
be a constant s > 0. The running cost of operations is also constant kw > 0. This cost mainly consists of wages and
fixed costs.

The production model assumes that the wind plant can operate indefinitely and that it always operates at capacity
level γw ∈ (0,1]. Its value is the present value of profits

W (y) = Ey

[∫ ∞

0
e−rt(γwYt + γws− kw)dt

]
(16)

for y > 0. Straightforward computations give

W (y) =
γw

δY
y+

γws− kw

r
(17)

for y > 0.
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INVESTMENTS IN POWER PLANTS

An operator seeking to build a new power plant can choose to build two types of production units, either us-
ing traditional fuels (coal-fired) or renewables (wind) (see [1], [2]). The value of a coal-fired plant is Vg (x) =
max

{
V 0(x),V 1(x)

}
. The value of a wind plant is W (y). The option to choose between the two types of plants

has payoff

max
{

Vg(x)−Kg,W (y)−Kw
}
, (18)

where Kg > 0 and Kw > 0 represent the sunk costs for a coal-fired system and a wind plant, respectively.
The operator can also choose the timing τ of the investment. The value of the project to build a power plant, either

coal-fired or wind-based, is therefore given by

V (x,y) = sup
0≤τ≤∞

Ex,y
[
e−rτ max(Vg(Xτ)−Kg,W (Yτ)−Kw)

]
(19)

for x ∈ IR and y > 0. This is the value of an American option on the maximum of two assets with different strikes,
i.e., a dual strike max-option. Moreover, one of the underlying asset prices, namely the price of the coal-fired plant,
is itself the maximum between the two values associated with the different states of the system. A priori, the operator
could decide to build when the system is in either one of the two possible states.

Optimal Investment in Power Generation

1. Exercise region. We now characterize the optimal investment strategy for the operator. First, let us define the
investment (D) and continuation (C ) regions

D = {(x,y) ∈ IR× (0,∞) : V (x,y) = G(x,y)}, (20)

C = {(x,y) ∈ IR× (0,∞) : V (x,y)> G(x,y)} (21)

and split the investment region D into two parts

Dg = {(x,y) ∈ D : G(x,y) = G1(x)}, (22)

Dw = {(x,y) ∈ D : G(x,y) = G2(y)}. (23)

In the region Dg, it is optimal to invest in the coal-fired plant; in Dw the wind plant investment is optimal. As the
payoff G is a continuous function, the optimal investment timing rule is given by τ∗ = inf{t ≥ 0 : (Xt ,Yt) ∈ D}.

To gain further insights into the structure of the investment region, we exploit the local time-space formula (see
[4]), to obtain,

Ex,y
[
e−rτ max(V1(Xτ)−K1,W (Yτ)−Kw)

]
= G(x,y)+Ex,y

[∫ τ

0
e−rtH1(Xt)I(G(Xt ,Yt) = G1(Xt))dt

]
(24)

+Ex,y

[∫ τ

0
e−rtH2(Yt)I(G(Xt ,Yt) = G2(Yt))dt

]
+

γw

2δY
Ex,y

[∫ τ

0
e−rtd�t

]
for (x,y) ∈ IR× (0,∞) and any stopping time τ where � is the local time process that Y spends at the curve ŷ(x), and
H1 and H2 represent the local gains of waiting to invest into the coal-fired and wind technologies, respectively, which
are defined as,

H1(x) = ILX G1(x)− rG1(x) =−γgx+ k1 + rK1 (25)

H2(y) = ILY G2(y)− rG2(y) =−γwy− (γws− kw)+ rKw (26)

for (x,y) ∈ IR× (0,∞). As we maximize the left-hand side of (24) over all stopping times, it is clear that the investor
should not enter into the coal-fired technology when Xt < (k1 + rK1)/γg as H1(Xt)> 0 and into the wind plant when
Yt < (rKw − (γws− kw))/γw as H2(Yt) > 0. Therefore, bX (y) ≥ (k1 + rK1)/γg for y > 0 and bY (x) ≥ (rKw − (γws−
kw))/γw for x ∈ IR. Also, (24) shows that the operator should not invest at all along the curve ŷ, i.e., when Yt = ŷ(Xt),
as the local time term dominates the two other terms in dt. In other words, {(x,y)∈ IR×(0,∞) : x > b1,y = ŷ(x)} ∈C .
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Theorem 1 There exist two boundaries bX : (0,∞)→ IR and bY : IR → (0,∞) such that
(i) The sets C and D are given by

Dg = {(x,y) ∈ IR× (0,∞) : x ≥ bX (y)}, (27)

Dw = {(x,y) ∈ IR× (0,∞) : y ≥ bY (x)}, (28)

C = {(x,y) ∈ IR× (0,∞) : y < bY (x) & x < bX (y)}. (29)

(ii) Both boundaries bX and bY are convex (thus continuous) and increasing functions on (0,∞) and IR.
(iii) The limiting values are bX (0+) = bg

X and bY (−∞) = bw
Y , where bg

X and bw
Y are the optimal thresholds of standard

timing problems for coal-fired and wind plants, respectively,

sup
0≤τ≤∞

Ex
[
e−rτ(Vg(Xτ)−Kg)

]
, (30)

sup
0≤τ≤∞

Ey
[
e−rτ(W (Yτ)−Kw)

]
(31)

for x ∈ IR and y > 0.
(iv) The following inequalities hold: bX (y) > x̂(y) for y > ŷ(b1) and bX (y) > bg

X for y > 0; bY (x) > ŷ(x) for x > b1

and bY (x)> bw
Y for x ∈ IR.

Property (i) indicates that the operator should invest in the coal-fired technology when the spark spread x exceeds
the boundary bX (y) and in the wind plant when the price of electricity y exceeds the boundary bY (x). Each boundary
depends on an underlying state variable: the threshold for investment in the coal-fired (resp. wind) plant depends
on the price of electricity (resp. spark spread). Moreover, the investment events determined by the boundaries are
mutually exclusive: the boundaries do not cross and the sets Dg and Dw do not intersect. Convexity of the boundaries
in Property (ii) ensures that the exercise regions are convex as well. Thus, if investment in a given technology
is optimal at two point (x j,y j) , j = 1,2, it will also be optimal at any convex combination

(
xλ ,yλ ) = λ (x1,y1)+

(1−λ )(x2,y2) for λ ∈ [0,1]. Property (iii) establishes a relation between the boundaries bX (y),bY (x) and those when
the operator considers an investment in a specific technology. It shows that these boundaries differ, except in extreme
circumstances where the spark spread goes to −∞, in which case the project to invest becomes an option to build
a wind plant, or where the price of electricity approaches 0 and the project collapses to an option to invest in the
coal-fired technology. When both alternatives are considered, Property (iv) elaborates and shows that the thresholds
of these single asset options are in fact lower bounds for the investment boundaries in the two asset problem. The
selection option adds value to the operator’s project ensuring that it is optimal to delay investments relative to the
single technology case. Property (iv) also highlights a striking aspect, namely the fact that immediate investment in
any technology is always suboptimal along the curve ŷ(x) (or it inverse x̂(y)). This is true irrespective of the size of
the spark spread or the price of electricity. Hence, even when the options to invest in single technologies are deep in
the money, it may still be optimal to wait before investing when technological choices are factored in.

ACKNOWLEDGMENTS

This research is financially supported by a target program BR05236656 from the Ministry of Science and Education
of the Republic of Kazakhstan.

REFERENCES

1. I. Bakke, S. E. Fleten, L. I. Hagfors, V. Hagspiel, and B. Norheim, Journal of Commodity Market 3(1), 54–69 (2016).

2. T. K. Boomsma, N. Meade, and S. E. Fleten, European Journal of Operational Research 220(1), 225–237 (2012).

3. M. Brennan and E. S. Schwartz, Journal of Business 58(2), 135–157 (1985).

4. G. Peskir, Journal of Theoretical Probability 18(3), 499–535 (2005).

020018-5



An Algorithm to Compute the Probability of Ruin of an
Insurance Company

Alexey L. Lukashov )

1)Moscow Institute of Physics and Technology, Moscow, Russian Federation
2)Saratov State University, Saratov, Russian Federation
a)Corresponding author: alexey.lukashov@gmail.com

Abstract. In [1] two-sided bounds were derived for the probability of ruin of an insurance company, whose premium income is
represented by an arbitrary increasing real function, the claims are dependent, integer valued r.v.s. and their inter-occurrence times
are exponentially, non-identically distributed. Here we give an explicit algorithm to compute that probability.

IGNATOV-KAISHEV STUDIES

In [1] two-sided bounds were derived for the probability of ruin of an insurance company, whose premium income is
represented by an arbitrary increasing real function, the claims are dependent, integer valued random variables and
their inter-occurrence times are exponentially, non-identically distributed.

More precisely, the following model is considered. It includes the counting process Nt = #{i : τ1 + . . .+ τi ≤ t},
where # denotes the number of elements in the set, and tau1, . . . ,τi, . . . are independent, exponentially distributed
random variables with mean E(τi) = 1/λi,λi > 0.

The severities of the successive claims are the integer valued random variables W1,W2, . . . , independent of Nt . The
joint distribution of W1,W2, . . . is denoted by

P(W1 = w1, . . . ,Wi = wi) = Pw1,...,wi ,

where wi ≥ 1, i = 1,2, . . . .
Then the aggregate claims amount at time t will be

St =
Nt

∑
i=1

Wi

and the risk reserve process of an insurance company

Rt = h(t)−St ,

where h(t) is a function, representing the premium income. It is supposed to be a nonnegative, increasing, real
function, defined on R+ and such that limt→∞ h(t) = +∞. If h(t) is discontinuous then h−1(y) = inf{z : h(z)≥ y}. let
us denote vi = h−1(i), for i = 0,1, . . . and the instance of ruin by T, i.e., T = inf{t : t > 0,Rt ≤ 0}. The probability
of non-ruin is then P(T > x). By the formula for the total probability it can by expressed through the conditional
probabilities P(T < x|W1 =w1, . . . ,Wn =wn). Here n= [h(x)]+1, where [h(x)] is the integer part of h(x). Furthermore,
k = k(w1, . . . ,wn) is defined as an integer such that zk−1 ≤ x < zk, where zl = vw1+...+wl , l = 1,2, . . . .

Ignatov and Kaishev deduced in [1] a formula for P(T > x|W1 = w1, . . . ,Wn = wn) as a multiple integral. Further-
more, they obtained upper and lower bounds for this integral. In the case of compound Poisson aggregate claims these
bounds coincide, hence producing an explicit representation of the survival probability. In [2] that representation was
compared with other formulas.

Ignatov-Kaishev formula is as follows (see [1] (formula (18)) :

P(T > x|W1 = w1, . . . ,Wn = wn) = λ1λ2 . . .λk

∫ +∞

0
uke−u

×
(∫ +∞

z1/u
. . .

∫ +∞

zk−1/u

∫ +∞

x/u
I(0,1)(λ1y1 −λ2y1 +λ2y2

+ . . .−λkyk−1 +λkyk)× I(0,∞)(λ1y1)I(0,∞)(−λ2y1 +λ2y2) . . .

×I(0,∞)(−λkyk−1 +λkyk)dy1 . . .dyk
)

du. (1)

Here IX (y) is the indicator of the set X .
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AN ALGORITHM TO COMPUTE THE NON-RUIN PROBABILITIES USING (1)

First of all we use substitutions y j → uy j, j = 1, . . . ,k and change the order of integration to rewrite (1) as

P(T > x|W1 = w1, . . . ,Wn = wn) = λ1λ2 . . .λk

∫ +∞

z1

e−(λ1−λ2)y1

∫ +∞

z2

I(0,∞)(−y1 + y2)e−(λ2−λ3)y2 × . . .

×
∫ +∞

zk−1

I(0,∞)(−yk−2 + yk−1)e−(λk−1−λk)yk−1

∫ +∞

x
I(0,∞)(−yk−1 + yk)e−λkyk dyk . . .dy1. (2)

Put λk+1 = 0. Now we can transform the integrals in (2) by moving the indicators to lower limits of integrals. The
result is

P(T > x|W1 = w1, . . . ,Wn = wn) = λ1λ2 . . .λk

∫ +∞

z1

e−(λ1−λ2)y1

×
∫ +∞

max(y1,z2)
e−(λ2−λ3)y2 × . . .

∫ +∞

max(yk−2,zk−1)
e−(λk−1−λk)yk−1 (3)

×
∫ +∞

max(yk−1,x)
e−(λk−λk+1)yk dyk . . .dy1.

Now it is clear that all integrals can be computed explicitly, but the problem is in substitution of lower limits. The
algorithm below shows how to do it.

Firstly we consider the case of different λ ’s, i.e. λi �= λ j for i �= j, i, j = 1 . . . ,k+1.
Put zk = x,zk+1 =+∞. The non-ruin probability is computed by the formula

P(T > x|W1 = w1, . . . ,Wn = wn) = λ1λ2 . . .λk ∑
w

∏
s∈w

∑
l∈s

γl . (4)

Here the first summation is over all «words» w. Every «word» contains k letters z or y. The first (from the left) letter
of a «word» is always z. Every letter z has an index p ∈ {1, . . . ,k}, and the sequence of indexes is strictly increasing
from the left to the right. If the letter z with the index p is i-th from the left in the «word» w, then the inequality
p ≥ i+q has to be fulfilled, where q is the amount of letters y, standing in a row after zp. So every «word» w is made
up of «syllables» s ∈ w, where every «syllable» starts from a letter z and contains next letters y, standing in a row (if
there is any such letter). Every «syllable» contains one and only one letter z. The «syllable« which starts from zp in
i-th place and contains q ≥ 0 letters y’s, corresponds to the integral

πs =
∫ zp+1

zp

e−(λi−λi+1)y1

∫ zp+1

y1

e−(λi+1−λi+2)y2 . . .
∫ zp+1

yq

e−(λi+q−λi+1+q)yq+1dyq+1 . . .dy1. (5)

Every integral πs can be computed as a sum πs = ∑l∈s γl . Let us describe how to split πs. For a «syllable» with q
letters y’s the sum consists of 2q terms. Every term corresponds to a row of q zeros and units. Here 0 and 1 denote
which limit of integration is chosen in substitution. The main observation here is that a substitution of the upper limit
gives a constant which can be put ahead of all integrals as a multiplier. Consider a row of the form

0, . . . ,0,1s1
,0, . . . ,0,1sr ,0, . . . ,0,

where the index for a unit indicates its position in the row. Also put s0 = 0. The corresponding term γl is equal to

γl = (−1)r+1

(
e−λi−λi+s1

)zp+1 − e−(λi−λi+s1
)zp

)
e−(λi+s1

−λi+q+1)zp+1

∏r
j=0 ∏

s j+1−1
m=s j

(
λi+m −λi+s j+1

) . (6)

The algorithm was realized by the author’s graduate student I.V. Diveikin [3]. Also he modified and realized the
algorithm for the case of equal λ ’s (here every "syllable" is computed without splitting to terms).
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Abstract. The Non-Newtonian calculus is inspired by the homeomorphism from the real line to the open interval that we denote
it by α(x). This function modifies the preliminary algebraic operators and the new fractional differintegration formula will be
found. On the other hand, the Ψ-fractional calculus was introduced in the aid of generalized Leibniz formula for production of two
differentiable functions which has been driven to the similar fractional operators. In this literature the relationship between these
two operators are investigated and new interpretation of Ψ-fractional calculus is studied.

INTRODUCTION

The idea of the concerned calculus, which is called Non-Newtonian calculus inspired by an underlying idea of Michael
Grossman and Robert Katz to reconsider the preliminary algebraic operations through the homeomorphism from the
real line to I = (0,∞). [1] This function modifies the structure of preliminary algebraic operations as an addition
and multiplication. Indeed, if we assume that y = α(x) is the isomorphism in a real field, then we have simply the
Newtonian calculus. In fact, the non-Newtonian calculus can be considered as a generalization of Newtonian calculus
and generalization is what drives a lot of mathematics. This field of study has been developed in several aspects,
theoretical as defining topology based on this function [2] or classifying the functions and introducing the norms [3]
and practical approaches and modeling the real world phenomena. [4] One of the remarkable cases of y = α(x) is the
case that we substitute exponential function instead of y = α(x) and the result is called multiplicative calculus which
is extended to complex numbers. [5] In this calculus we deal with homeomorphism that we list them as follow

a⊕α b = α
(
α−1(a)+α−1(b)

)
,

a�α b = α
(
α−1(a)−α−1(b)

)
,

a⊗α b = α
(
α−1(a)×α−1(b)

)
,

a�α b = α
(
α−1(a)/α−1(b)

)
.

We may consider the addition operator as a function, let say f : R2 → R which f (a,b) = a+ b, then ⊕α : I2 → I
and ⊕α(a,b) = αo f

(
α−1(a),α−1(b

)
). This new interpretation of the arithmetics operator modifies the derivative

and integral formulae. We call them α-derivative and α-integral that their definitions and corresponding relations to
Newtonian calculus can be written as follow:

α(x)D( f )(x) = f α̂(x) = lim
y→x

[( f (y)�α f (x))�α (y�α x)] = α
(

α−1( f (x))′

α−1(x)′

)
, (1)

α(x)I( f )(x) =
∫ b

a
f (x)dα̂(x) = lim

n⊕
i=1

α [ f (ci)⊗α (xi+1 �α xi)] = α
(∫ b

a
α−1( f (x))α−1(x)′ dx

)
. (2)

Later on, we will show that this derivative is the natural extension of integral operators to the negative order and for
this reason, we refer to both of these operators as differintegration. A bit curious about the fractional interpretation of
these operators motivates any researcher to go further. This question in Newtonian calculus is as old as a letter which
has been written between L’Hopital and Leibniz in 1695 and assumed as a birthday of fractional calculus. This field of
mathematics which deals with the fractional derivative and integral has been developed and studied in both theoretical
and practical. The vast range of applications of fractional calculus in the different fields convinced more and more
researchers to work in this area. To extend these operators to the fractional case, we have different options. One
can start with a derivative and use the Leibniz formula for the derivative and extend the derivative to fractional form.
Fortunately, working with non-Newtonian calculi is easy and the formulas seem similar to their famous brotherhood.
For instance, assume two differentiable functions f (x) and g(x), then it is easy to see
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α(x)Dn ( f (x)⊗α h(x)) = α
((

1

α−1(x)′
d
dx

)n (
α−1o f (x).α−1oh(x)

))
n⊕

k=0

α α
(

n!

k!(n− k)!

)
⊗α Dk ( f (x))⊗α Dn−k (h(x)) (3)

= α

(
n

∑
k=0

(
n
k

)(
1

α−1(x)′
d
dx

)k

α−1o f (x)
(

1

α−1(x)′
d
dx

)n−k

α−1oh(x)

)
. (4)

Wonderfully the allocated non-Newtonian interpretation of Leibniz formula (3), is too close to the generalization of
Leibniz formula that was discussed in [6]. In that literature, the generalized formula of a fractional derivative operator
was derived from the general Leibniz formula. The idea of generalization was inspired by using Dg(z) =

d
dg(z) =

1
g′(z)

d
dz

instead of d
dz in the classic format of Leibniz formula. It was assumed that g(z) is a real valued function that is

analytic on g−1(R). If we roughly substitute g(x) by α−1(x) then it is easy to see Dα−1(x)oα Q =α(x) D, where

α Q( f )(x) = αo f (x). The generalized Leibniz formula was suggested as [6]

Dn
g(z) ( f (x).g(x)) =

n

∑
k=0

(
n
k

)(
Dk

g(z)

)
f (x)

(
D

n−k

g(z)

)
g(x) (5)

=
n

∑
k=0

(
n
k

)(
1

g(x)′
d
dx

)k

f (x)
(

1

g(x)′
d
dx

)n−k

g(x). (6)

Before any proceeding, we should take care of the g(z) :C→R which was assumed to be analytic. Here the restriction
of g−1(z) as an analytic function onto g−1(R) was considered which is not necessary to be homeomorphism that is
preserved the topological properties. In our assumption, α(x) is a homeomorphism that is differentiable and restricted
to the function from the real line to the segment I = (0,∞) . Traditionally, the study of special cases α(x) = expx
gets more attention than the others. This substitution leads to the calculus which is called bi-αgeometric or bi-
αmultiplicative calculus. There are more literatures based on this special case than the general non-Newtonian calculi
and their applications in different aspects were considered. [7−9] According to the usage of g(z) in the generalization
of Leibniz formula which is reached to the fractional operator that is called Ψ-fractional operator, the given function
assumed to be analytic. However, the important point of view in the non-Newtonian calculus was the topological
properties and naturally, the function is assumed to be homeomorphism and may suggest being extended to more
general function. For example, we might consider y = α(x) as an analytic complex function that is more general
and as far as we know, the complex case for α(x) was not considered before. Indeed, the non-Newtonian calculi and
its special case multiplicative calculus were developed in the complex plane as an argument of function but not as
complex index y = α(x). [5]the previous assumption on y = α(x) deprived us of some special cases of α(x) as p

√
x

that leads to an operator which is called Katugampola’s operator as an especial case [10].
Since 1970 that Osler has applied g(z) to generalize the fractional operator, this operator has been taken the attention

of many researchers and under the name of Ψ-fractional calculus, the properties of this operator were studied.[11−14]
The main purpose of the study Ψ-fractional calculus is the property of unification that many different operators can
be written in one form, such as let g−1(z) = expz then the general operator is changed to Hadamard type, whereas
the case g−1(z) = z gives the Riemann operator. However, the Ψ-fractional calculus unifies the range of fractional
operators, there is not any obvious reason for this unification. Whereas, the interpretation of fractional operators on
non-Newtonian calculus leads to that unification and makes the meaning for each case. For example, the case α(x) =
exp(x) constructs the biα-geometric calculus and Hadamard fractional operator is the related fractional operator of
this calculus. In 1892, Hadamard began the publication of a series of articles under the common title [15], that in the
third section of this article gave an underlying idea for creating different forms of fractional integral operators. In that
section, Hadamard investigated the relationships between coefficients of series with the unit radius of convergent and
singularity of function. This operator is compatible with biα-geometric as we will see in this article. The Ψ-fractional
calculus and non-Newtonian calculus were developed separately and this literature shows their connections, how the
non-Newtonian calculus gives meaning to each case of these operators. Now it is clear why Hadamard fractional
operators appear in the application of fractional operators in the study of phenomena that the proportions are more
considerable than the differences [16]. This can be seen as an important point, when we see the interpretation of
exp(x)D as resiliency where 1

ln(x)′
d
dx ln f (x) is the elasticity in economic.
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The rest of the paper is organized as follows: First, in the aid of Cauchy iterated integrals, the fractional inte-
gral operator on non-Newtonian calculus is introduced and compared with Ψ-fractional operators. In Section 3, the
continuation of these operators is proved and their properties and relations are studied. The Laplace transform on non-
Newtonian calculi is introduced in the last section and at the next step the related differential equations are solved.

PRELIMINARY ON FRACTIONAL CALCULUS

The usual starting point to defining a fractional operator could be chosen as Cauchy iterated integrals. In this proce-
dure, the iterated integral is applied to the given function as a solution of differential equations with the natural order.
The fractional operators can be considered by extending the natural order to a sufficient general case. The integral
operator of non-Newtonian calculus was introduced by (2) which is used in the following formula to construct iterated
integrals

α(x)
a In

x ( f )(x) =
∫ x

a

∫ x1

a
· · ·

∫ xn−1

a
f (xn)dα̂ xndα̂ xn−1 · · ·dα̂ x1 →

α(x)
a Iμ

x ( f )(x) = α
(

1

Γ(μ)

∫ x

a

(
α−1(x)−α−1(s)

)μ−1 α−1( f (s))α−1(s)′ ds
)
. (7)

The formula (7) , can be referred to as a definition of fractional integral operator of the order μ ∈ C(Re(μ)> 0)
on non-Newtonian calculus. Here, the iterated integrals on non-Newtonian calculus can be interpreted as the Rie-
mann iterated integrals with different scales of grids on Euclidean space. Similar try on Newtonian calculus gives the
Riemann-Liouville integral operator, however, the Hadamard integral operator can be derived by taking the iterated
integral on the modified form. This method of approach was explained among four different approaches in chapter
2 of [17] which at least guarantees the semigroup properties for these operators. This approach inspired many re-
searchers to generalize the fractional operators. The Riemann-Liouville, Hadamard, Katugampola, and Ψ-fractional
integral fractional integral operators can be generated by putting dx, dx

x , xpdx and Ψ(x)′ dx in the chain of integration
respectively. We put the definitions of these operators in the following definition.

Definition 1 Let [a,b] be a finite interval on the real line R , then the Riemann-Liouville, Hadamard, Ψ-fractional
integral of order μ ∈ C(Re(μ)> 0) are defined respectively by (x > a)

aIμ
x ( f )(x) =

1

Γ(μ)

∫ x

a
(x− s)μ−1 f (s)ds,

H
a Jμ

x ( f )(x) =
1

Γ(μ)

∫ x

a

(
ln

x
s

)μ−1
f (s)

ds
s
,

aIμ
x,Ψ(x)( f )(x) = .

1

Γ(μ)

∫ x

a
(Ψ(x)−Ψ(s))μ−1 f (s)Ψ(s)′ ds.

The Ψ-fractional operator somehow can be considered as a unification of the Riemann-Liouville and Hadamard
fractional integral operator where Ψ(x) = x and Ψ(x) = lnx respectively, but the nature of this unification is not clear
since we give the meaning for each of these operators by related non-Newtonian calculi. The discussion on the domain
and the range of the given function leads to different possibilities, one can assume the function with the domain in
Newtonian calculus whereas the range is defined as a subset of α(R) in non-Newtonian scales that we can present it
by α( f (x)). The other case occurs when the domain is collected from the non-Newtonian calculus whereas the range
is a real line such that f (α(x)) can demonstrate the case. This was discussed in 6.9 of [1] and we assign the following
operators to present these functions

α Q( f )(x) = αo f (x) = α( f (x)),
Qα ( f )(x) = f oα(x) = f (α(x)).

The immediate consequence of this definition is the following relations between these operators that can be listed as
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Q−1
α oα−1(a)I

μ
x oQα =a Iμ

x,α−1(x), (8)

α QoaIμ
x,α−1(x)oα Q−1 =

α(x)
a Iμ

x , (9)

α QoQ−1
α oα−1(a)I

μ
x oQα oα Q−1 =

α(x)
a Iμ

x . (10)

Here the convexity of α(x) can make a significant difference. Indeed, at the following lemma, this assumption and
restricting ourselves to the probability distribution function derive to the inequality that compares the specific value
of Ψ-fractional operator and non-Newtonian one. In the procedure of proof, we used the Jensen inequality in the
probability version that was given at Theorem 8.1.3 [18]

Lemma 1 Let α(x) : R→ I = (0,∞) be a differentiable homeomorphism that is convex over the real line. In addition,
let α−1o f (x) :R→ [0,1] be the probability distribution function i.e.

∫ +∞
−∞ α−1o f (x)dx = 1, then for any such functions

that the following integrals are defined we can compare Ψ-fractional and non-Newtonian fractional integral operator
by

α(x)
−∞ Iμ

∞ f (x)≤−∞ Iμ
∞,α−1(x) f (x).

Proof. We can start from the improper integral at the left side

α(x)
−∞ Iμ

∞ f (x) = lim
b→∞

α(x)
−b Iμ

b f (x)

= α

(
lim
b→∞

∫ b

−b

(
α−1(x)−α−1(s)

)
Γ(μ)

μ−1

α−1o f (s)α−1(s)′ ds

)

≤
∫ ∞

−∞

(
α−1(x)−α−1(s)

)
Γ(μ)

μ−1

f (s)α−1(s)′ ds.

Remark 2 We will prove continuation of these operators later, now let use that property and tend μ to one which
derives to

α
(∫ ∞

−∞
α−1o f (s)α−1(s)′ ds

)
≤

∫ ∞

−∞
f (s)α−1(s)′ ds.

Our discussion in this section was started by defining the fractional integral operator, furthermore to define the
fractional derivative operator we have two options. Since the fractional integral operator was defined, we can assume
the corresponding derivative as a combination of the natural order of derivative and fractional order integral. The
natural order of the derivative should be n− μ where n is the smallest integer which is greater than Re(μ) while the
fractional integral order is μ . The sequencing of actions leads to two different fractional derivative operators that are
both worth to be considered. If we take the derivative first then the integral, the result is called the Caputo derivative
with a more convenient initial value condition in comparison to the other case. Besides, the derivative of the constant
function is equal to zero similar to the normal derivative. The second option that we list them as follows, can be
written by taking the fractional integral first and then derivative and can be considered as a natural continuation of an
integral operator in the sense of the next proposition in the next section. Therefore the fractional derivative operator
for Riemann-Liouville, Hadamard, Ψ-fractional and non-Newtonian calculus respectively can be written as follow

aDμ
x ( f )(x) =

1

Γ(n−μ)

(
dn

dxn

)∫ x

a
(x− s)n−μ−1 f (s)ds,

H
a Dμ

x ( f )(x) =
1

Γ(n−μ)

(
x

d
dx

)n ∫ x

a

(
ln

x
s

)n−μ−1
f (s)

ds
s
,

aDμ
x,Ψ(x)( f )(x) = .

1

Γ(n−μ)

(
1

Ψ′(x)
d
dx

)n ∫ x

a
(Ψ(x)−Ψ(s))n−μ−1 f (s)Ψ(s)′ ds,

α(x)
a Dμ

x ( f )(x) = α
(

1

Γ(n−μ)

(
1

α−1(x)′
d
dx

)n ∫ x

a

(
α−1(x)−α−1(s)

)n−μ−1 α−1o f (s)α−1(s)′ ds
)
.
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It is remarkable that the introduced derivative of non-Newtonian calculus has a meaning and is compatible with the
structure of the corresponding calculus and the terms

(
α−1(x)−α−1(s)

)
. For instance, if we put α(x) = expx that

leads to the biα-geometric calculus, then the format of derivative is 1
α−1(x)′

d
dx = x d

dx = δ which is the Hadamard

derivative operator and it can be seen that δ k
(
lnn ( x

s

))
= lnn−k ( x

s

)
which is similar to the behavior of d

dx on (x−
s)n. Besides, the inherent properties of non-Newtonian calculus help to develop the concepts of Riemann-Liouville
operator to any kind of allocated operators immediately. In the next section, we will prove that the defined fractional
derivative is the continuation of an integral operator. However, swapping the sequence of action leads to the Caputo
derivative that was studied for Ψ-fractional operators in [11]. There are also some possibilities to define the derivative
operator by working on the order of integration and derivative that another type of derivative as a Hifler operator is
generated by that method. In this literature, we use the above definition for the fractional derivative operator.

PROPERTIES OF FRACTIONAL OPERATORS ON NON-NEWTONIAN CALCULUS

In this section, some principal properties of the introduced operators will be stated. In the first step, the continuation
of these operators is considered. Indeed, the allocated fractional derivative is the continuation of a fractional integral
operator in the sense of the following proposition. Here, the procedure of proof is very similar to the Riemann-
Liouville case which can be found in [19] and is omitted.

Proposition 1 The operators α(x)
a Iμ

x and α(x)
a Dμ

x are the continuations of each other respect to μ on the respective half
line (or half plane in complex case). If f (x) is continuous and α(x) is differentiable homeomorphism (or analytic
bijection in the complex case), so that α(x)

a Iμ
x f (x) and α(x)

a Dμ
x f (x) are defined, then they coincide each other at μ = 0.

In particular, following limits support this statement

lim
μ→0+

(
α(x)
a Iμ

x f (x)
)
= lim

μ→0+

(
α(x)
a Dμ

x f (x)
)
= f (x),

lim
μ→n−

(
α(x)
a Dμ

x f (x)
)
=α(x) Dn f (x).

The above proposition determines that the fractional integral and corresponding fractional derivative are the con-
tinuations of each other. Because this extension is unique, we refer to these operators as differintegration. Our
discussion about fractional integral operator was started by applying Cauchy iterated integral which guarantees that at
least the semi-group properties for natural orders are satisfied. However, the classic proof of semi-group properties for
Riemann-Liouville operators has some steps that the beta functions made their role there. [19] Besides, the semigroup
properties of introduced operators with the small modification in the proof can be reached and we put it as the next
proposition.

Proposition 2 The fractional differintegral operators of non_newtonian calculus have the following semi-group prop-
erties.

α(x)
a Iμ

x

(
α(x)
a Iν

x f (x)
)
=

α(x)
a Iμ+ν

x f (x) μ,ν > 0,

α(x)
a Dμ

x

(
α(x)
a Iν

x f (x)
)
=

α(x)
a Dμ−ν

x f (x) ν > 0.

Proof. We have different options for proof. One may use direct proof in the aid of beta function or we can use the
semi-group property of Ψ-fractional operator and (10) that leads to

α(x)
a Iμ

x

(
α(x)
a Iν

x f (x)
)
= α

(
aIμ

x,α−1(x)

(
aIν

x,α−1(x)α
−1o f (x)

))
= α

(
aIμ+ν

x,α−1(x)α
−1o f (x)

)
=

α(x)
a Iμ+ν

x f (x).

Although the second equation can be proved in a similar way. We should remark that since the derivative is a
continuation of integral respect to their order, we can assume that μ is negative in the second equation and still the
result is valid. In addition, we remind that these operators are not commutative and if we take the derivative first and
integral next, then the results are not the same.

We can take a look at the action of these operators on polynomials of non-Newtonian calculus. The results are
similar to the Ψ-fractional with different terminology and can be reached easily by modifying the proof and are
written as follow.
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Lemma 3 Let ν > 0 and μ is a complex number with Reμ > 0, then following equations hold true

α(x)
a Iμ

x

(
(t �α a)�α (ν−1)

)
(x) = α

(
Γ(ν)

Γ(ν +β )

)
⊗α (x�α a)�α (ν+μ−1) ,

α(x)
a Dμ

x

(
(t �α a)�α (ν−1)

)
(x) = α

(
Γ(ν)

Γ(ν +β )

)
⊗α (x�α a)�α (ν−μ−1) .

Notation. Here we use the exponential of an expression in non-Newtonian calculus and we denote it by �α at the
exponent. In fact, the natural extension of production in non-Newtonian calculus can be considered as follow

a�α b = a⊗α a⊗α ...⊗α a = α
((

α−1(a)
)b
)
.

In the aid of this notation, the first equation of previous lemma can be written in the notation of Newtonian calculus
as follow

α(x)
a Iμ

x

(
α
(
α−1 (t)−α−1 (a)

)(ν−1)
)
(x) = α

(
aIμ

x,α−1(x)

((
α−1 (t)−α−1 (a)

)(ν−1)
))

(x)

= α
(

Γ(ν)
Γ(ν +β )

(
α−1 (t)−α−1 (a)

)(ν+μ−1)
)
.
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3. A. F. Çakmak and F. Başar, Abstract and Applied Analysis 2014 (ID 236124), 1-10 (2014).
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Abstract. We study the well-posedness of the source identification problem for the two dimensional elliptic differential equation
with nonlocal boundary conditions. Applying operator approaches, the exact estimates for the solution of this problem in Hölder
norms are established.

INTRODUCTION

Theoretical aspects and methods of solutions of source identification problems for partial differential equations have
been extensively investigated by many researchers (see [3, 4, 8, 9, 10, 11, 14, 15, 17, 18, 19] and the bibliography
herein). Well-posedness of non classical boundary value problems for various differential and difference equations
were investigated in a number of publications (see [1-22] and references therein).

In this paper, we study the source identification problem for the two dimensional elliptic differential equation with
nonlocal boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

− ∂ 2u(y,x)
∂y2 −a(x) ∂ 2u(y,x)

∂x2 +δu(y,x) = f (y,x)+ p(x),
0 < y < T,0 < x < l,
u(0,x) = u(T,x),uy(0,x) = uy(T,x), u(λ ,x) = ξ (x),0 ≤ x ≤ l,
u(y,0) = u(y, l), ux(y,0) = ux(y, l), 0 ≤ y ≤ T,

(1)

where a(x), ξ (x) and f (y,x) are given sufficiently smooth functions and a(x) > 0, 0 < λ < T,δ > 0 is a sufficiently
large number. Assume that all compatibility conditions are satisfied.

The well-posedness of the source identification problem (1) for the two dimensional elliptic differential equation
with nonlocal boundary conditions. Applying operator approaches, the exact estimates for the solution of this problem
in Hölder norms are established.

THE MAIN THEOREM ON WELL-POSEDNESS OF PROBLEM (1)

We introduce the Banach spaces Cβ [0, l] (0 < β < 1) of all continuous functions ϕ(x) satisfying a Hölder condition
for which the following norms are finite

‖ ϕ ‖Cβ [0,l]=‖ ϕ ‖C[0,l] + sup
0≤x<x+τ≤l

|ϕ(x+ τ)−ϕ(x)|
τβ ,

where C[0, l] is the space of the all continuous functions ϕ(x) defined on [0, l] with the usual norm

‖ ϕ ‖C[0,l]= max
0≤x≤l

|ϕ(x)|.
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Theorem 1 For the solution of the source identification problem (1) the following stability and coercive stability
estimates hold:

‖u‖C(Cβ [0,l]) ≤ M(β )
[
‖ξ‖Cβ [0,l] +‖ f‖C(Cβ [0,l])

]
,

‖u‖C2+α,α
0T (Cβ [0,l]) +‖u‖Cα,α

0T (Cβ+2[0,l]) +‖p‖Cβ [0,l]

≤ M(β )
α(1−α) ‖ f‖Cα,α

0T (Cβ [0,l]) +M(β )‖ξ‖Cβ+2[0,l] ,

where M(β ) is independent of α, ξ (x) and f (t,x),0 < α < 1, 0 < β < 1.Here Cα,α
0T (E) (0 < α < 1) is the Banach

space obtained by completion of the set of E−valued smooth functions ϕ(t) defined on [0,T ] with values in E in the
norm

‖ϕ‖Cα,α
0T (E) = ‖ϕ‖C(E) + sup

0≤t<t+τ≤T
τ−α(T − t)α(t + τ)α ‖ϕ(t + τ)−ϕ(t)‖E ,

where C(E) stands for the Banach space of all continuous functions ϕ(t) defined on [0,T ] with values in E equipped
with the norm

‖ϕ‖C(E) = max
0≤t≤T

‖ϕ(t)‖E .

Proof. It is known that the differential expression

Av(x) =−a(x)v′′(x)+δv(x) (2)

define a positive operator A acting in Cβ [0, l] with domain Cβ+2[0, l] and satisfying the conditions v(0) = v(l), vx(0) =
vx(l). Therefore, source identification problem (1) can be written in abstract form⎧⎪⎨

⎪⎩
−u′′(t)+Au(t) = f (t)+ p, 0 < t < T,

u(0) = u(T ), u′(0) = u′(T ),u(λ ) = ξ
(3)

in a Banach space E with unknown parameter p = p(x) and unknown abstract function u(t) = u(t,x). Here, element
ξ = ξ (x) and smooth abstract function f (t) = f (t,x) defined on [0,T ] with values in E are given. Therefore, the

proof of Theorem 1 is based on the positivity of the elliptic operator A in Cβ [0, l] [7] and the following theorem on
well-posedness of problem (3).

Theorem 2 Assume that ξ ∈ D(A) and f (t)∈Cα,α
01 (E),0 < α < 1. For the solution {u(t), p} of source identification

problem (3) in Cα,α
0T (E)×E the stability and coercive inequality

‖u‖C(E) ≤ M
[
‖ξ‖E +‖ f‖C(E)

]
,

∥∥u′′
∥∥

Cα,α
0T (E) +‖Au‖Cα,α

0T (E) +‖p‖E ≤ M[‖Aξ‖E +
1

α(1−α)
‖ f‖Cα,α

0T (E)]

are satisfied, where M is independent of α,ξ and f (t).

CONCLUSION

In the current work, the well-posedness of the source identification problem for the two dimensional elliptic differen-
tial equation with nonlocal boundary conditions is investigated. The exact estimates for the solution of this problem
in Hölder norms are established. In future investigation, absolute stable difference schemes for approximately solu-
tion of the source identification problem for the two dimensional elliptic differential equation with nonlocal boundary
conditions will be constructed and investigated.
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Abstract. In this paper, we study solvability of new classes of nonlocal boundary value problems for second-order elliptic type
equation. The considered problems are multidimensional analogues (in the case of circular regions) of classical periodic boundary
value problems in rectangular domains. To study the main problem, first, an auxiliary boundary value problem with inclined
derivative is considered for the second order elliptic equation. The main problems are solved by reducing them to a sequential
solution of the Dirichlet problem and the problem with inclined derivative. Theorems on existence and uniqueness of a solution of
the problems are proved.

INTRODUCTION

Let x=(x̃,xn)∈Rn, x̃=(x1, ...,xn−1),Ωm =
{

x ∈ Rn : |x̃|2 + |xn|m < 1
}
,n≥ 3,m> 1,∂Ωm =

{
x ∈ Rn : |x̃|2 + |xn|m = 1

}
be a boundary of the domain Ωm.

In the domain Ωm consider uniformly elliptic operator

A(x,D)) =
∂ 2

∂x2
n
+

n−1

∑
p,q=1

apq
∂ 2

∂xp∂xq
+

n−1

∑
j=1

b j
∂

∂x j
+ c,

where the coefficients apq,b j,c depend on only x̃ = (x1,x2, ...,xn−1) and they are smooth enough and c ≤ 0.
For any point x ∈ Ωm we put in conformity a point x∗ = (x1,x2, ...,−xn) . It is obvious that if x ∈ ∂Ωm, then

x∗ ∈ ∂Ωm.
Denote

∂Ω+
m = {x ∈ ∂Ωm : xn ≥ 0} ,∂Ω−

m = {x ∈ ∂Ωm : xn ≤ 0} ,S = {x ∈ ∂Ωm : xn = 0} ≡ ∂Ω+
m ∩∂Ω−

m .

We introduce the operator I∗[u](x) = u(z) |z=x∗ . Let parameter k take one of the values k =±1 . In the domain Ωm
we consider the following problem:

A(x,D)u(x) = f (x),x ∈ Ω, (1)

u(x)− (−1)ku(x∗) = g0(x),x ∈ ∂Ω+, (2)

∂u(x)
∂xn

+(−1)k ∂u(x∗)
∂xn

= g1(x),x ∈ ∂Ω+, (3)

u(x) = 0,x ∈ S, (4)

Here u(x∗) and ∂u
∂xn

(x∗) mean

u(x∗) = I∗[u](x),
∂u
∂xn

(x∗) = I∗
[

∂u
∂xn

]
(x).

As a solution of the problem (1) - (4) we call a function u(x) from the class C2 (Ωm)∩C1
(
Ω̄m

)
which satisfies

conditions (1) - (4) in the classical sense. Problem (1) - (4) is an analogue of the periodic and antiperiodic problems
for equation (1) for circular domains.
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It is necessary note to that ∂u
∂xn

(x∗) = I∗
[

∂u
∂xn

]
(x) �= ∂

∂xn
I∗[u](x) , i.e., operator I∗ and differentiation operator ∂

∂xn
do

not commute. Moreover, since

∂ 2u
∂x2

n
(x∗) = I∗

[
∂ 2u
∂x2

n

]
(x) =

∂ 2

∂x2
n

I∗[u](x),

the following equality holds

A(x,D)u(x∗)≡ A(x,D)I∗u(x) = I∗A(x,D)u(x). (5)

Further, if x ∈ S , then x = (x̃,0) and the corresponding points x∗ = (x1,x2, ...,xn−1,0) also belong to the set S.
Therefore, u(x) belongs to the class C1

(
Ω̄m

)
, if the following condition holds:

g0 (x̃,0) = u(x̃,0)+(−1)ku(x̃∗,0) = (−1)k
[
u(x̃∗,0)+(−1)ku(x̃,0)

]
= (−1)kg0 (x̃∗,0) , x̃ ∈ S.

However, due to condition (4), equality u(x̃,0) = 0, x̃ ∈ S holds, and therefore, the last condition can be rewritten
in the form g0 (x̃,0) = g0 (x̃∗,0) = 0, x̃ ∈ S, i.e.,

g0 (x) = 0,x ∈ S. (6)

The following condition is also necessary

∂g0

∂x j
(x)− (−1)k ∂g0

∂x j
(x∗) = 0,x ∈ S, j = 1,2, ...,n, (7)

and

g1 (x)+(−1)kg1 (x∗) = 0,x ∈ S. (8)

Furthermore, we will assume that conditions (6) - (8) are satisfied. Note that similar problems for the Laplace and
Poisson equations with normal derivatives of integer and fractional orders were studied in [1-6]. Moreover, in [7]
similar problem was studied for a boundary operator with inclined derivative when there is no degeneracy. We also
note that degenerate boundary value problems with inclined derivative were studied in [8-12].

UNIQUENESS RESEARCH OF SOLUTION

We give the uniqueness theorem for the solution of problem (1) - (4).

Theorem 1 Let k take one of the values k =±1 . If a solution of problem (1)-(4) exists, then it is unique.

Proof. Let k = 1 and u(x) be a solution of the homogenous problem (1) -(4). Then from condition (2) it follows that

u(x) = u(x∗)≡ I∗[u](x),x ∈ ∂Ω+
m .

If x ∈ ∂Ω−
m , then it is obvious that x∗ ∈ ∂Ω+

m . Therefore, from the boundary value condition (2) for the points x ∈ ∂Ω−
m

we get

u(x) = u(x∗)≡ I∗[u](x),x ∈ ∂Ω−
m .

Consequently, for all x ∈ ∂Ωm we have

u(x)−u(x∗) = 0,x ∈ ∂Ωm.

Denote v(x) = u(x)−u(x∗) . Then applying the operator A(x,D) to this function, according to (5), we have

A(x,D)v(x) = A(x,D)u(x)−A(x,D)u(x∗) = 0,x ∈ Ωm.
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Hence, function v(x) is a solution of the following Dirichlet problem:

A(x,D)v(x) = 0,x ∈ Ωm, v(x)|∂Ωm
= 0.

Then, due to the uniqueness of the solution of the Dirichlet problem, v(x) = 0,x ∈ Ω̄m. Therefore u(x) = u(x∗) ≡
I∗[u](x),x ∈ Ω̄m. By condition of the problem, u(x) belongs to the class C1

(
Ω̄m

)
. Thus, from the condition u(x) =

u(x∗) ,x ∈ Ω̄m, due to the equality

∂
∂xn

I∗[u] (x) =
∂

∂xn
u(x1, ...,xn−1,−xn) =−I∗

[
∂

∂xn
u
]
(x1, ...,xn−1,xn)≡−∂u(x∗)

∂xn
,

we obtain

∂u
∂xn

(x) =− ∂u
∂xn

(x∗)≡−I∗
[

∂u
∂xn

]
(x),x ∈ Ω̄m. (9)

On the other hand, by the boundary value condition (3), we have

∂u
∂xn

(x) =
∂u
∂xn

(x∗)≡ I∗
[

∂u
∂xn

]
(x),x ∈ ∂Ω+

m ,

and

∂u
∂xn

(x) =
∂u
∂xn

(x∗)≡ I∗
[

∂u
∂xn

]
(x),x ∈ ∂Ω−

m .

Consequently, for all points x ∈ ∂Ωm we get

∂u
∂xn

(x) =
∂u
∂xn

(x∗)≡ I∗
[

∂u
∂xn

]
(x). (10)

Then, adding the left and right sides of equalities (9) and (10), we obtain

∂u
∂xn

(x) = 0,x ∈ ∂Ωm.

Therefore, u(x) - solution of the homogeneous problem (1) - (4) is also solution to the following problem

A(x,D)u(x) = 0,x ∈ Ωm,
∂u
∂xn

(x)
∣∣∣∣
∂Ωm

= 0, u(x)|S = 0. (11)

In [7] it is proved that the solution of the problem (11) is unique and therefore, u(x)≡ 0,x ∈ Ω̄m.
Let now k = 2. In this case, if u(x) is a solution of the homogenous problem (1) - (4), then from condition (2) for

all point x ∈ ∂Ω+
m we get

u(x) =−u(x∗) ,x ∈ ∂Ω+
m .

In its turn, for points ∂Ω−
m

u(x) =−u(x∗) ,x ∈ ∂Ω−
m

and consequently, for all x ∈ ∂Ωm we have

u(x)+u(x∗) = 0,x ∈ ∂Ωm.

Further, if we denote v(x) = u(x)+u(x∗) , then the function v(x) is a solution of the Dirichlet problem:

A(x,D)v(x) = 0,x ∈ Ωm, v(x)|∂Ωm
= 0,
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and due to the uniqueness of the solution of the Dirichlet problem, v(x) = 0,x ∈ Ω̄m. Therefore, u(x) = −u(x∗) ≡
−I∗[u](x),x ∈ Ω̄m. Then

∂u
∂xn

(x) =− ∂u
∂xn

(x∗)≡− ∂
∂xn

I∗[u] (x) ,x ∈ Ω̄m.

Further, as in the case k = 1 from the boundary value condition (3) we obtain:

∂u
∂xn

(x) =− ∂u
∂xn

(x∗)≡−I∗
[

∂
∂xn

u
]
(x) ,x ∈ ∂Ω+

m ,

I∗
[

∂
∂xn

u
]
(x)≡ ∂u

∂xn
(x∗) =− ∂u

∂xn
(x) ,x ∈ ∂Ω−

m ,

and consequently, we have

∂u
∂xn

(x) =− ∂u
∂xn

(x∗)≡−I∗
[

∂
∂xn

u
]
(x) =

∂
∂xn

I∗ [u] (x) ,x ∈ ∂Ωm.

Hence

∂u
∂xn

(x) = 0,x ∈ ∂Ωm.

In this case the function u(x) satisfies conditions of the problem (11). Then u(x)≡ 0,x ∈ Ω̄m. Theorem is proved.

EXISTENCE RESEARCH OF SOLUTION

In this section, we prove theorem on existence and smoothness of a solution of the problem (1) - (4). Consider the
following auxiliary problem

A(x,D)z(x) = 0,x ∈ Ωm,
∂ z
∂xn

(x)
∣∣∣∣
∂Ωm

= h(x), z(x)|S = 0. (12)

In [8] the following proposition is proved.

Lemma 2 Let 1− 1
m < λ , moreover number λ + 1

m is not integer. For any function h(x) ∈ Cλ (∂Ωm) solution of

problem (12) exists, unique and belongs to the class Cλ+ 1
m
(
Ω̄m

)
.

The following statement is true for the main problem.

Theorem 3 Let k take one of the values k = ±1 , 1− 1
m < λ < 1, f (x) ∈ Cλ (Ω̄m

)
, g0 (x) ∈ Cλ+1 (∂Ω+

m) ,g1 (x) ∈
Cλ (∂Ω+

m) and the matching conditions (6) - (8) be satisfied. Then solution of the problem (1) - (4) exists, unique and
belongs to the class Cλ+ 1

m
(
Ω̄m

)
.

Proof. Let k = 1 and u(x) be a solution of the problem (1) - (4). Consider the following function:

v(x) =
u(x)−u(x∗)

2
,w(x) =

u(x)+u(x∗)
2

. (13)

Note that functions v(x) and w(x) have the following properties:

v(x) =−v(x∗)≡−I∗[v](x);w(x) = w(x∗)≡ I∗[w](x),
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∂v(x)
∂xn

=− ∂
∂xn

I∗ [v] (x) = I∗
[

∂
∂xn

v
]
(x)≡ ∂v(x∗)

∂xn
,

∂w(x)
∂xn

=
∂

∂xn
I∗ [w] (x) =−I∗

[
∂

∂xn
w
]
(x)≡−∂w(x∗)

∂xn
.

We find the conditions that the functions v(x) and w(x) will satisfy. Applying the operator A(x,D) to the function
v(x), we have

A(x,D)v(x) =
1

2
[A(x,D)u(x)−A(x,D)u(x∗)] =

1

2
[A(x,D)u(x)− I∗A(x,D)u(x)]

=
1

2
[ f (x)− f (x∗)] ,x ∈ Ωm.

Further, from boundary value condition (2) it follows that

v(x)|∂Ω+
m
=

1

2
[u(x)−u(x∗)]

∣∣∣∣
∂Ω+

m

=
1

2
g0(x).

If the point x belongs to the lower part of the boundary, i.e. x ∈ ∂Ω−
m , then the corresponding point x∗ belongs to

the upper part of the boundary, and therefore, again from the boundary value condition (2), we obtain

v(x)|∂Ω−
m
=

1

2
[u(x)−u(x∗)]

∣∣∣∣
∂Ω−

m

= −1

2
[u(x∗)−u(x)]

∣∣∣∣
x∗∈∂Ω+

m

=−1

2
g0(x∗).

Moreover, condition (4) implies

v(x)|S =
1

2
[u(x)−u(x∗)]

∣∣∣∣
S
= 0.

Further, making similar actions with respect to the function w(x) from the equality (13), we obtain

A(x,D)w(x) =
1

2
[A(x,D)u(x)+A(x,D)u(x∗)] =

1

2
[ f (x)+ f (x∗)] ,x ∈ Ωm,

∂w(x)
∂xn

∣∣∣∣
∂Ω+

=
1

2

[
∂u(x)
∂xn

+
∂

∂xn
I∗[u] (x)

]∣∣∣∣
∂Ω+

=
1

2

[
∂u(x)
∂xn

− I∗
[

∂u
∂xn

]
(x)

]∣∣∣∣
∂Ω+

=
1

2

[
∂u(x)
∂xn

− ∂u
∂xn

(x∗)
]∣∣∣∣

∂Ω+

=
1

2
g1(x),x ∈ ∂Ω+

m ,

∂w(x)
∂xn

∣∣∣∣
∂Ω−

=
1

2

[
∂u(x)
∂xn

+
∂

∂xn
I∗[u] (x)

]∣∣∣∣
∂Ω−

=
1

2

[
∂u(x)
∂xn

− I∗
[

∂u
∂xn

]
(x)

]∣∣∣∣
∂Ω−

=
1

2

[
∂u(x)
∂xn

− ∂u(x∗)
∂xn

]∣∣∣∣
∂Ω−

=− 1

2

[
∂u(x∗)

∂xn
− ∂u(x)

∂xn

]∣∣∣∣
x∗∈∂Ω+

=−1

2
g1(x∗),x ∈ ∂Ω−

m .
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Moreover, condition (4) implies

w(x)|S =
1

2
[u(x)+u(x∗)]

∣∣∣∣
S
= 0.

Denote,

f±(x) =
1

2
[ f (x)± f (x∗)] ,2g̃0 (x) =

{
g0 (x) ,x ∈ ∂Ω+

m
−g0 (x∗) ,x ∈ ∂Ω−

m
,2g̃1 (x) =

{
g1 (x) ,x ∈ ∂Ω+

m
−g1 (x∗) ,x ∈ ∂Ω−

m
.

We research smoothness of these functions. By the condition, f (x)∈Cλ (Ω̄m
)
. Then it is obvious that the functions

f±(x) also belong to the class Cλ (Ω̄m
)

. Further, by the hypothesis of the theorem, the function g0 (x) belongs to the

class Cλ+1 (∂Ω+
m) and the matching conditions (6) and (7) are satisfied for it. Then the function g̃0(x) belongs to the

class Cλ+1 (∂Ωm). Similarly, the function g1 (x) belongs to the class and the matching condition (8) is satisfied for

it. Then the function g̃1 (x) belongs to the class Cλ (∂Ωm). Thus, if u(x) is a solution of problem (1) - (4), then the
functions v(x) and w(x) satisfy conditions of the following problems:

A(x,D)v(x) = f−(x),x ∈ Ω, v(x)|∂Ω = g̃0 (x) , (14)

with the additional condition

v(x)|S = 0 (15)

and

A(x,D)w(x) = f+(x),x ∈ Ωm,
∂w
∂xn

(x)
∣∣∣∣
∂Ωm

= g̃1(x), w(x)|s = 0. (16)

We study the problem (14). We will look for a solution to the problem in the form v(x) = v1(x)+ v2(x), where
functions v1(x) and v2(x) satisfy the conditions of the following problems

A(x,D)v1 (x) = f−(x),x ∈ Ω, v1 (x)|∂Ω = 0, (17)

A(x,D)v2 (x) = 0,x ∈ Ω, v2 (x)|∂Ω = g̃0 (x) . (18)

Problems (17) and (18) are classical Dirichlet problems, and for smooth data, solutions to these problems always
exist. We need to clarify smoothness of the solutions to these problems. It was proved in [13] that if 0 < λ < 1,
f−(x) ∈ Cλ (Ω̄m), then solution to the problem (17) belongs to the class Cλ+2(Ω̄m) . The exact smoothness order of

the solution to the problem (18) in the case g̃0 (x) ∈Cλ+1 (∂Ωm) is given in [8] and the order has the form Cλ+1(Ω̄m)

. In addition, due to the matching condition (6), equality v2 (x)|S = 0 holds. Thus, if f−(x) ∈ Cλ (Ω̄m), g̃0 (x) ∈
Cλ+1 (∂Ωm), then a solution to the problem (14) exists and condition (15) holds for it. Further, we will look for a
solution to the problem (16) in the form w(x) = w1(x)+w2(x), where the functions w1(x) and w2(x) are solutions of
the following problems:

A(x,D)w1(x) = f+(x), x ∈ Ωm, w1(x)|∂Ωm
= 0, (19)

A(x,D)w2(x) = 0, x ∈ Ωm;
∂w2(x)

∂xn

∣∣∣∣
∂Ωm

= g̃1(x)− ∂w1(x)
∂xn

, w2(x)|S = 0. (20)

As we have already noticed, under the conditions of the theorem and the matching conditions (8), the function
f+(x) belongs to the class Cλ (Ω̄m) . Then a solution to the problem (19) exists, is unique and belongs to the class

Cλ+2
(
Ω̄m

)
. Consequently,

∂w1(x)
∂xn

∈ Cλ+1
(
Ω̄m

)
. Further, if g1 (x) ∈ Cλ (∂Ω+

m) , then the function g̃1(x)− ∂w1(x)
∂xn

at

least belongs to the class Cλ (∂Ωm).
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With these data, according to Lemma 1, a solution to this problem exists, is unique, and belongs to the class

Cλ+ 1
m
(
Ω̄m

)
. Therefore, a solution to the problem (16) exists, is unique and also belongs to the class Cλ+ 1

m
(
Ω̄m

)
.

Thus, we constructed the functions v(x) and w(x) from equalities (13). We show that if v(x) and w(x) are solutions
to problems (13) and (16), then the function u(x) = v(x)+w(x) satisfies all the conditions of the problem (1) - (4).
Indeed, applying the operator A(x,D) to the function u(x) = v(x)+w(x), we have

A(x,D)u(x) = A(x,D)v(x)+A(x,D)w(x) = f+(x)+ f−(x) = f (x),x ∈ Ω.

Further, according to the properties of the functions v(x) and w(x) , we have

u(x)−u(x∗)|∂Ω+
m
= v(x)+w(x)− (v(x∗)+w(x∗))|∂Ω+

m
= v(x)− v(x∗)|∂Ω+

m
= 2v(x)|∂Ω+

m
= 2 g̃0 (x)|∂Ω+

m
= g0(x).

Similarly,

∂u(x)
∂xn

− I∗
[

∂u
∂xn

]
(x)

∣∣∣∣
∂Ω+

m

=
∂v(x)
∂xn

+
∂w(x)

∂xn
−I∗

[
∂v
∂xn

]
(x)− I∗

[
∂w
∂xn

]
(x)

∣∣∣∣
∂Ω+

m

=
∂w(x)

∂xn
−I∗

[
∂w
∂xn

]
(x)

∣∣∣∣
∂Ω+

m

= 2
∂w(x)

∂xn

∣∣∣∣
∂Ω+

m

= 2 g̃0 (x)|∂Ω+
m
= g1(x).

Thus, the theorem is proved for the case k = 1. The periodic problem (k = 2) can be considered in a similar
way.Theorem is proved.
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Abstract. In this paper, the theory of conjugate equations is used to solve the inverse problem of the continuation of potential fields
in the direction of disturbing masses, in the inverse problem of magnetotelluric sounding (MTS), for problems of mathematical
epidemiology.

INTRODUCTION

G.I.Marchuk in his work [1] dedicated to conjugate equations and their applications notes that in the XXI century the
theory of conjugate equations will play an exceptional role in solving complex systems, thanks to which it will be
possible to solve global problems that concern society. To study complex systems and mathematical models, a number
of general approaches and principles have been developed. One of them is the principle of duality. In this principle,
the concept of the conjugate operator is basic.

In general view, we write the mathematical model of the inverse problem in the operator equation form

Au = f (1)

with linear operator A : X → Y and domain D(A), dense in X , i.e. D(A) = X . Suppose that one of the goals consider-
ation inverse problems is to minimization of the functional of the coefficient inverse problem

J(q,u) = 〈u,q〉. (2)

For this, we introduce the conjugate operator A∗ and consider the conjugate equation

A∗u∗ = q (3)

with element q on the right side defining J(q,u). Then the dual expression for the desired functional has the form

J = 〈 f ,u∗〉. (4)

Thus, to calculate functional (2), it is necessary to solve the conjugate equation (3) and use formula (4).

In this work, the theory of conjugate equations is used to solve the inverse problem of the continuation of potential
fields in the direction of disturbing masses. This problem leads to the solution of the first kind Fredholm integral
equation [2] the following view

b∫
a

K(x,s)u(s)ds = f (x), x ∈ [a,b] (5)

and the corresponding conjugate equation

b∫
a

K(s,x)υk(s)ds = αk(x), x ∈ [a,b]. (6)
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Here αk(x)- known functions, k - number, υk(x)- solution of the conjugate equation (6), depending on the number k.
Multiply (5) on υk(x) and integrate by x:

b∫
a

υk(x)
b∫

a

K(x,s)u(s)dsdx =
b∫

a

υk(x) f (x)dx.

Changing the order of integration and taking into account equation (6), we get

b∫
a

u(s)αk(s)ds =
∫

υk(x) f (x)dx. (7)

Let αk(x) - basic functions on a segment [a,b], then the first integral in (7) is k - th coefficient in the expansion of the
function u(x) in the Fourier series, i.e. from (7) follows

uk =

b∫
a

υk f (x)dx, u(x) =
N

∑
k=1

ukαk(x).

The solution to the problem is divided into two stages. At the first stage, the integral equation is solved, in the right
hand side of which are a large number of basis functions, while the kernel of integral equation remains the same.
At the second stage, the Fourier coefficients are found as an integral of the product of the solution of the conjugate
equation and the right hand side of the main integral equation. Then the desired solution is found in the form of the
sum of the product of the Fourier coefficients and the basis functions. The optimal number of members of the Fourier
series to find an approximate solution is determined from the condition of satisfying the accuracy of the measurement
of the input data.

THE INVERSE PROBLEM OF MAGNETOTELLURIC SOUNDING (MTS)

The next considered problem is the inverse MTS problem [3-8]. To solve the inverse MTS problem with an additional
condition for the solution, the optimal control method with the duality principle is used. The principle of duality
simplifies the procedure for solving the problem. For this, a conjugate equation is introduced with the elements on the
right-hand side determining the objective function of the optimal control method. Then, a gradient iterative method is
constructed and a numerical solution is found.

Statement of the problem. Consider the direct problem of magnetotelluric sounding (MTS) [3] for the components
of the electric and magnetic fields

uzz + iωμ0σ(z)u = 0,z ∈ [0,L], (8)

(uz +h1u)|z=0 = 1, (9)

(uz +h2u)|z=L = 0, (10)

Given additional information

u|z=0 = f (ω), (11)

we use the theory of conjugate equations to solve the inverse coefficient problem (8) - (11). The coefficient σ is found
from the condition of minimum functional

J(σ) =

ω2∫
ω1

[u(0,ω,σ)− f (ω)]2dω (12)
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to increment functional (12) we obtain the expression

δJ =

L∫
0

δσ
ω2∫

ω1

iψωμ0udωdz, (13)

where ψ is solution of the conjugate equation

ψzz + iμ0ωσψ = 0 (14)

with boundary conditions

(ψz +h1ψ)z=0 =−2[u(0,ω,σ)− f (ω)], (15)

(ψz +h2ψ)z=L = 0. (16)

Further using (13), a gradient iterative method is constructed.

INVERSE PROBLEM OF MATHEMATICAL EPIDEMIOLOGY

The conjugate equations are also used to solve mathematical epidemiology problems. The paper [9] presents a
methodology for the joint use of mathematical models and real data, which is an effective tool for studying com-
plex epidemiological processes and solving practical problems based on it. A significant role here is played conjugate
tasks. It is convenient to construct direct and inverse connections between models and daily real data on the dis-
tribution of the coronavirus (COVID - 19) and the system organization of computing technologies using variational
principles. This approach naturally leads to the combined use of direct and inverse modeling methods. The approach
based on the classical Lagrange variational principle using conjugate equations is the most perspective for solving
problems of estimating and predicting virus propagation processes.

We considered a modification Kermack-Mckendrick model of mathematical epidemiology

dS
dt =−αE

S(t)E(t)
N(t) −αI

S(t)
N(t) + γR(t),

dE
dt = αE

S(t)E(t)
N(t) +αI

S(t)I(t)
N(t) − kE(t)−ρE(t),

dI
dt = kE(t)−β I(t)−μI(t),

dR
dt = β I(t)+ρE(t)− γR(t),

dD
dt = μI(t)

(17)

and

N(t) = S(t)+E(t)+R(t)+D(t),
S(0) = S0,E(0) = E0, I(0) = I0,R(0) = R0,D(0) = D0.

(18)

The equation parameters have the following values:
S(t) - number of susceptible individuals at a time t;
E(t) - number of people infected without symptoms at a given time t;
I(t) - number of infected individuals at a time t;
R(t) - the number of have been sick individuals at a time t;
D(t) - number of fatalities;
αI - infection parameter between infected and susceptible populations;
αE - infection parameter between asymptomatic and susceptible populations;
γ - the speed of re-infection;
k - frequency of symptoms;
ρ - speed of recovery of detected cases;
β - speed of recovery of infected cases;
μ - mortality rate of infected cases.
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The inverse problem is to restore parameters αI ,αE ,γ,k,ρ,β ,μ,E0. The optimization method of conjugate gradi-
ents is used for numerical implementation of the inverse problem [9]. Problem (17), (18) with the additional conditions
written in the form

dy
dt

= μ(t,y,q), y(t0) = y0, yi(tk) = fik. (19)

A solution will be found by minimizing the following function

J(q,y0) =
K

∑
k=1

∑
i

ωi|yi(tk;q)− fik|2 → min
q,y0

.

The gradient of the functional is determined by the following relation

J′(q,y0) =−
T∫

t0

ΨT (t)μq(y(t),q)dt, (20)

where Ψ is the solution to the following conjugate problem

Ψ̇ =−μT
y (y(t),q)Ψ,Ψ(T ) = 0, [Ψi]t=tk = 2ωi(yi(tk;q)− fik), k = 1, ...,K, i ∈ I ⊂ {1, ...,N}. (21)

Consider gradient method to solve the minimization problem by determining approximate solution

(qn+1,y0n+1
) = (qn,y0n)−αnJ′(qn,y0n), αn > 0. (22)

Kermak-Mackendrick Classic Coronavirus Population Mathematical Model (SIR)

Consider the classic distribution model of the coronavirus COVID-2019 described by systems of nonlinear differen-
tial equations. Some coefficients and initial data of the system are unknown or averaged. The inverse problem of
identifying model parameters is reduced to minimizing the quadratic target functional (12) and applying the gradient
method (14).

dS
dt =−β IS,

dI
dt = β IS−νI,

dR
dt = νI,

S(0) = S0, I(0) = I0,R(0) = R0.

(23)

The population is considered constant

dS
dt

+
dI
dt

+
dR
dt

= 0. (24)

The intensity of infection of the susceptible, also called the strength of the infection, has the following form:

F = β I. (25)

Parameters of SIR models:

S(t) - the number of susceptible individuals at time t;
I(t) - the number of infected individuals at time t;
R(t) -the number of have been sick individuals at time t;
β -coefficient of contact intensity of individuals followed by infection;

μ-recovery rate of infected individuals. The inverse problem is to find the parameters β ,ν from the daily real data
Sk, Ik,Rk obtained from official sources.
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CONCLUSION

It can be concluded that, the theory of conjugate equations is used to solve the inverse problem of the continuation of
potential fields in the direction of disturbing masses, in the inverse problem of magnetotelluric sounding (MTS), for
problems of mathematical epidemiology.
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Abstract. The article explores general nonlinear equations with a parameter. Sufficient conditions for the existence of a solution
of nonlinear integral equations in the form of the sum of two functions for the individual values of the parameter are found.

INTRODUCTION

Nonlinear integral equations started to be investigated at the beginning of the 20th century. Scientific works [1, 2, 3, 4,
5, 6, 7] of A.Lyapunov (1906), E. Schmidt (1908), P.Levy (1910), G. Bratu (1910), G. Bucht (1912) , A. Collet (1912),
H.Gagaj Kian (1912) were a prerequisites for development of nonlinear integral equations theory. New studies of A.
Hammerstein, L. Lichtenstein, P. Uryson, R. Iglisch, V. Nemytskii, J. Schauder etc. appeared in this direction later.
Theory of nonlinear integral equations was formed in the 30’s of the 20th century [1]. After the 1930s, V. Nemytsky,
V. Orlich, M. A. Krasnoselsky, Ya.B. Rutitsky, and others made significant contributions to the development of the
theory of nonlinear integral equations [2, 3, 4, 5].

Nonlinear integral equations can be used in various fields of science and technology [1, 2, 3, 4, 5, 6, 7, 8, 11, 12,
13, 14, 15, 16] . However, despite a lot of research [6, 7, 8, 11, 12, 13, 14, 15, 16] , bibliography of works [2, 3],
analytical methods for solving of nonlinear integral equations are not sufficiently developed.

In the works [9, 10, 17], an analytical method was proposed, developed on the basis of the Lagrange theorem on
“finite increments” and allowed finding solutions for individual classes of nonlinear Hammerstein integral equations
in the form of a sum of two functions.

PROBLEM STATEMENT AND SOLUTION

Consider the nonlinear integral equation

A[ϕ(x)] = λ
∫ b

a
h(x)F [t,ϕ(t)]dt + f (x), (1)

where ϕ(x) is an unknown function; λ ∈ (−∞,∞) is parameter; f (x),h(x) are given continuous functions, defined at
a given interval [a,b]; A[ϕ(x)] and F [x,ϕ(x)] are given continuous functions, which have continuous derivatives with
respect to a functional variable ϕ .

We investigate the solvability of the problem where it is required to find the values of parameter λ , for which the
equation (1) has a non-trivial solution.

The solution of equation (1) is sought in the form

ϕ(x) = ϕ0(x)+λu(x), (2)

where functions ϕ0(x),u(x), and a parameter λ to be determined. Suppose that function (2) is a solution of equation
(1). Then the identity holds
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A[ϕ0(x)+λu(x)] = λ
∫ b

a
h(x)F [t,ϕ0(x)+λu(x)]dt + f (x). (3)

Using the Lagrange finite increment formula [9, 10, 17] for the function A[ϕ(x)] and F [x,ϕ(x)] by function variable
ϕ we rewrite identity (3) in the form

A[ϕ0(x)]+Aϕ [ψ(x)]λu(x)≡ λh(x)
∫ b

a
{F [t,ϕ0]+Fϕ [t,ψ(t)]λu(x)}dt + f (x), (4)

where ψ(x) and ψ(x) functions located between functions ϕ0(x) and ϕ0(x)+λu(x). Hence, equating the coefficients
at the same degree λ , we have the following inequalities

A[ϕ0(x)]≡ f (x), (5)

Aϕ [ψ(x)]λu(x)≡ h(x)
∫ b

a
F [t,ϕ0(t)]dt, (6)

∫ b

a
Fϕ [t,ψ(t)]u(t)dt ≡ 0. (7)

Relations (5) - (7) are necessary conditions for the existence of a solution of equation (1) in the form of a sum (2).It
can be shown that they are sufficient.

Theorem 1 Let the continuous nonlinear functions A[ϕ(x)] and F [x,ϕ(x)] in a functional variable satisfies the La-
grange formula on finite increments. Then, to have a solution in the form of the sum (2) for the nonlinear integral
equation (1), it is necessary and sufficient that relations (5) - (7) are satisfied.

Now we put an algorithm for constructing a solution of the form (2).
1) According to (5), the unknown function ϕ0(x) defined as a solution of a nonlinear algebraic equation

A[ϕ0(x)] = f (x), (8)

If a function A[ϕ0(x)] nonlinear monotonic function, that Aϕ [ϕ0(x)] �= 0 and there is a function q(·) such that
equality holds

ϕ0(t) = q[ f (x)]. (9)

Note that due to the nonlinearity of the function A[ϕ0], the equation (8) can have several solutions

ϕ0i(x) = qi[ f (x)], i = 1,2,3, ..., p ≤ ∞,

if A[ϕ(x)] is a nonmonotonic function.
2) Further knowing ϕ0(x) we pass to the definition of an unknown function u(x). Identity (6) according to the

equality

Aϕ [ψ(x)]λu(x) = A[ϕ0(x)+λu(x)]−A[ϕ0(x)]

is rewritten in the form
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{A[ϕ0(x)+λu(x)]−A[ϕ0(x)]} ≡ λh(x)
∫ b

a
F [t,ϕ0(t)]dt,

where ϕ0(x) an unknown function. This identity means that the unknown function u(x) can be defined as a solution
of a nonlinear algebraic equation

A[ϕ0(x)+λu(x)] = f (x)+λh(x)
∫ b

a
F [t,ϕ0(t)]dt. (10)

Let A[ϕ] monotonic function. Then from the equation (10) we obtain the equality

ϕ0(x)+λu(x) = q[ f (x)+λh(x)
∫ b

a
F [t,ϕ0(t)]dt].

from which we find that

u(x) =
1

λ
{q[ f (x)+λh(x)

∫ b

a
F [t,ϕ0(t)]dt]−ϕ0(x)}. (11)

If the function A[ϕ] is not monotonous and has several solutions qi(·), then equation (10) has several solutions

ui(x) =
1

λ
{qi[ f (x)+λh(x)

∫ b

a
F [t,ϕ0(t)]dt]−qi[ f (x)]}.i = 1,2,3, ..., p ≤ ∞.

3) After unknown functions were found ϕ0(x) and u(x) we pass to the determination of the values of parameter λ .
Identity (7) according to the equality

Fϕ [ψ(t)]λu(t) = F [ϕ0(t)+λu(t)]−F [ϕ0(t)]

is rewritten in the form

∫ b

a
{F [Φ0(t)+λu(t)]−F [ϕ0(t)]}dt ≡ 0, (12)

where ϕ0(t) and u(t) are known functions. After integration, this identity turns into an algebraic equation with respect
to the parameter λ , i.e. has the equation

Φ(λ ) = 0. (13)

According to (12) Φ′(λ ) �= 0 and equation (13) has at least one root λ = λ0.
Equation (13) is called the resolvent algebraic equation, and its roots λi the resolvent numbers of the nonlinear

integral equation (1).
Substituting found functions ϕ0(x), u(x) and number λ0 in (2) we obtain the desired solution of the nonlinear

integral equation (1) in the form of the sum

ϕ(x) = ϕ0(x)+λ0u(x). (14)

In a similar way, a nonlinear integral equation of the form is solved

A[ϕ(x)] = λ
∫ b

a

m

∑
k=1

hk(x)Fk[t,ϕ(t)]dt + f (x), (15)
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where h1(x), ...,hm(x) are linearly independent continuous functions. In this case, the resolvent algebraic equations
form a system of nonlinear equations

Φi(λ ) = 0, i = 1,2,3, ..,m, (16)

Let Bi set of roots i-th system of equations (16). Then system (16) has a solution only when the intersection of sets
Bi , i.e., set

B =
m⋂

i=1

Bi,

is not empty.
In the works [9]- [10], cases were considered when A[ϕ(x)]≡ ϕ(x) and examples are given for confirming theoret-

ical conclusions.
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Abstract. The Riemann-Hilbert problem for the first order elliptic system is considered in the Hardy-Smirnov space. This system
is reduced to an equivalent Fredholm integral system on the boundary in the space Lp.

INTRODUCTION

Let D be a finite domain bounded by a smooth Lyapunov contour Γ ∈ C1,ν ,0 < ν < 1, which is oriented positively
with respect to D. Let all eigenvalues of a matrix J ∈ C

l×l lie on the upper half-plane and G(t) be Hölder continuous
l × l− matrix- value function on Γ such that detG(t) �= 0 for all t ∈ Γ. Let us consider the Riemann -Hilbert problem

∂φ
∂y

− J
∂φ
∂x

= 0, z = x+ iy ∈ D, (1)

Re G(t)φ+(t) = f (t), t ∈ Γ. (2)

The first order elliptic system (1) corresponds to the Cauchy-Riemann system for J = i. For Toeplitz matrix J, it
was firstly investigated by A. Douglis [1] in the frame of so called hypercomplex numbers. Therefore, the solutions φ
of the system (1) is called the function analytic in the Douglis sense or shortly Douglis analytic functions. It plays an
important role for elliptic systems of second and high order [2, 3]. For general first order elliptic systems, the problem
(2) was investigated by many authors [4, 5].

The solution φ = (φ1, . . . ,φl) of (1) is a real analytic function and in a neighborhood of each point z0 = x0 + iy0, it
expands in a generalized Taylor series

φ(z) =
∞

∑
k=0

1

k!
(z− z0)

k
Jφ (k)(z0).

Here and below, we have accepted the notation (x+ iy)J = x1+ yJ, x,y ∈ R; the writing (dx+ idy)J = (dx)1+(dy)J
for the matrix differential has an analogous meaning.

MAIN RESULTS

We can introduce the generalized Cauchy type integral

(Iϕ)(z) =
1

2πi

∫
Γ
(t − z)−1

J dtJϕ(t), z ∈ D,

which gives solutions of (1) and plays the same role as in the usual analytic theory. In particular under the same
assumption as in the classical case J = i, we have the Cauchy formula φ = Iφ+ and the Sohotski-Plemel formula
2(Iϕ)+ = ϕ + Sϕ, where Sϕ means the corresponding singular integral and the operator I is bounded Cμ(Γ) →
Cμ(D),0 < μ < ν .

Analogous to the case of usual analytic function, we can introduce the Hardy-Smirnov space H p(D) [6].

Theorem 1 If φ ∈ H p(D), 1 < p < ∞, then there exist an angular boundary values φ+(t) for almost all t ∈ Γ, the
function φ+ belongs to Lp(Γ) and the Cauchy formula holds. Nevertheless the operator I is bounded Lp(Γ)→ H p(D).
So we may consider the problem (1), (2) in H p(D).
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Theorem 2 The homogeneous problem (1), (2) has a finite number linear independent solutions φi ∈Cμ(D),1≤ i≤m,
in the class H p(D). There exists a finite number linear independent real vector-valued functions gi ∈Cμ(Γ),1 ≤ i ≤ n,
such that the solvability of the inhomogeneous problem in this class is equivalent to orthogonality conditions

( f ,gi) =
∫

Γ
f (t)gi(t)d1t = 0, 1 ≤ i ≤ m,

where d1t denotes the arc lengths.

The index æ = m−n of the problem is given by the formula

æ =− 1

π
argdetG(t)

∣∣
Γ + l.

The same theorem is also valued in infinite domain D1 = C\D for the problem

Im G(t)Ψ−(t) = f (t), t ∈ Γ,

in the class of Douglis analytic functions Ψ ∈ H p(D1) disappearing on infinity. The corresponding formula of the
index æ1 = m1 −n1 of this problem is

æ1 =
1

π
argdetG(t)

∣∣
Γ − l.

Let Ψi,1 ≤ i ≤ m1, and gi,1 ≤ i ≤ n1, be the corresponding functions of this theorem.

Theorem 3 (a) There exists a finite number linear independent real vector-valued functions hi ∈ Cμ(Γ),1 ≤ i ≤ m1,
and linear independent Douglis analytic functions Hi ∈Cμ(D),1 ≤ i ≤ n1, such that

(hi,GΨ−
j ) = δi j, 1 ≤ i, j ≤ m1; (Im GH+

i ,g j) = δi j, 1 ≤ i, j ≤ n1.

(b) Each function φ ∈ H p(D) can be uniquely represented by the form

φ = I(G−1ϕ)+∑n1

i=1
Hiξi, ξi ∈ R, (3)

where real vector-valued function ϕ ∈ Lp(Γ) satisfies the conditions

(ϕ,hi) = 0, 1 ≤ i ≤ m1. (4)

(c) If the function φ ∈Cμ(D), then the function ϕ ∈Cμ(Γ) in (3).

This theorem is analogue of the corresponding result of N. I. Mushelishvili [7] for usual analytic functions. Using
the representation (3) we can reduce the problem (1), (2) to the corresponding equivalent system of singular equations
on Γ with respect to an unknown (ϕ,ξ ) ∈ Lp(Γ)×R

n1 satisfying (4). This system is the following:

ϕ +Kϕ +2∑n1

i=1
Re(GH+

i )ξi = 2 f (5)

with the singular integral operator

(Kϕ)(t0) = Re

[
1

π

∫
Γ

G(t0)(t − t0)−1
J G−1(t)dtJϕ(t)

]
, t0 ∈ Γ.

Let e(t) = e1(t)+ ie2(t) is the unit tangent vector to Γ at the point t. Then we can represent this operator in the
form

(Kϕ)(t0) =
1

π

∫
Γ

a(t0, t)
|t − t0|ϕ(t)d1t,

where

a(t0, t) = Im

[
G(t0)

(
t − t0
|t − t0|

)−1

J
eJ(t)G−1(t0)

]
.

Lemma 4 Let Γ ∈C1,ν and G ∈Cν(Γ). Then, a ∈Cν(Γ×Γ) and a(t, t)≡ 0.

This lemma shows that the operator K is compact in the space Lp(Γ). So, (4), (5) is the Fredholm integral system.
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Abstract. The work is devoted to the proof of the convergence of trajectory and global attractors of approximation problems to
trajectory and global attractors of the Bingham model on the torus. For research, the theory of trajectory attractors of non-invariant
trajectory spaces is used. Namely, the existence of attractors for the Bingham model on a torus, and the existence of attractors for
the approximation problem is proved. Then it is shown that the attractors of the approximation problems converge to the attractors
of the Bingham model in the sense of the Hausdorff semi-distance in corresponding metric spaces.

INTRODUCTION

The question of the attractor’s existence is closely related to theorems on the existence of solutions. An effec-
tive method for studying the solvability of fluid dynamic problems and the existence of their attractors is the
approximation-topological method. This method was proposed by V. G. Zvyagin and developed by him with his
collaborators V. T. Dmitrienko, D. A. Vorotnikov, M. V. Turbin, A. V. Zvyagin and others (see, for example, [1, 2, 3,
4]). It consists of the fact that in the beginning the original initial-boundary-value problem is approximated by some
problem with better topological properties. Then, based on the topological degree of completely continuous, or con-
densing vector fields, or mappings satisfying the alpha condition and a priori estimates of the solutions, the solvability
of these approximation problems is established. Approximation equations contain approximation parameters, and
these equations move into the original, unperturbed equations as the approximation parameter tends to zero. Once the
solvability of the approximation problems is proved, the solvability of the original problem is established using the
passage to the limit.

For the solutions to the original problem usually it is possible to obtain some estimates of the dissipative type.
Based on them, the trajectory space is constructed, for which the existence of trajectory and global attractors of both
the approximation problem and the original problem is proved. Approximation equations have usually more natural
properties of continuous dependence of solutions on the right-hand side and initial conditions, i.e. for small changes
in the initial conditions and the right-hand side of the equation, a small change in the set of solutions is obtained. The
presence of this property makes it possible to apply various approximate methods to find attractors of approximation
problems and to study their convergence to attractors of the original system. Such an approach can be useful for the
approximate calculation of the attractors for the original problem.

The Bingham fluid motion model is used to describe the motion of visco-plastic media, such as various gels and
suspensions. It has been studied in sufficient detail in terms of the solvability of various problems [5, 6, 7, 8, 9].
The next step in the investigation of this model is the study of the qualitative behavior of its solutions. In particular,
the study of the behavior of the solutions for the system corresponding to this model at infinity (the existence of
its attractors). The notion of the attractor is used to describe the behavior of systems at large time values. Often
this behavior also characterizes the process itself, which leads to the relevance of the study of the attractors in the
mathematical problems of modern fluid dynamics.

Attractors of the Bingham fluid motion model in the two-dimensional domain were studied by G. A. Seregin in [10].
However, in the three-dimensional case, it was previously not possible to study the attractors of this system. This is
due to the fact that for investigation of this problem in the two-dimensional case, the classical theory was used, for
which the necessary condition is the uniqueness of the solution to the considered problem. However, for the system of
equations for the Bingham model in the three-dimensional case, the uniqueness of weak solutions is not proved yet (as
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well as for the Navier-Stokes system). In the paper [11] for an autonomous situation, the existence of trajectory and
global attractors in the three-dimensional case is proved under periodic conditions with respect to spatial variables.
This was done on the base of the abstract theory of trajectory and global attractors of non-invariant trajectory spaces
(see, for example, [1, 4]), in which the uniqueness of solutions is not required. In this paper, we prove the convergence
of trajectory and global attractors for approximation problems to trajectory and global attractors of the autonomous
Bingham model in the 2D and 3D cases with periodic conditions with respect to spatial variables.

NECESSARY CONCEPTS OF THE ATTRACTORS THEORY

We need some concepts from the theory of attractors for trajectory spaces, which will be given in the first paragraph
of this section. In the second paragraph of this section, we also define the concept of convergence of trajectory and
global attractors and present some abstract theorems.

Main Concepts of Trajectory Space Attractors Theory

Let E and E0 be Banach spaces. Suppose that E is continuously embedded in E0 and that E is reflexive.
Let C(R+;E0) be the space of continuous functions, defined on R+ = [0,+∞) and taking values in E0. This space

is a metric space.
The space L∞(R+;E) consists of functions u defined almost everywhere on R+ and taking values in E, for which

there is a number α(u) such that ‖u‖E � α(u) for almost all t ∈ R+. The space L∞(R+;E) is Banach with respect to
the norm ‖u‖L∞(R+;E) = ess supt∈R+

‖u(t)‖E.

Definition 1 Consider a nonempty set H + ⊂ C(R+;E0)∩Lloc
∞ (R+;E). The set H + is called the trajectory space,

and their elements are called trajectories.

The following theorem takes place (see [12] for details).

Theorem 1 Let E and E0 be Banach spaces, and let E be continuously embedded in E0. If a function u belongs to
L∞(0,M;E) and it is continuous as a function with values in E0, then u is weakly continuous as a function with values
in E.

Corollary 1 The functions of class C(R+;E0)∩L∞(R+;E) are weakly continuous with values in E. In particular this
implies that their values belong to E for all t ∈ R+.

Consider the translation operators T(t) (t � 0), which take a function f to the function T(t) f defined as follows
T(t) f (s) = f (s+ t). The operator T(t) is linear. It is bounded on L∞(R+;E) and continuous on C(R+;E0), and there
exists Ct > 0 such that the inequality ‖T(t)u‖C(R+;E0) ≤Ct‖u‖C(R+;E0) holds for any u ∈C(R+;E0).

It can be easily checked that T(t1)T(t2) = T(t1 + t2) for any t1, t2 � 0, and that T(0) is the identity operator. For this
reason the family of operators {T(t)}t�0 is called the translation semigroup.

We do not assume the invariance of the space H + with respect to the action of the translation semigroup {T(t)}t�0,
that is, the property T(t)H + ⊂ T(t). This condition turns out to be restrictive for applications of this theory in fluid
dynamics problems.

Definition 2 A nonempty set U ⊂ C(R+;E0)∩L∞(R+;E) is called a minimal trajectory attractor of the trajectory
space H +, if it satisfies the following conditions:

(i) U is compact in C(R+;E0) and bounded in L∞(R+;E);

(ii) the inclusion T(t)U ⊂ U holds for all t � 0;

(iii) U is an attracting set, i.e. for any nonempty set B ⊂ H + bounded with respect to the norm of L∞(R+;E) we
have

sup
u∈B

inf
v∈U

‖T(h)u− v‖C(R+;E0) → 0 as h → ∞;
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(iv) the set U is the least with respect to the inclusion, which satisfies conditions (i)–(iii).

Along with the minimal trajectory attractor of the trajectory space H +, we consider the global attractor of H +.

Definition 3 A nonempty set A ⊂ E is called the global attractor (in E0) of the trajectory space H + if it satisfies the
following conditions:

(i) A is compact in E0 and bounded in E;

(ii) for any nonempty set B ⊂ H + bounded in L∞(R+;E) the attraction condition holds:

sup
u∈B

inf
y∈A

‖u(t)− y‖E0
→ 0 as t → ∞;

(iii) A is contained in any nonempty set that satisfies (i) and (ii).

The concepts of the minimal trajectory attractor of the space H + and the global attractor of this space are con-
nected. Namely, the global attractor is a section of the minimum trajectory attractor.

For more details on the theory of attractors for trajectory spaces that do not have the invariance property with respect
to the translation semigroup, see in [1, 4].

Convergence of Attractors

In this section we consider the convergence of attractors. Suppose we are given a family of trajectory spaces H +
λ ⊂

C(R+;E0)∩ L∞(R+;E) depending on a parameter λ that ranges over a metric space Λ. Further, suppose that each
trajectory space H +

λ has the minimal trajectory attractor Uλ and the global attractor Aλ (the latter is the section of
the former, according to the general theory). We want to describe sufficient conditions for the convergence of Uλ to
Uλ0

and the convergence of Aλ to Aλ0
as λ → λ0.

We consider the convergence in the sense of the Hausdorff semi-distance in corresponding metric spaces. Recall
that the Hausdorff semi-distance from a set A to a set B in a metric space (X ,d) is given by the formula

hX (A,B) = sup
a∈A

inf
b∈B

d(a,b)≡ sup
a∈A

distX (a,B),

where distX (a,B) denotes the distance between a point a and a set B. In our case we consider the Hausdorff semi-
distances hC(R+;E0) in the space C(R+;E0) and hE0

in the space E0.
The following proposition offers a sufficient condition for minimal trajectory attractors to converge in the sense of

the Hausdorff semi-distance.

Proposition 1 Suppose that a trajectory space H +
λ ⊂ C(R+;E0)∩L∞(R+;E) is assigned to every λ belonging to

a metric space Λ. Suppose that each space H +
λ has the minimal trajectory attractor Uλ , which is contained in a

set P ⊂C(R+;E0)∩L∞(R+;E), where P is relatively compact in C(R+;E0) and P does not depend on λ . Moreover,
suppose that the following condition holds:

(C) if λm → λ0, um ∈ Uλm , and um → u0 in C(R+;E0), then u0 ∈ Uλ0
.

Then the following limit relation holds

hC(R+;E0)(Uλ ,Uλ0
) = sup

u∈Uλ

inf
v∈Uλ0

‖u− v‖C(R+;E0) → 0 as λ → λ0. (1)

The global attractor is a section of the minimal trajectory attractor. Hence, it is not hard to prove that the convergence
of minimal trajectory attractors implies the convergence of the global ones. Namely, we have the following assertion.

Proposition 2 Suppose that a trajectory space H +
λ ⊂C(R+;E0)∩L∞(R+;E) is assigned to every λ belonging to a

metric space Λ. Suppose that each space H +
λ possesses the minimal trajectory attractor Uλ and the global attractor

Aλ = Uλ (0), and suppose that (1) holds. Then the following limit relation holds

hE0
(Aλ ,Aλ0

) = sup
u∈Aλ

inf
v∈Aλ0

‖u− v‖E0
→ 0 as λ → λ0.

For more details see [13].
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CONVERGENCE OF APPROXIMATION ATTRACTORS TO ATTRACTORS FOR
BINGHAM MODEL

In this section, we apply abstract results on the convergence of attractors to the Bingham model.

Bingham Model

The motion of the fluid with constant density, which satisfies the Bingham rheological relation is described by the
following system of equations

∂v
∂ t

+
n

∑
i=1

vi
∂v
∂xi

−Div σ +grad p = f ; (2)

divv = 0; (3)

σ =

{
2μE (v)+ τ∗ E (v)

|E (v)| for |E (v)| 
= 0,

|σ |� τ∗ for |E (v)|= 0.
(4)

Here, v(x, t) and p(x, t) are the velocity vector of the fluid particle and the fluid pressure at the point x in time t. f (x)
is the density of external forces at the point x (we suppose that the system is autonomous). σ = (σi j) is the deviator

of the stress tensor; E (v) = 1
2

(
∇v+(∇v)T

)
is the strain rate tensor; μ and τ∗ are some positive constants.

For system (2)-(4) we consider a periodic problem with respect to spatial variables with the initial condition:

v|t=0(x) = a(x), x ∈ Ω. (5)

In order to give a definition of a weak solution to the considered problem, we give the necessary notations. Let
Ω = ∏n

i=1(0, li) ⊂ R
n, i = 1,n ,n = 2,3. By (C∞

per)
n we denote the space of periodic vector functions with values in

R
n and with periods li, i = 1,n. Introduce the set Φ =

{
φ ∈ (C∞

per)
n :

∫
Ω

φ dx = 0, divφ = 0

}
. By V 0,V 1, and V 2 we

denote the completion of Φ with respect to the norm of L2(Ω)n,W 1
2 (Ω)n, and W 2

2 (Ω)n respectively. Let D(A)=V 2. Let
us consider on D(A) the operator Au=−πΔu, where π is the Leray projector. It is possible to show that A is monotone

linear self-adjoint operator. For every α ∈ R we define Aα , with domain D(Aα)⊂V 0. Denote V α = D(Aα/2). It can
be shown that the operator A is an isomorphism from V α+2 into V α . A detailed definition of spaces, as well as their
properties, can be found in [12].

For two matrices A = (ai j), B = (bi j) we set A : B =
n
∑

i, j=1
ai jbi j.

The results stated below are valid both in the two-dimensional and in the three-dimensional cases. But, since the
three-dimensional case is more complicated, we will concentrate on it.

We introduce the following functional space:

W =
{

u : u ∈ L2(0,T ;V 1)∩L∞(0,T ;V 0),u′ ∈ L2(0,T ;V−2)
}

with the norm ‖u‖W = ‖u‖L2(0,T ;V 1) +‖u‖L∞(0,T ;V 0) +‖u′‖L2(0,T ;V−2).

Let a ∈V 1, f ∈V 0. We give a definition of a weak solution to the considered problem on a finite interval:

Definition 4 A pair of functions (v,σ),v ∈W,σ ∈ L2(QT )
n2
, is a weak solution to periodic problem for the Bingham

model (2)-(5) on the time segment [0,T ] if for any ϕ ∈V 2 and almost all t ∈ (0,T ) is satisfies

〈v′,ϕ〉−
3

∑
i, j=1

∫
Ω

viv j
∂ϕi

∂x j
dx+

∫
Ω

σ : E (ϕ)dx =
∫

Ω
f ϕdx, (6)

to rheological relation (4) and initial condition:

v(0) = a. (7)
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In the theory of attractors, we are primarily interested in the behavior of the velocity v at infinity. To describe this
behavior, we define a weak solution to the Bingham problem on R+. In this case, we do not consider at infinity the
behavior of σ , since it is determined by the behavior of v.

Definition 5 A function v ∈ L2, loc(R+;V 1)∩L∞(R+;V 0), for which there is a time derivative v′ ∈ L2, loc(R+;V−2), is
called a weak solution to Bingham problem (2)-(5) on R+, if for every T > 0, there exists σ ∈ L2(QT )

n2
such that the

pair (v|[0,T ], σ) is the weak solution to Bingham problem (2)-(5) on the time segment [0,T ].

Approximation Problem

Consider the following approximation problem for Bingham problem (2)-(4):

∂v
∂ t

+
n

∑
i=1

vi
∂v
∂xi

−Div

(
2μE (v)+ τ∗

E (v)
max{δ , |E (v)|}

)
−δΔ3v+grad p = f ; (8)

divv = 0; (9)

v|t=0(x) = a(x), x ∈ Ω. (10)

Let us note that we exclude the unknown σ in the statement of the problem and consider the problem of only
finding the velocity v. Let us give a definition of a solution to the approximation problem on a finite interval [0,T ]. Let
f ∈V 0,a ∈V 1.

Definition 6 A function v ∈ W1 =
{

v : v ∈ L2(0,T ;V 4),v′ ∈ L2(0,T ;V−2)
}

is a solution to approximation problem
(8)-(10) if for all ϕ ∈V 2 and almost all t ∈ (0,T ) it satisfies equality

〈v′,ϕ〉+μ
∫
Ω

∇(v) : ∇(ϕ)dx−
3

∑
i, j=1

∫
Ω

viv j
∂ϕ j

∂xi
dx+ τ∗

3

∑
i, j=1

∫
Ω

Ei j(v)Ei j(ϕ)
max{δ , |E (v)|} dx+δ

∫
Ω

A2vAϕ dx =
∫

Ω
f ϕdx, (11)

and initial condition (7).

Definition 7 A function v ∈ L2, loc(R+;V 4)∩L∞(R+;V 1), for which there is a time derivative v′ ∈ L2, loc(R+;V−2),
is called a solution to approximation problem (8)-(10) on R+, if for every T > 0 the restriction v|[0,T ] is the weak
solution to approximation problem (8)-(10) on the time segment [0,T ].

Main Result

Let us define trajectory spaces H +
0 for the original Bingham problem and H +

δ for the approximation problem.

Definition 8 A function v ∈ L∞(R+;V 0)∩C(R+;V−1) is called a trajectory to Bingham problem (2)-(5) if it is a weak
solution of problem (2)-(5) on R+ with certain a ∈V 1 and satisfies the estimate

‖v‖L∞(t,t+1;V 0) +‖v‖L2(t,t+1,V 1) +‖v′‖L2(t,t+1;V−2) � R0(1+‖v‖2
L∞(0,1;V 0)e

−αt)

for almost all t � 0. The set of trajectories is called the trajectory space and denoted H +
0 .

Here R0 is some positive constant from estimates on solutions to Bingham problem (2)-(5).

Definition 9 The trajectory space H +
δ of approximation problem (8),(10) is the set that consists of solutions of ap-

proximation problem (8)-(10) on R+ with certain a ∈ V 1 that belong to L∞(R+;V 0)∩C(R+;V−1) and satisfy the
estimate

‖v‖L∞(t,t+1;V 0) +‖v‖L2(t,t+1,V 1) +‖v′‖L2(t,t+1;V−2) � R0(1+‖v‖2
L∞(0,1;V 0)e

−αt)

for almost all t � 0, as well as functions T(h)v, where v is a solution of approximation problem (8)-(10) on R+, h � 0
and T(h)v satisfy the estimate

‖T(h)v‖L∞(t,t+1;V 0) +‖T(h)v‖L2(t,t+1,V 1) +‖T(h)v′‖L2(t,t+1;V−2) � R0(1+‖v‖2
L∞(0,1;V 0)e

−αt)

for almost all t � 0.
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The following two lemmas take place.

Lemma 1 The trajectory space H +
0 has the minimal trajectory attractor U0.

Lemma 2 The trajectory space H +
δ (δ > 0) has the minimal trajectory attractor Uδ .

Theorem 2 Minimal trajectory attractors Uδ of approximation problem (8)-(10) converge to the minimal trajectory
attractor U0 of the trajectory space H +

0 of Bingham problem (2)-(5) in the sense of the Hausdorff semi-distance in
C(R+;V−1), i. e.

sup
u∈Uδ

inf
v∈U0

‖u− v‖C(R+;V−1) → 0 as δ → 0.

Global attractors Aδ of approximation problem (8)-(10) converge to the global attractor A0 of the trajectory
space H +

0 of Bingham problem (2)-(5) in the sense of the Hausdorff semi-distance in the space V−1, i. e.

sup
y∈Aδ

inf
z∈A0

‖y− z‖V−1 → 0 as δ → 0.
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Abstract. Every day the number of attacks increases to break the encryption algorithms. Therefore, it is considered necessary
for designing a new algorithm with higher security. Any cryptographic system must have some fundamental features to resist any
effective attack, preserve the transmitted information, and robust the statistical characteristics. This article aims to improve the
RSA algorithm using a three-dimensional chaotic dynamic system with sophisticated attributes, which proposed for this purpose.
It is derived from Memristive’s and Sprott’s chaotic systems. We call it a 3D-hyperchaotic Memristive Sprott system (3D-HMSS).
This new system is adopted in generating keys for the RSA encryption algorithm. Some tests are used to show the efficiency of the
proposed cryptosystem.

INTRODUCTION

As communication technology are rapidly developed, the needs for sophisticated techniques play a significant role
to provide protection and confidentiality for the transmitted data. Cryptography is the science founded to protect the
information and communication through using and developing of mathematical techniques to design hard algorithms
against attacks. Several techniques have been presented to improve the traditional methods of encryption and decryp-
tion, some of them are based on the of open key space such as Chaos theory [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], Fractal
theory [12, 13, 14, 15], and many other fast quantum algorithms. Recently, due to its complexity for producing of
random sequences and satisfying of the principle of confusion and diffusion, the chaotic system is highly adopted in
cryptography [7]. In this work, a new 3D- chaotic system is proposed we call 3D hyperchaotic Memristive Sprott sys-
tem (3D-HMSS). It was used to generate pseudo random numbers generator (PRNG). As this generated sequence has
high distribution, complex behavior and good ergodicity, it was used to improve the security of RSA cryptosystem.
However, a new chaotic RSA (CRSA) system is proposed. The CRSA is applied to encrypt two different types of
data, one is extracted from text message and the other from image. The experimental results shows the efficiency of
the CRSA.

THE HYPERCHAOTIC MEMRISTIVE SPROTT SYSTEM (3D-HMSS)

In this section, the mathematical structure of the 3D-HMSS is introduced. It was extracted from Memristive [16] and
Sprott [17] chaotic systems. This system’s electrical circuit is designed to show its behavior, where its chaosity is
demonstrated via some dynamical analysis.

Model Description

The description of the 3D-HMSS is given as follows:

x· = b2 −a(yz),
y· = (5az+b)x+ y,

z· = y+ c(zx),
(1)

where x, y, z are state variables, and a, b, c are positive parameters. Figure 1 (a)-(b)shows the phase portrait, where the
state variables of the system is (1,1,1), and the parameters are: (a) a= 10.1,b= 9.2, c= 10.7, and (b) a= 20,b= 12.2,
c = 15.7, respectively.
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FIGURE 1. Phase portrait of (1) for the initial stats (1,1,1), and the parameters values of a,b and c are: (a)
a = 10.1,b = 9.2, and c = 10.7, and (b) a = 20,b = 12.2, and c = 15.7, respectively.

Dynamical Analysis of the 3D-HMSS

Our system has several basic properties. First, it has symmetry under the coordinates transform (x,y,z)→ (−x,−y,z),
that is mean, the system is under reflection of the z-axis. Therefore, system (1) is symmetric and invariant based on
the z−axis, which means that if x = y = 0 at t = 0, then x = y = 0 for all t > 0. When t → ∞, the orbit tends to

the origin on the z-axis. The dissipativity of the system is decided by ∇V = ∂ ẋ
∂x +

∂ ẏ
∂y +

∂ ż
∂ z = 1+ cx;, which satisfy

1+ cx > 0. Therefore, it is dissipative, with an exponential contraction rate: dV
dt = e(1+cx). System(1) is a non-

Hamiltonian conservative of phase volume, in which the volume element V0 is contracted by the flow into a volume
element V0e(1+cx)t in time t. Hence, each volume containing the system trajectory shrinks to zero as t → ∞, and at an
exponential rate 1+cx. The equilibria points of system (1) can be obtained by setting the right-hand side of (1) equals

zero. The equilibria
(

−b
5a2z2+abz ,

b2

az ,
b2

c−5az

)
, and

(
b

5a2z2+abz ,−( b2

az ),−( b2

c−5az )
)

is obtained; where a,b, and c > 0.

The characteristic equation is obtained from the Jacobian matrix that evaluated at (x0;y0;z0), such that:

λ 3 −m1λ 2 +m2λ +m3 = 0, (2)

where

m1 =cx+1,

m2 =cx−5ax+5a2z2 +abz+aycz,

m3 =5a2z(cz2 + y)+acz(x− y)+aby.

(3)

One of the essential measures to describe the dynamic behavior is through the Lyapunov exponent’s computing, which
measures the rates of exponential convergence or divergence of adjacent trajectories of a given system. However, the
Lyapunov exponents (LE) for the system (1) is shown in Figure 2.
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FIGURE 2. The LE of system (1) for the (x0,y0,z0) = (1,1,0.1), and (a,b,c) = (10.1,5.2,5.7).

The Circuit Design of the 3D-HMSS

Designing the 3D-HMSS circuit using Matlab simulation is shown in Figure 3. The circuit of simulation made up
of basic components from gain, add, product, and integrator. Initial values and parameters of (1) are assumed to be
(x0,y0,z0) = (1,1,0.1), and (a,b,c) = (1.1,1.2,1.2). Figure 4 (a,b, and c), shows the simulation results of the attractor
of xy,xz, and yz, respectively.

FIGURE 3. Matlab-Simulink Model of the 3D-HMSS

FIGURE 4. Phase portraits (a) xy, (b) xz, (c) yz of 3D-HMSS
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Pseudo-random Number Generator Based on the 3D-HMSS

Encryption is considered one of the processes that used chaotic systems for generating a pseudo-random number
generator (PRNG). In this part, a new method to generate PRNG based on a 3D-HMSS has been designed. The NIST
tests demonstrate the randomness properties in these sequences to be adopted in the encryption process. However,
unlike the other current algorithms to generate PRNG, a new algorithm for generating PRNG is proposed based on
the 3D-HMSS. It employs three chaotic attractors xy,xz, and yz with high performance in terms of sensitivity and
complexity. It is illustrated in Algorithm 1.

Algorithm 1 PRNS based on 3D-HMSS

Input: The initial values (x0,y0,z0) = (1,1,1) of system (1) with the system parameters (a,b,c) = (10.1,9.2,10.7).
Output: Three PRNG, namely, XY , XZ, and Y Z;

1: Generate the chaotic sequences X ,Y , and Z from system (1);
2: Generate Sequences XY = X +Y , XZ = X +Z, and Y Z = Y +Z;
3: Convert the floating number XY , XZ, and Y Z into a 32 -bit binary.

Additionally, we used NIST-800-22 [18] to assure that the three sequences are random. NIST-800-22 contains 16
different statistical tests. The statistical test results of the generated sequence are shown in Table 1. We select the
initial values of the 3D-HMSS to be (x0,y0,z0) = (1,1,1), with the parameters (a,b,c) = (10.1,9.2,10.7).

TABLE 1. The NIST-800-22 test result of the binary sequences XY , XZ, and Y Z.

THE CHAOTIC RSA ALGORITHM

Basically, RSA depends on random choosing of two prime numbers p and q. The values n and ϕ(n) are acquired
by p∗q, and (p− 1) ∗ (q− 1), respectively. a number e is chosen such that, 1 < e < ϕ(n)→ gcd(e,ϕ(n)) = 1, then
its inverse d is calculated by e∗d ≡ 1(modϕ(n)), where 1 < d < ϕ(n). Here, gcd refers to the greatest common
denominator. These steps represent the key generation phase in the RSA cryptosystem.
The diagram of the CRSA algorithm can be shown in Figure 5. The 3D-HMSS produces PRNG, which is used to
develop the CRSA through generation the values of p and q by in Algorithm 1. The resulting sequences are XY ,
XZ, and Y Z. The algorithm’s resistance becomes more effective against the attacks when the values of p and q are
significant. Algorithm 2 is designed to present the generation, the encryption, and the decryption process of CRSA.

Experimental Results

The proposed CRSA is implemented on two types of messages using Matlab programming language. The first step in
the CRSA cryptosystem is generating the PRNG sequence, which is obtained using 3D-HMSS. The CRSA should be
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FIGURE 5. Chaotic RSA (a)encryption, (b) decryption

Algorithm 2 CRSA cryptosystem

Input: The Message M; (Original Text).
Output: The Cipher Text C;

KEY GENERATION
1: Use Algorithm1 to generate p and q as a required size;
2: Compute n and ϕ(n) where n = p∗q,ϕ(n) = (p−1)∗(q−1);
3: Choose e, 1 < e < ϕ(n);
4: Compute d such that, e∗d ≡ 1(mod ϕ(n));
5: ENCRYPTION C = Me(mod n);
6: DECRYPTION M =Cd(mod n).

(a)

(b)

FIGURE 6. The CRSA (a) plaintext, and (b) Cipher of (a); (c) plain image; (d) histogram of (c); (e) encryption of
(c); and (f) histogram of (e).

passed through three stages; the key generation, the encryption, and the decryption. To ensure a secure key generation,
the sequences should pass the statistical test given in Table (1), to demonstrate the validity of the CRSA. The PRNG
is used to assign the prime numbers p and q. In this experiment, we used 3D-HMSS to assign p = 430201589, and
q= 284007653,. Therefore, the module n= 122180543608760624 and the value of Euler ϕ = 122180543608760624.
Hence, the public key is e = 2746063512000553 and the private key is d = 402440341770000. These keys are used
to encrypt two types of data; the plaintext given in Figure 6(a), and the gray image presented in Figure 6(c). The
encryption stage is shown in Figure 6(b), and Figure 6(e) represent the cipher image. Before encrypted of the plaintext,
it should be converted to a binary number; then, it is XOR’ed with a random series of bits Y Z generated by PRNG.
Regarding image encryption, it should be converted to binary numbers, then XOR’ed with the random series of bits
Y Z generated by PRNG. For the decryption stage, this part is generally the reverse operation of the CRSA algorithm.
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CONCLUSION

In this paper, an efficient chaotic system (3D-HMSS) is introduced. It has been used to generate a robust PRNG
sequence with random statistical features, as shown in Table (1) because, it passes the NIST. However, highly secure,
chaotic keys are used to encrypt two types of data (text and image) by the RSA cryptosystem with an improved
algorithm designed for this purpose.
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Abstract. In this work, He’s semi-inverse variation method and the ansatz method with the modified Riemann-Liouville derivative
are used to construct the exact solutions for time fractional Korteweg-de Vries (KdV) equation. The fractional KdV equation is
transformed to another non-linear differential equation by travelling wave transformations and then these two methods are applied
to find the solution.

INTRODUCTION

Many problems in science and engineering have been modelled by nonlinear partial differential equations. Obtaining
the exact solutions of such equations is an important research area. Fractional differential equations (FDEs) have also
attracted the attention of researchers in recent years. FDEs have been studied in the literature by researchers to obtain
exact solutions with different techniques. In different research studies, several important methods have been used to
investigate exact solutions such as the ansatz method, modified simple equation method, the extended trail equation,
the first integral, the exp-function and the exp(-φ(ε)) methods [1, 2, 3]. Some other techniques, like homotopy method
[4, 5], generalized Kudryashov method [6, 7], modified Kudryashov and the sine-Gordon expansion approach [8, 9]
have been made by some researchers, as well.
KdV equations have examined in a wide spectrum of material science facts as a model for the development and
communication of nonlinear waves. The KdV equation was presented by Korteweg and de Vries to define shallow
water waves of long wavelength. Afterwards, the KdV equations have also used in other physical situations such as
collision-free hydro magnetic waves, stratified internal waves, particle acoustic waves, plasma physics, etc. [10, 11,
12, 13].

THE MODIFIED RIEMANN-LIOUVILLE DERIVATIVE AND METHODOLOGY OF
SOLUTION

In [14], f : R → R, ω → f (ω) as a continuous function (not necessarily differentiable), the Jumarie’s modified
Riemann-Liouville derivative (mRLd) of order α for a continuous function is defined as follows

Dα
ω f (ω) =

⎧⎪⎨
⎪⎩

1
Γ(1−α)

d
dω

∫ ω
0

f (τ)− f (0)
(ω−τ)α dτ, 0 < α < 1,

( f (n)(ω))(α−n), n ≤ α ≤ n+1, n ≥ 1,

(1)

where Γ(.) is the Gamma function. Moreover, some important properties of the fractional mRLd are listed as follows
[15]:

Dα
ω ωγ =

Γ(1+ γ)
Γ(1+ γ −α)

,γ > 1, (2)

Dα
ω(c) = 0, (3)

Dα
ω(a f (ω)+bg(ω)) = aDα

ω f (ω)+bDα
ω g(ω), (4)

where a �= 0, b �= 0, and c are constants.
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Now, we will take into account the following nonlinear time FDE of the type

H(u,Dα
t u,ux,D2α

tt u,uxx, ...) = 0, 0 < α < 1, (5)

where u is an unknown function, H is a polynomial of u and its partial fractional derivatives, and α is order of the
mRLd of the function u = u(x, t).
The traveling wave transformation is

u(x, t) =U(ε),

ε = kx− ctα

Γ(1+α)
,

(6)

where k �= 0 and c �= 0 are constants. We use the chain rule

Dα
t u = σt

∂U
∂ε

Dα
t ε,

Dα
x u = σx

∂U
∂ε

Dα
x ε,

(7)

with σt ,σx are sigma indexes [16] and they can be σt = σx = L, where L is a constant.

Substituting (6), applying (2) and (7) to (5), we get the following nonlinear ordinary differential equation (ODE)

N(U,
dU
dε

,
d2U
dε2

,
d3U
dε3

, ...) = 0. (8)

HE’S SEMI-INVERSE METHOD

We now express He’s semi-inverse method for the exact solution of nonlinear time fractional differential equations,
established by Jabbari et al [17]. The method consists of the following steps:

1. First, let us convert the given Eq. (5) into Eq. (8) using the above operations.

2. If possible, integrate Eq. (8) term by term one or more times. This yields constant(s) of integration. For
simplicity, the integration constant(s) can be set to zero.

3. According to the He’s semi-inverse method, we construct the following trial functional

J(U) =
∫

Ldε (9)

where L is an unknown function of U and its derivatives.

4. By the Ritz method, we can obtain different forms of solitary wave solutions, such as

U(ε) = Asech(Bε), U(ε) = Acsch(Bε), U(ε) = Atanh(Bε), U(ε) = Acoth(Bε), (10)

and so on, where A and B are constants to be further determined. Substituting Eq.(10) into Eq. (9) and making
J stationary with respect to A and B results in

∂J
∂A

= 0,
∂J
∂B

= 0. (11)

Solving system (11), we find A and B. So, the solitary wave solution (10) is well-determined.
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APPLICATIONS

We consider the time fractional KdV equation of the form

Dα
t u+au2ux +buxxx = 0, (t > 0, 0 < α ≤ 1) (12)

where a,b are constants [18]. The bright soliton solution will be applied to the solitary wave ansatz method. In order
to solve Eq.(12), using the traveling wave transformation (6), we obtain

−cLU ′+akU2U ′+bk3U ′′′ = 0.

Integrating with respect to ε once and setting the constants of integration to zero, we obtain

−cLU +
ak
3

U3 +bk3U ′′ = 0 (13)

with U ′ = dU
dε .

APPLICATION OF ANSATZ METHOD TO TIME FRACTIONAL KDV EQUATION

The Bright Soliton Solutions

For the bright soliton solutions, we consider the ansatz

U(ε) = Asechp(θε), (14)

where

ε = kx− ctα

Γ(1+α)
, (15)

A is the amplitude of the soliton, θ is the inverse width of the soliton and p > 0 for the solitons to exist. It follows
from ansatz (14) and (15) that

d2U
dε2

= Ap2θ 2sechp(ε)−Ap(p+1)θ 2sechp+2(ε), (16)

and

U3 = A3sech3p(θε). (17)

Substituting the ansatz (14)-(17) into (13), the following equation

−cLAsechp(θε)+
ak
3

A3sech3p(θε)+bk3θ 2Asechp(θε)−bk3θ 2Ap(p+1)sechp+2(θε) = 0 (18)

is obtained. From (18), we suppose that the powers p+2 and 3p are equal and from that p is determined as 1. Now
comparing the different powers of sech(θε), we obtain the following system of algebraic equations{ ak

3 A3 −2bk3θ 2A = 0,
−cLA+bk3θ 2A = 0.

Solving this system, we get

A(1) =−
√

6cL
ak

, θ (1) =−
√

cL
bk3

,

A(2) =−
√

6cL
ak

, θ (2) =

√
cL
bk3

,

A(3) =

√
6cL
ak

, θ (3) =−
√

cL
bk3

,

A(4) =

√
6cL
ak

, θ (4) =

√
cL
bk3

.

(19)
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Finally, we obtain the bright soliton solutions for the time fractional mKdV equation as follows

u1(x, t) =−
√

6cL
ak

sech
[(

−
√

cL
bk3

)(
kx− ctα

Γ(1+α)

)]
,

u2(x, t) =−
√

6cL
ak

sech
[(√ cL

bk3

)(
kx− ctα

Γ(1+α)

)]
,

u3(x, t) =

√
6cL
ak

sech
[(

−
√

cL
bk3

)(
kx− ctα

Γ(1+α)

)]
,

u4(x, t) =

√
6cL
ak

sech
[(√ cL

bk3

)(
kx− ctα

Γ(1+α)

)]
.

(20)

Application of He’s Semi-Inverse Method to Time Fractional KdV Equation

By He’s semi-inverse principle [19, 20], from (13) the following variational formula

J =
∫ ∞

0

(−bk3

2
(U ′)2 − cL

2
U2 +

ak
12

U4
)

dε. (21)

is derived. By a Ritz-like method, we look for a solitary wave solution in the following form

U(ε) = Asech(Bε), (22)

where A and B are unknown constants to be determined later. Substituting Eq.(22) into Eq. (21), we have

J =
−bk3

6
A2B− cL

2B
A2 +

ak
18B

A4. (23)

Making J stationary with A and B gives

∂J
∂A

=
−bk3

3
AB− cL

B
A+

2ak
9B

A3 = 0,

∂J
∂B

=
−bk3

6
A2 +

cL
2B2

A2 − ak
18B2

A4 = 0.

(24)

From system (24), we obtain

A =∓
√

6cL
ak

, B =∓
√

cL
bk3

. (25)

Using travelling wave transformation (6), we have the following bright soliton solutions of the fractional differential
Eq.(12)

u(x, t) =∓
√

6cL
ak

sech
[(

∓
√

cL
bk3

)(
kx− ctα

Γ(1+α)

)]
. (26)

CONCLUSION

In this study, He’s semi-inverse variation method and the ansatz method are applied successfully for finding the
bright soliton solutions of the nonlinear fractional KdV equation. It can be concluded from the results that these
methods are convenient. Also, when we compare the results found by both methods, it is observed that they are same
results. It is clear that other soliton solutions can be found with these methods.
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Abstract. In a rectangular domain, we discuss about an approximation of the first order derivatives for the solution of the mixed
boundary value problem. The boundary values on the sides of the rectangle are supposed to have the second order derivatives
satisfying the Hölder condition. Under these conditions for the approximate values of the first derivatives of the solution of mixed
boundary problem on a square grid, as the solution of the constructed difference scheme a uniform error estimation of order O(h)
(h is the grid size) is obtained. Numerical experiments are illustrated to support the theoretical results.

INTRODUCTION

Laplace equation is an important equation with many applications in engineering fields. The Laplace equation has
numerical solutions that have been studied along with many boundary conditions, the most applicable of which is the
mixed boundary condition problem. Many of these studies have used classical operators (see [1] and [2]). As well as
the solution of the Laplace equation, the derivative of its solution has many applications (see [3]) and many of these
solutions were obtained using classical operators (see [4]).

In this study, the mixed boundary value problem of Laplace equation is considered by using 5-point finite difference
scheme on a rectangle. A second order finite-difference approximation on square grids is used to obtain numerical
solution. The uniform convergence for the approximate solution at the rate of O(h2) and for the first derivative at the

rate of O(h) is proved when the exact solution u belongs to C̃2,λ .

FINITE DIFFERENCE APPROXIMATION

Let Π= {(x,y) : 0< x< a,0< y< b} be rectangle, a/b be rational, γ j, j = 1,2,3,4, be the sides, including (excluding)
the ends, enumerated counterclockwise starting from the side which location on the x−axis (γ0 ≡ γ4,γ1 ≡ γ5). Denote

by s the arc length, measured along γ, and by s j the value of s at the beginning of γ j and by γ =
4∪

j=1
γ j, the boundary

of Π, by v j a parameter taking the values 0 or 1, and v j = 1− v j.
We consider the following boundary value problem

Δu = 0 on Π, (1)

v ju+ v ju
(1)
n = v jϕ j + v jψ j on γ j, j = 1,2,3,4, (2)

where u(1)n is the derivative along the inner normal, ϕ j and ψ j are given functions at the arc length taken along γ,

1 ≤
4

∑
j=1

v j ≤ 4, v1 = 1. (3)

Definition 1 We say that the solution u of the problem (1), (2) belongs to C̃k,λ (Π), if

v jϕ j + v jψ j ∈Ck,λ (γ j), 0 < λ < 1, j = 1,2,3,4 (4)

and at the vertices A j = γ j−1 ∩ γ j the conjugation conditions

v jϕ
2q+δτ−2
j + v jψ2q+δτ

j = (−1)q+δτ+δτ−1(v j−1ϕ2q+δτ−1
j−1 + v j−1ψ2q+δτ

j−1 ) (5)
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are satisfied, except may be the case when q = k/2 for τ = 3, where τ = v j−1 + 2v j, δw = 1 for w = 0; δw = 0 for
w �= 0, q = 0,1, ...,Q, Q = [(k−δτ−1 −δτ−2)/2]−δτ.

Let h > 0, with a/h ≥ 2, b/h ≥ 2 be integers. We assign to Πh a square net on Π, with step h, obtained by the lines
x,y = 0,h,2h, ...; γh

j be a set of nodes on the interior of γ j, and let

.
γh

j = γ j ∩ γ j+1, γh = ∪(γh
j ∪

.
γh

j), Πh
= Πh ∪ γh.

Let the operators A, K and
.
K be defined as follows:

Au(x,y) =
u(x+h,y)+u(x,y+h)+u(x−h,y)+u(x,y−h)

4
on Πh, (6)

Ku(x,y) =
1

2
u(x+hsin

jπ
2
,y−hcos

jπ
2
)+

1

4

1

∑
k=0

u(x+(−1)khcos
jπ
2
,y+(−1)khsin

jπ
2
) on γh

j , j = 1,2,3,4, (7)

and

.
Ku(x,y) =

1

2

1

∑
k=0

u(x+hsin
( j+ k)π

2
,y−hcos

( j+ k)π
2

) on
.
γh

j , j = 1,2,3,4. (8)

We consider the classical 5-point finite difference approximations of the problem (1):

uh = Auh on Πh, (9)

uh = v jϕ j +
_
v j(Kuh − h

2
ψ j) on γh

j , j = 1,2,3,4, (10)

uh = v jϕ j +
_
v jv j+1ϕ j+1 +

_
v j

_
v j+1(

.
Kuh − h

2
(ψ j +ψ j+1)) on

.
γh

j , j = 1,2,3,4. (11)

The system of finite difference equations (9)-(11) which has nonnegative coefficients, with the condition (3) is
uniquely solvable.

Theorem 1 Let u the solution of problem (1), (2). If u ∈ C̃2,λ (Π) the condition (3) holds, then

max
Πh

|uh −u| ≤ ch2,

where uh is the solution of the system (9)-(11).

The proof of Theorem 1 follows from the Theorem 1 in [1].

APPROXIMATE OF THE FIRST DERIVATIVES

Let u be a solution of problem (1), (2). Let v = ∂u
∂x and let Φ j =

∂u
∂x on γ j, j = 1,2,3,4, and consider the boundary

value problem:

Δv = 0 on Π, v = Φ j on γ j, j = 1,2,3,4. (12)

We define the sets

γh+
(2i−1)

=
{

0 ≤ x ≤ a
2
, y = b(i−1)

}
∩ γh

(2i−1), i = 1,2 (13)
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and

γh−
(2i−1)

=
{a

2
+h ≤ x ≤ a, y = b(i−1)

}
∩ γh

(2i−1), i = 1,2. (14)

We define the following operator Φph, p = 1,2,3,4,

Φ(2i−1)h(uh) = v3
∂u(x,b(i−1))

∂x
+ v3

1

h
[−uh(x,b(i−1))+uh(x+h,b(i−1))] on γh+

(2i−1)
, (15)

Φ(2i−1)h(uh) = v3
∂u(x,b(i−1))

∂x
+ v3

1

h
[uh(x,b(i−1))−uh(x−h,b(i−1))] on γh−

(2i−1)
, (16)

Φ(2i)h(uh) = v(2i)ψ(2i) + v(2i)
(−1)i+1

h
[ϕ(2i)((2− i)a)−uh((2− i)a+(−1)ih,y)] on γh

(2i), (17)

where i = 1,2 and uh is the solution of the finite difference problem (9)-(11).
Let vh be the solution of the following finite difference problem

vh = Avh on Πh, vh = Φ jh on γh
j , j = 1,2,3,4, (18)

where Φ jh , j = 1,2,3,4, are defined by (15)-(17).

Theorem 2 The following estimation is true

max
(x,y)∈Πh

∣∣∣∣vh − ∂u
∂x

∣∣∣∣≤ ch,

where u is the solution of the problem (1), vh is the solution of the finite difference problem (18).

Remark 1 We have investigated approximations of the first derivative ∂u
∂x . The same results are obtained for the

derivative ∂u
∂y , by using the same order forward and backward formulae in the corresponding sides of the rectangular

domain.

NUMERICAL EXAMPLES

Example 1 Let Π = {(x,y) : 0 < x,y < 1} , and let γ be the boundary of Π. We consider the following problem :

Δu = 0 on Π, u = ϕ j(x,y) on γ j, j = 1,2,3, u(1) =
∂u(0,y)

∂x
= ψ4(y) on γ4,

where

ϕ j(x,y) = (x2 + y2)
61
60 cos

(
61

30
arctan

(y
x

))
on γ j, j = 1,2,3,

and

ψ4(y) =
61

30
y

31
30 sin

(
61π
60

)
on γ4.

Table 1 shows that the order of the solution of the problem given in Example 1 is O(h2) when the given Neu-
mann condition on the left side and order of the first derivative O(h) when used the first order backward numerical
differentiation formula on the right side.

Example 2 Let Π = {(x,y) : 0 < x,y < 1} , and let γ be the boundary of Π. We consider the following problem :

Δu = 0 on Π, u = ϕ(x,y) on γ j, j = 1,2,3,

u(1) =
∂u(x,1)

∂y
= ψ3(y) on γ3 and u(1) =

∂u(0,y)
∂x

= ψ4(y) on γ4,
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TABLE 1. The approximate results for the solution and first derivative when ϕ ∈C2, 1
30

h ‖uh −u‖ Em
u ‖vh − v‖ Em

v
1
4 3.224E −04 3.631 2.641E −01 1.994
1
8 8.878E −05 3.879 1.324E −01 1.997
1
16 2.289E −05 3.988 6.631E −02 1.999
1
32 5.739E −06 4.032 3.318E −02 1.999
1
64 1.423E −06 4.040 1.659E −02 2.000
1

128 3.523E −07 8.299E −03

where

ϕ j(x,y) = (x2 + y2)
61
60 cos

(
61

30
arctan

(y
x

))
on γ j, j = 1,2,3,

and

ψ3(y) =−61

30

60
√

x2 +1

[
xsin(

61

30
arctan(

1

x
)− cos(

61

30
arctan(

1

x
))

]
on γ3,

ψ4(y) =
61

30
y

31
30 sin

(
61π
60

)
on γ4.

TABLE 2. The approximate results for the solution and first derivative when ϕ ∈C2, 1
30

h ‖uh −u‖ Em
u ‖vh − v‖ Em

v
1
4 7.404E −04 3.999 2.663E −01 2.002
1
8 1.851E −04 4.007 1.330E −01 2.001
1
16 4.621E −05 4.006 6.647E −02 2.001
1
32 1.153E −05 4.004 3.332E −02 2.000
1
64 2.881E −06 4.002 1.661E −02 2.000
1

128 7.199E −07 8.301E −03

Table 2 shows that the order of the solution of the problem given in Example 2 is O(h2) when the given Neumann
condition on the left side and at the top sides and order of the first derivative O(h) when used the first order forward
and backward numerical differentiation formula on the right and up sides.

The results which illustrated in Table 1 and Table 2 are the numerical justification of Theorem 1 and Theorem 2.
In Table 1 and Table 2 we have used the following notations:

‖Uh −U‖
Πh = max

Πh
|Uh −U | and En

U =
‖U−U2−n‖Πh∥∥∥U−U

2−(n+1)

∥∥∥
Πh

, where U be the trace of the exact solution of the continuous

problem Πh
, and Uh be its approximate values.

CONCLUSION

The proposed method can be used to obtain the derivative of the solution of the 3D Laplace equation with mixed
boundary conditions.
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Abstract. In this article we study strongly uniformly R-paracompact space and strongly uniformly R-paracompact mappings.
In particular, the characterizations of strongly uniformly R-paracompact spaces by using Hausdorff compact extensions and finite
additive coverings are obtained.

INTRODUCTION

Throughout this work all uniform spaces are assumed to be Hausdorff, mappings are uniformly continuous.

For coverings α and β of the set X , the symbol α � β means that the covering α is a refinement of the covering
β , i.e. for any A ∈ α there exists B ∈ β such that A ⊂ B and, for coverings α and β of a set X , we have: α ∧β =
{A

⋂
B : A ∈ α,B ∈ β}. The covering α finitely additive if α∠ = α , α∠ = {⋃α0 : α0 ⊂ α is finite}. α(x) =

⋃
St(α,x),

St(α,x) = {A ∈ α : A � x}, x ∈ X , α(H) =
⋃

St(α,H), St(α,H) = {A ∈ α : A
⋂

H �=∅}, H ⊂ X .

A covering α of the uniform space (X ,U) is called uniformly star finite if there exists a uniform covering β ∈ U
such that every α(B) meets α only for a finite number of elements of α; a covering α of the uniform space (X ,U)
is called uniformly locally finite if there exists a uniform covering β ∈ U such that every B ∈ β meets α only for a
finite number of elements of α; the covering consisting of the union of countable number of (uniformly) locally finite
families is called (uniformly) σ -locally finite; star finitely uniformly σ -locally finite coverings will be called uniformly
σ -star finite; a uniform space (X ,U) called uniformly R-paracompact, if every open covering has an open uniformly
locally finite refinement [1]; a uniform space (X ,U) called uniformly B-paracompact, if for each finitely additive
open covering γ of (X ,U) there exists such sequence uniform covering {αi : i ∈ N} ⊂U , that following condition is
realized: for each point x ∈ X there exist such number i ∈ N and Γ ∈ γ that αi(x)⊂ Γ (*) [2]; a uniform space (X ,U)
called uniformly P-paracompact, if for each open cover γ of (X ,U) there exists such sequence uniform covering {αi :
i ∈ N} ⊂U , that the condition (*) is realized [3]; a uniform space (X ,U) is called strongly uniformly R-paracompact
if every open covering has an open uniformly star finite refinement [2]; a uniform space (X ,U) is called strongly
uniformly B-paracompact if the space (X ,U) is uniformly B-paracompact and (X ,U) is strongly paracompact [5]; a
uniform space (X ,U) is called strongly uniformly P-paracompact if the space (X ,U) is uniformly P-paracompact and
(X ,U) is strongly paracompact [5]; a uniform space (X ,U) is called strongly uniformly paracompact, if every open
cover of (X ,U) has a uniformly σ -star finite open refinement [6].

A uniform space (X ,U) is called uniformly B-Lindelöf, if it is both uniformly B-paracompact and ℵ0-bounded
[2]; a uniform space (X ,U) is called ℵ0-bounded if the uniformity U has a base consisting of countable coverings; a
uniform space (X ,U) is called uniformly A-Lindelöf, if for each open covering α exist a countable uniformly covering
β = {Bn : n ∈ N} and γ ∈U such that β � α∠ and γ(B̄n)⊂ Bn+1 for any n ∈ N [7]; a uniform space (X ,U) is called
uniformly P- Lindelöf, if for each open cover γ of (X ,U) there exists such sequence countable uniform covering
{αi : i ∈ N} ⊂ U , that the condition (*) is realized [5]; a uniform space (X ,U) is called uniformly R-Lindelöf, if it
is both uniformly R-paracompact and ℵ0-bounded; a uniformly continuous mapping f : (X ,U)→ (Y,V ) of uniform
space (X ,U) onto a uniform space (Y,V ) is called a precompact, if for each α ∈U there exist a uniform covering β ∈V
and finite uniform covering γ ∈ U , such that f−1β ∧ γ � α[2]; a uniformly continuous mapping f : (X ,U)→ (Y,V )
of uniform space (X ,U) onto a uniform space (Y,V ) is called a uniformly perfect, if it is both precompact and perfect
[2]; a uniformly continuous mapping f : (X ,U) → (Y,V ) of uniform space (X ,U) onto a uniform space (Y,V ) is
called a uniformly open, if f maps each open uniform covering α ∈ U to an open uniform covering f α ∈ V [2].
For the uniformity U by τU we denote the topology generated by the uniformity and symbol UX means the universal
uniformity.

International Conference on Analysis and Applied Mathematics (ICAAM 2020)
AIP Conf. Proc. 2325, 020030-1–020030-5; https://doi.org/10.1063/5.0040268

Published by AIP Publishing. 978-0-7354-4069-2/$30.00

020030-1



ON STRONGLY UNIFORMLY R-PARACOMPACT SPACES AND STRONGLY
UNIFORMLY R-PARACOMPACT MAPPINGS

Let (X ,U) be a uniform space.

Proposition 1 If (X ,U) is a strongly uniformly R-paracompact space then the topological space (X ,τU ) is strongly
uniformly R-paracompact. Conversely, if (X ,τ) is strongly paracompact then the uniform space (X ,UX ) is strongly
uniformly R-paracompact.

Proof. Let α be an arbitrary open cover of the space (X ,τU ) . Then for the open covering α exists a uniformly star
finite open covering β which is a refinement of it. Let B ∈ β be an arbitrary set. Then exist L ∈ λ such that B

⋂
L �=∅.

Then B ⊂ β (L) and the set β (L) meets β only for a finite number of elements of β . Hence, β is star finite. Since the
space (X ,τU ) is strongly uniformly R-paracompact. Consequently, the space (X ,τU ) is strongly paracompact.

Conversely, if (X ,τ) be a strongly uniformly R-paracompact. Then the set of all open coverings forms a base of
universal uniformity UX of the space (X ,τ). Thus, (X ,UX ) is strongly uniformly R-paracompact.

Theorem 1 A uniform space (X ,U) is strongly uniformly R-paracompact if and only if every finitely additive open
covering has an open uniformly star finite refinement.

Proof. Necessity. Let (X ,U) be a strongly uniformly R-paracompact space and α be an arbitrary finitely additive
open covering of the space (X ,U). Then exist uniformly star finite open covering β such that β � α .

Sufficiency. Let α be an arbitrary open covering of the space (X ,U). Then open covering α∠ is finitely additive.
Let β be an open uniformly star finite covering of the space (X ,U) such that β � α∠. For each B ∈ β choose such

A∠ ∈ α∠that B ⊂ A∠, where A∠ =
n⋃

i=1
Ai, Ai ∈ α , i = 1,2, ...,n. Denote βB = {Ai

⋂
B : i = 1,2, ...,n}. Then βB is an

open uniformly star finite covering refined in the open covering α . Thus, (X ,U) is strongly uniformly R-paracompact.

Theorem 2 Any closed subspace uniform space (M,UM) of a strongly uniformly R-paracompact space (X ,U) is
strongly uniformly R-paracompact.

Proof. Let αM be an arbitrary open covering of the subspace (M,UM). Then there exits open family α of (X ,U),
such that α ∧{M}= αM . Denote β = {α,X\M}. Obviously the covering β is an open covering of the space (X ,U).
Then exist uniformly star finite open covering γ such that γ � β . Hence γM � αM . Then it is easy to check that γM is
a uniformly star finite open covering of the space (M,UM). Thus, (M,UM) is strongly uniformly R-paracompact.

Theorem 3 Let (X ,U) be a uniform space and bX be a certain compact Hausdorff extension of the space (X ,τU ). A
uniform space (X ,U) is strongly uniformly R-paracompact if and only if for each compact K ⊂ bX\X there exist a
uniformly star finite coverings α , such that [A]bX

⋂
K =∅ for any A ∈ α .

Proof. Necessity. Let (X ,U) be a strongly uniformly R-paracompact space and K ⊂ bX\X be an arbitrary compact.
Then for each point x ∈ X there is a open neighborhood Ox of the bX , such that [Ox]bX

⋂
K = ∅. Denote λ =

{Ox
⋂

X : x ∈ X}. Obviously λ is open covering of the space (X ,U). Let β be a uniformly star finite open covering
of the space (X ,U), refined in the covering λ , i.e. for any B ∈ β there exists Ox

⋂
X ∈ λ such that B ⊂ Ox

⋂
X . Then

[B]bX ⊂ [Ox
⋂

X ]bX = [Ox]bX . Consequently, [B]bX
⋂

K =∅.

Sufficiency. Let α be an arbitrary finitely additive open covering of the space (X ,U). Then for every A ∈ α exists
open subsets A ∈ α of the bX such that LA

⋂
X = A. Denote K = bX\⋃{LA : A ∈ α}. Accordingly to the condition

of the theorem, the exists a uniformly star finite coverings β , such that [B]bX
⋂

K = ∅ for any B ∈ β . Since [B]bX

is compact, there exist LA1
,LA2

, ...,LAn of the bX such that [B]bX ⊂
n⋃

i=1
LAi . Then B ⊂

n⋃
i=1

Ai, Ai ∈ α , i = 1,2, ...,n .

Hence, αi(x)⊂ (
k⋃

j=1
L j)

⋂
X . By virtue of finitely additiveness of the coverings μ we have (

k⋃
j=1

L j)
⋂

X ∈ μ . Thus, the

uniform space (X ,U) is strongly uniformly R-paracompact.

Theorem 4 A uniform space (X ,U) is strongly uniformly R-paracompact if and only if uniform space (X ,U) is uni-
formly R-paracompact and topological space (X ,τU ) is strongly paracompact.
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Proof. Necessity. The necessity is obvious.
Sufficiency. Let α be an arbitrary open covering of the space (X ,U). By virtue of strongly paracompactness

of uniform space (X ,τU ) there exist a open star finite coverings β , such that β � α . Then exist an open uniformly
locally finite covering γ refined in the covering β . The covering γ is uniformly locally finite, therefore exists a uniform
covering λ ∈ U such that every L ∈ λ meets γ only for a finite number of elements of γ , i.e. the cardinality of the
family St(L,γ) is finite for each L ∈ λ . Let L ∈ λ and Γ ∈ St(L,γ). Since γ � β , then for any Γ ∈ γ there exists B ∈ β
such that Γ ⊂ B. Due to the star finiteness of the covering β , it follows that the cardinality of the family St(B,β ) is
finite for each B ∈ β and even more so the cardinality of the family St(Γ,β ) is finite for each Γ ∈ St(L,γ). Then the
cardinality of the family St(γ(L),β ) is finite. Hence, the cardinality of the family St(L,β ) is finite for each L ∈ λ .
Then it is easy to check that St(β (L),β ) is finite. Since, every β (L) meets β only for a finite number of elements of
β . Thus, the uniform space (X ,U) is strongly uniformly R-paracompact.

Corollary 1 Any compact uniform space (X ,U) is strongly uniformly R-paracompact.

Corollary 2 Any uniformly locally compact uniform space (X ,U) is strongly uniformly R-paracompact.

Corollary 3 Any uniformly R-paracompact and uniformly B-Lindelöf space (X ,U) is strongly uniformly R-paracompact.

Corollary 4 Any uniformly R-Lindelöf space (X ,U) is strongly uniformly R-paracompact.

Corollary 5 Any uniformly R-paracompact and uniformly A-Lindelöf space (X ,U) is strongly uniformly R-paracompact.

Corollary 6 Any uniformly R-paracompact and uniformly P-Lindelöf space (X ,U) is strongly uniformly R-paracompact.

Corollary 7 Any uniformly R-paracompact and strongly uniformly P-paracompact space (X ,U) is strongly uniformly
R-paracompact.

Corollary 8 Any uniformly R-Lindelöf space is strongly uniformly B-paracompact.

Theorem 5 Any strongly uniformly R-paracompact space is strongly uniformly B-paracompact.

Proof. Let (X ,U) be a strongly uniformly R-paracompact space. Then (X ,U) is uniformly B-paracompact and its
topological space (X ,τU ) is strongly paracompact. Thus, (X ,U) is strongly uniformly B-paracompact.

Theorem 6 Any strongly uniformly R-paracompact space is strongly uniformly paracompact.

Proof. Let (X ,U) be a strongly uniformly R-paracompact space. Then (X ,U) is uniformly paracompact and its
topological space (X ,τU ) is strongly paracompact. Thus, (X ,U) is strongly uniformly paracompact.

Lemma 7 A covering α of the uniform space (X ,U) uniformly star finite if and only if it is uniformly locally finite
and star finite.

Proof. A uniformly locally finite follows directly from the definition of a uniformly star finite. Now let A ∈ α be
an arbitrary element. Then exist B ∈ β such that A

⋂
B �= ∅. Then A ⊂ α(B) and the set α(B) meets α only for a

finite number of elements of α . Hence, α is star finite. Conversely, let α be a uniformly locally finite and star finite
covering. Then exists a uniform covering β ∈U such that every B ∈ β meets α only for a finite number of elements

of α i.e. exists Ai(B) ∈ α such that B ⊂
n⋃

i=1
Ai(B). By virtue of the star finite of the covering α , every Ai(B) meets α

only for a finite number of elements of α . Then α(B) also meets α only for a finite number of elements of α . Thus,
the covering α of the uniform space (X ,U) uniformly star finite.

Lemma 1 imply the following.

Theorem 8 A uniform space (X ,U) is strongly uniformly R-paracompact if and only if every open covering has an
open uniformly locally finite and star finite refinement.

Lemma 1 and Theorem 2.3.9 [2, p. 155] imply the following theorem.

Theorem 9 Let f : (X ,U) → (Y,V ) be a perfect mapping of a uniform space (X ,U) onto a uniform space (Y,V ).
If (Y,V ) is strongly uniformly R-paracompact space then the uniform space (X ,U) is also strongly uniformly R-
paracompact.
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Corollary 9 Let f : (X ,U)→ (Y,V ) be a uniformly perfect mapping of a uniform space (X ,U) onto a uniform space
(Y,V ). If (Y,V ) is strongly uniformly R-paracompact space then the uniform space (X ,U) is also strongly uniformly
R-paracompact.

Proposition 2.2.15 [2, p. 145] and Exercise 5.3. H (d) [8, p. 487] imply the following theorem.

Theorem 10 Let f : (X ,U)→ (Y,V ) be a perfect uniformly open mapping of a uniform space (X ,U) onto a uniform
space (Y,V ). If (X ,U) is strongly uniformly R-paracompact space then the uniform space (Y,V ) is also strongly
uniformly R-paracompact.

Definition 1 A uniformly continuous mapping f : (X ,U) → (Y,V ) of a uniform space (X ,U) onto a uniform space
(Y,V ) is said to be strongly uniformly R-paracompact, if for each open covering α of the space (X ,U) there exist such
open covering β of the space (Y,V ) and uniformly star finite open covering α of the space (X ,U), that the covering
f−1β ∧α is refined in a covering λ ;

Proposition 2 Let f : (X ,U)→ (Y,V ) be a uniformly continuous mapping of a uniform space (X ,U) onto a uniform
space (Y,V ). If (X ,U) is strongly uniformly R-paracompact space then the uniformly continuous mapping f is strongly
uniformly R-paracompact.

Proof. Let (X ,U) be a strongly uniformly R-paracompact space and λ be an arbitrary open covering. Then exist
such uniformly star finite open covering γ of the space (X ,U), that the covering α is refined in a open covering λ .
For open covering β of the space (Y,V ) we have the covering f−1β ∧α is refined in a covering λ . Consequently, the
mapping f is strongly uniformly R-paracompact.

Proposition 3 If uniformly continuous mapping f : (X ,U)→ (Y,V ) of a uniform space (X ,U) onto a uniform space
(Y,V ) , Y = {y} is strongly uniformly R-paracompact, then the uniform space (X ,U) is strongly uniformly R-
paracompact.

Proof. Let f be a strongly uniformly R-paracompact mappings and λ be an arbitrary open covering of the space
(X ,U). Then exists such open covering β of the space (Y,V ) and uniformly star finite open covering α of the space
(X ,U), that the covering f−1β ∧α is refined in a covering λ . Since Y = {y}, then f−1β ∧α = α . Thus, (X ,U) is
strongly uniformly R-paracompact.

Lemma 11 If α and β is uniformly star finite covering of the space (X ,U), then covering α ∧ β is uniformly star
finite covering of the space (X ,U).

Proof. Let α and β be a uniformly star finite covering of the space (X ,U). We show the covering α ∧ β is also
uniformly star finite covering of the space (X ,U). Since the coverings α and β is uniformly star finite, there exists such

uniform coverings μ ∈U and η ∈U , that α(M)⊂
n⋃

i=1
Ai, β (N)⊂

m⋃
j=1

B j, M ∈ μ , N ∈ η . Note that (α ∧β )(M
⋂

N)⊂

α(M)
⋂

β (N) ⊂
n⋃

i=1

m⋃
j=1

(Ai
⋂

B j), M
⋂

N ∈ μ ∧η . Obviously, μ ∧η is uniformly covering. Thus, the covering α ∧β

is uniformly star finite.

Lemma 12 Let f : (X ,U) → (Y,V ) be a uniformly continuous mapping of a uniform space (X ,U) onto a uniform
space (Y,V ). If β is uniformly star finite open covering of the space (Y,V ), then f−1β is uniformly star finite open
covering of the space (X ,U).

Proof. Let f be a uniformly continuous mapping and β be a uniformly star finite open covering of the space (Y,V ).
Then exist such uniform covering α ∈V , that |St(α(B),β )| is finite for all B ∈ β i.e. for any B ∈ β exist such elements

Bi ∈ β , i = 1,2, ...,n, that α(B) ⊂
n⋃

i=1
Bi. Since f is a uniformly continuous mapping, then f−1β is open covering

of the space (X ,U)and f−1α ∈U . Consequently, f−1α(B) ⊂
n⋃

i=1
f−1Bi, f−1Bi ∈ f−1β . Thus, the covering f−1β is

uniformly star finite open covering of the space (X ,U).

Theorem 13 If f and (Y,V ) is strongly uniformly R-paracompact, then the uniform space(X ,U) is strongly uniformly
R-paracompact.
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Proof. Let f and (Y,V ) be a strongly uniformly R-paracompact and λ be an arbitrary open covering of the space
(X ,U). Then exist such open covering β of the space (Y,V ) and uniformly star finite open covering α of the space
(X ,U), that the covering f−1β ∧α is refined in a covering λ . By virtue of the strongly uniformly R-paracompactness
of the uniform space (Y,V ) exist such uniformly star finite open covering β0, that the covering β0 is refined in a
covering β . Obviously, f−1β0 ∧α � f−1β ∧α . By virtue of Lemma 3 the open covering f−1β0 is uniformly star
finite. Denote f−1β0 ∧ γ = δ . By virtue of Lemma 2 the open covering δ is uniformly star finite. Hence, the space
(X ,U) is strongly uniformly R-paracompact.
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Abstract. The aim of this paper is to show how North Cyprus fights Covid-19 by using the basic reproduction number R0 and
effective reproduction number Rt . According to the Wikipedia page with title Covid-19 pandemic in Northern Cyprus, North
Cyprus is the first country in Europe to free from Covid-19. One of the important reasons of this is that the government decided for
tackling Covid-19 pandemic by using R0 and Rt daily. For R0, we constructed a new SEIR model by using the real data for North
Cyprus. From March 11, 2020 to May 15, 2020 R0, varies from 0.65 to 2.38.

INTRODUCTION

Cyprus is the third largest island located in the Mediterranean region. In the North side of Cyprus, the population
is approximately 374 000, and consists mainly of Turkish Cypriots [1, 2]. In Northern Cyprus, the SARS-CoV-2
outbreak started with patient zero on March 9, 2020 [3]. SARS-CoV-2 entered the Northern Cyprus through the
routes of Germany and England [4, 5]. We constructed a new SEIR model in order to calculate R0 and Rt by using the
real data for North Cyprus [6].

The basic reproduction number can be defined as the number of cases which are expected to occur on average in
a homogeneous population as a result of infection by a single individual. While calculating the basic reproduction
number of an infectious disease, the whole population is assumed to be susceptible. The effective reproduction
number, Rt , also denoted by Re, is the number of people in a population who can be infected by an individual at
any specific time. The effective reproduction number can be calculated in two ways. We can either use exposed
individuals or we can check herd immunity idea. It changes as the population becomes increasingly immunized,
either by individual immunity following infection or by vaccination, and also as people die [7, 8].

On May 15, 2020, total of 30,025 tests have been conducted resulting in 108 Covid-19 positive cases in Northern
Cyprus, of whom zero patient under treatment. There is no individuals are under quarantine for 26 days due to the
risk of carrying the Covid-19, 104 have recovered and 4 deaths have occurred [6].

In this paper, we compare values of R0 and Rt , as herd immunity, in North Cyprus and by analyzing both we try to
find which could be the best parameter for fighting Covid-19 .

THE BASIC REPRODUCTION NUMBER AND EFFECTIVE REPRODUCTION
NUMBER

In order to calculate the basic reproduction number in North Cyprus we use the basic SEIR model where S is suscep-
tible, E is expose, I is infected and R is recovery compartment. Herd immunity Rt will be calculated as

Rt = 1− 1

R0
. (1)

By using the SEIR model,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Π−λS,

dE
dt = λS− (θ1 +θ2)E,

dQ
dt = θ1E − (δ1 +θ3)Q,

dI1
dt = θ2E +θ3Q− (δ2 +ω +θ4 +α1)I1,

dI2
dt = θ4I1 − (Φ+α2 +δ3)I2,

dH
dt = ωI1 +ΦI2 − (δ4 +α3)H,

dR
dt = δ1Q+δ2I1 +δ3I2 +δ4H,

we calculated R0 for North Cyprus, where the parameters are given in Table 1 and Table 2. For R0, we have the
following formula

R0 =
(((b1βτ1 +βτ2θ3)θ1 +βτ2k2θ2)k3 +ωβτ4 (θ2k2 +θ3θ1))b2 +θ4 (βτ4ϕ +βτ3k3)(θ2k2 +θ3θ1)

k1k2k3b1b2
, (2)

where

k1 = θ1 +θ2,k2 = δ1 +θ3,k3 = δ4 +α3,b1 = δ2 +ω +θ4 +α1,andb2 = ϕ +α2 +δ3. (3)

R0 and Rt values for North Cyprus are given in the Figure 1 and Figure 2.

FIGURE 1. Rt values from March 11, 2020 to May 15, 2020.

TABLE 1. Variables for the model
Variables Descriptions

N Total population of humans
S Susceptible humans at the risk of having COVID-19 infection
E Exposed humans
I1 Infected humans with moderate infection
I2 Infected humans with severe infection
Q Human population under quarantine and isolation
H Hospitalized humans
R Recovered humans
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FIGURE 2. R0 values from March 11, 2020 to May 15, 2020.

TABLE 2. Parameters for the model and basic reproduction number

Parameters Descriptions

π Recruitment rate
β Transmission rate
τi (i=1,2,3,4) Parameters for increase or decrease on infectiousness in humans
θi (i=1,2,3,4) Progression rates
ω Hospitalization rate from I1 class
φ Hospitalization rate from I2 class
αi (i=1,2,3) Disease induced death rates
δi Recovery rates

FIGURE 3. North Cyprus and comparison with most crowded countries and world data between March 11, 2020 - May 15, 2020
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CONCLUSION

North Cyprus is the first European Country which reached zero Covid-19 cases in 37 days, from March 10, 2020 to
April 17, 2020 [9, 10]. We can see that the North Cyprus has the lowest death rate and highest recovery in Europe
compare to the other most severe countries in European countries Figure 3.

Between April 17, 2020 - July 1, 2020, no new Covid-19 cases has seen in North Cyprus. In total test with 80,000
tests is the leading country in the Europe between the dates March 11, 2020 - May 15, 2020 Figure 3. North Cyprus
SARS-CoV-2 tackling compared with the other European countries. Finally, we have monitored Covid-19 pandemic
in North Cyprus with SEIR model R0 and Rt herd immunity. In North Cyprus R0 is more effective than Rt , since we
don’t have enough immune people in North Cyprus. However, we cannot generalize this result.
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Abstract. In this study, second order of accuracy difference scheme for approximate solution of initial-boundary value problem
for time delay telegraph equation with Dirichlet condition is presented. The main theorem on stability of the difference scheme is
established. Numerical results are provided.

INTRODUCTION

Telegraph equations with or without delay term arise in many branches of science and engineering, such as hydrody-
namics [1], electromagnetic [2], waves in fluids [3], chemistry [4], and applied mathematics [5]. The delay term has
received considerable attention in the last decades (see, for examples, [6, 7, 8, 9, 10]). In most cases, the exact solu-
tions cannot be found easily. In numerical methods, the problem of stability has received a great deal of importance
and attention. However, the stability theory of difference problems for time delay telegraph equations with delay term
have not been studied extensively.

The study is organized as follows. Section 1 is the introduction. In section 2, the initial-boundary value problem for
time delay telegraph equation with Dirichlet condition is considered. The second order of accuracy difference scheme
for this problem is constructed. The main theorem on stability estimates for the solution of this difference problem is
given. In Section 3, numerical results are provided.

THE MAIN THEOREM ON STABILITY

In this section, we consider the initial-boundary value problem for time delay telegraph equation with Dirichlet con-
dition ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

utt(t,x)+αut(t,x)− (a(x)ux(t,x))x +δu(t,x) = b((−a(x)ux ([t],x))x +δu([t],x)) ,

0 < t < ∞, 0 < x < l,

u(0,x) = ϕ(x), ut(0,x) = ψ(x), 0 ≤ x ≤ l,

u(t,0) = u(t, l) = 0, 0 ≤ t < ∞,

(1)

where a(x), ϕ(x), and ψ(x) are given sufficiently smooth functions. We assume that a(x) ≥ a0 > 0, (x ∈ (0, l)),
a(l) = a(0), δ > α2

4 , α > 0 and 0 < b < 1. The discretization of problem (1) is carried out in two steps. In the first
step, we define the grid space

[0, l]h = {x = xn : xn = nh, 0 ≤ n ≤ M, Mh = l}.
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Let (0, l)h = [0, l]h\{0, l}. We introduce the Hilbert spaces L2h = L2([0, l]h) and W 1
2h =W 1

2 ([0, l]h) of the grid functions

ϕh(x) = {ϕn}M
0 defined on [0, l]h, equipped with the norms

∥∥∥ϕh
∥∥∥

L2h
=

(
∑

x∈[0,l]h

∣∣∣ϕh(x)
∣∣∣2 h

)1/2

,

∥∥∥ϕh
∥∥∥

W 1
2h

=
∥∥∥ϕh

∥∥∥
L2h

+

(
∑

x∈[0,l]h

∣∣∣ϕh
x (x)

∣∣∣2 h

)1/2

,

respectively. To the differential operator A generated by the problem (1), we assign the difference operator Ax
h by the

formula

Ax
huh(x) = {−(a(x)ux)x,n +δun}M−1

1 (2)

acting in the space of grid functions uh(x) = {un}M
0 satisfying the conditions u0 = uM = 0. It is well-known that Ax

h is
a self-adjoint positive definite operator in L2h. With the help of Ax

h, we reach the initial value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2uh(t,x)
dt2 +α duh(t,x)

dt +Ax
huh(t,x) = bAx

huh([t],x),

t > 0, x ∈ (0, l)h,

uh(0,x) = ϕh(x), uh
t (0,x) = ψh(x), x ∈ [0, l]h.

(3)

In the second step, we consider the uniform set of grid points

[0,∞)τ = {tk : tk = kτ, 0 ≤ k < ∞, Nτ = 1}
with step τ > 0. We replace (3) with the second order of accuracy difference scheme, and we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
k+1−2uh

k+uh
k−1

τ2 +α uh
k+1−uh

k−1
2τ + 1

2 Ax
huh

k +
1
4 Ax

h

(
uh

k+1 +uh
k−1

)
= bAx

huh
[ k−mN

N+1 ]N+mN
,

Nτ = 1, (m−1)N +1 ≤ k ≤ mN −1, m = 1,2, ...,

uh
0 = ϕh,

((
1+ ατ

2

)
I + τ2

4 Ax
h

)
uh

1−uh
0

τ = (b−1) τ
2 Ax

hϕh +ψh,

((
1+ ατ

2

)
I + τ2

4 Ax
h

)
uh

mN+1−uh
mN

τ = (b−1) τ
2 Ax

huh
mN +

3uh
mN−4uh

mN−1+uh
mN−2

2τ , m = 1,2, ....

(4)

Theorem 1. For the solution of difference problem (4), the following estimates hold:

max
1≤k≤N

∥∥∥uh
k

∥∥∥
L2h

≤ M1

{∥∥∥ϕh
∥∥∥

L2h
+
∥∥∥ψh

∥∥∥
L2h

}
,

max
1≤k≤N

∥∥∥uh
k

∥∥∥
W 1

2h

+ max
1≤k≤N

∥∥∥∥∥uh
k −uh

k−1

τ

∥∥∥∥∥
L2h

≤ M2

{∥∥∥ϕh
∥∥∥

W 1
2h

+
∥∥∥ψh

∥∥∥
L2h

}
,

max
mN+1≤k≤(m+1)N

∥∥∥uh
k

∥∥∥
L2h

≤ M3

⎧⎨
⎩ max

(m−1)N≤k≤mN

∥∥∥uh
k

∥∥∥
L2h

+ max
(m−1)N+1≤k≤mN

∥∥∥∥∥3uh
k −4uh

k−1 +uh
k−2

2τ

∥∥∥∥∥
L2h

⎫⎬
⎭ , m = 1,2, ...,

max
mN+1≤k≤(m+1)N

∥∥∥uh
k

∥∥∥
W 1

2h

+ max
mN+1≤k≤(m+1)N

∥∥∥∥∥uh
k −uh

k−1

τ

∥∥∥∥∥
L2h

≤ M4

⎧⎨
⎩ max

(m−1)N≤k≤mN

∥∥∥uh
k

∥∥∥
W 1

2h

+ max
(m−1)N+1≤k≤mN

∥∥∥∥∥3uh
k −4uh

k−1 +uh
k−2

2τ

∥∥∥∥∥
L2h

⎫⎬
⎭ , m = 1,2, ...,

where M1, M2, M3 and M4 do not depend on ϕh(x) or ψh(x).
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NUMERICAL RESULTS

In this section, as a test problem, we consider the initial-boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

utt(t,x)+2ut(t,x)−uxx(t,x)+u(t,x) = 0.001(−uxx([t],x)+u([t],x)) ,

0 < t < ∞, 0 < x < π,

u(0,x) = sin(x), ut(0,x) =−sin(x), 0 ≤ x ≤ π,

u(t,0) = u(t,π) = 0, 0 ≤ t < ∞

(5)

for the time delay telegraph differential equation with Dirichlet condition.

By using step by step method and Fourier series method, it can be shown that the exact solution of the problem (5)
is

u(t,x) = Tn(t)sin(x), n−1 ≤ t ≤ n, n = 1,2, ...,

where

T1(t) =
999

1000
e−t cos(t)− 1

1000
e−t sin(t)+

1

1000
,

Tn+1(t) = Tn(n)e−t cos(t)+
(

Tn(n)+T
′

n(n)
)

e−t sin(t)

+
Tn(n)
1000

(
1− e−(t−n) cos(t −n)− e−(t−n) sin(t −n)

)
, n = 1,2....

Using second order of accuracy difference scheme for the approximate solutions of problem (5), we get the follow-
ing system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
k+1−2un

k+un
k−1

τ2 +2
un

k+1−un
k−1

2τ + 1
2

(
− un+1

k −2un
k+un−1

k
h2 +un

k

)
+ 1

4

(
− un+1

k+1−2un
k+1+un−1

k+1

h2 +un
k+1

)

+ 1
4

(
− un+1

k−1−2un
k−1+un−1

k−1

h2 +un
k−1

)
= 0.001

(
−

un+1

[ k−mN
N+1 ]N+mN

−2un
[ k−mN

N+1 ]N+mN
+un−1

[ k−mN
N+1 ]N+mN

h2 +un
[ k−mN

N+1 ]N+mN

)
,

tk = kτ, Nτ = 1, mN +1 ≤ k ≤ (m+1)N −1, m = 0,1,2, ...,

xn = nh, Mh = π, 1 ≤ n ≤ M−1,

un
0 = sin(nh), 0 ≤ n ≤ M,

(1+ τ) un
1−un

0
τ + τ

4

(
− un+1

1 −2un
1+un−1

1

h2 +un
1

)
+ τ

4

(
− un+1

0 −2un
0+un−1

0

h2 +un
0

)

=−0.999 τ
2

(
− un+1

0 −2un
0+un−1

0

h2 +un
0

)
− sin(nh), 0 ≤ n ≤ M,

(1+ τ) un
mN+1−un

mN
τ + τ

4

(
− un+1

mN+1−2un
mN+1+un−1

mN+1

h2 +un
mN+1

)
+ τ

4

(
− un+1

mN −2un
mN+un−1

mN
h2 +un

mN

)

=−0.999 τ
2

(
− un+1

mN −2un
mN+un−1

mN
h2 +un

mN

)
+

3un
mN−4un

mN−1+un
mN−2

2τ , 0 ≤ n ≤ M,

u0
k = uM

k = 0, mN ≤ k ≤ (m+1)N, m = 0,1,2, ....

(6)
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We find the numerical solutions for different values of N and M. Here, un
k represents the numerical solutions of the

difference scheme at (tk,xn) . For N = M = 40, N = M = 80, N = M = 160 in t ∈ [0,1] , t ∈ [1,2] , and t ∈ [2,3] , the
errors computed by the following formula are given in Table 1.

EN
M = max

mN +1 ≤ k ≤ (m+1)N, m = 0,1, ...
0 ≤ n ≤ M

|u(tk,xn)−un
k | .

TABLE 1. Errors of Difference Scheme (6)

N=M=40 N=M=80 N=M=160

t ∈ [0,1] 0.000067868 0.000016971 0.000004242

t ∈ [1,2] 0.000070234 0.000017619 0.000004412

t ∈ [2,3] 0.000035718 0.000009053 0.000002278

As it is seen in Table 1, the errors in the second order of accuracy difference scheme decrease approximately by a
factor of 1/4 when the values of M and N are doubled.

CONCLUSION

In this study, we consider the initial-boundary value problem for delay telegraph equation with Dirichlet condition.
The second order of accuracy difference scheme for the numerical solution of this problem is presented. Theorem on
stability of this difference scheme is established. Numerical results are given.

ACKNOWLEDGMENTS

We are grateful to the TUBITAK Graduate Scholarship Programme for supporting Koray Turk. The publication has
been prepared with the support of the “RUDN University Program 5-100”.

REFERENCES

1. H. Taflove, Hydrodynamics (Cambridge University Press, 1993).

2. O. Heaviside, Electromagnetic Theory (Cambridge University Press, 2011).

3. J. Lighthill, Waves in Fluids (Cambridge University Press, 1978).

4. M. J. Golay, Analytical Chemistry 29, 928–932 (1957).

5. A. Ashyralyev, D. Agirseven, and K. Turk, AIP Conference Proceedings 1759, 020022 (2016).

6. A. Ardito and P. Ricciardi, Nonlinear Anal. 4, 411–414 (1980).

7. O. Arino, Delay Differential Equations and Applications (Springer, 2006).

8. G. D. Blasio, Nonlinear Anal.-Theory Appl. 52, 1–18 (2003).

9. G. Kurulay and H. Ozbay, Appl. Comput. 16, 48–58 (2017).

10. A. Ashyralyev and D. Agirseven, Mathematics 7, 1163 (2019).

020032-4



On a Boundary Value Problem for Systems of
Integro-Differential Equations with Involution

Kairat Usmanov,1, a) Kulzina Nazarova,1, b) and Roza Uteshova2, 3, c)

1)Akhmet Yassawi University, Sattarkhanov Str. 29, Turkestan, 161200 Kazakhstan
2)Institute of Mathematics and Mathematical Modeling, Pushkin Str. 125, Almaty, 050000 Kazakhstan

3)International Information Technology University, Manas Str. 34/1, Almaty, 050040 Kazakhstan
a)Corresponding author: y_kairat@mail.ru

b)Electronic mail: gjnazarova@mail.ru
c)Electronic mail: ruteshova1@gmail.com

Abstract. A linear boundary value problem for a system of integro-differential equations with involution is studied by the
parameterization method. Sufficient conditions for the existence of a unique solution to the problem are established in terms of
coefficients. An algorithm for finding the solution to the problem under consideration is proposed.

INTRODUCTION

On the interval [0,T ] we consider the following two-point boundary value problem for the system of integro-
differential equations with involution:

dx(t)
dt

+diag(a1,a2, . . . ,an)
dx(α(t))

dt
=

T∫
0

K(t,s)x(s)ds+ f (t), t ∈ [0,T ], (1)

Bx(0)+Cx(T ) = d, d ∈ R
n, (2)

where K(t,s) is a continuous on [0,T ]× [0,T ] matrix and f (t) is a n-dimensional vector-function continuous on [0,T ].
Here α(t) is a changing orientation homeomorphism α(t) : [0,T ]→ [0,T ] such that α2(t) = α(α(t)) = t. Such a

homeomorphism is called a Carleman shift or deviation of involution. Its properties were studied by G. Litvinchuk
[1], N. Karapetyanz and S. Samko [2]. As an example of a deviation with involution on [0,T ] we can take the
homeomorphism α(t) = T − t.

By a solution to problem (1), (2) we mean a vector-function x(t) that is continuous on [0,T ] and continuously
differentiable on (0,T ), satisfies the system of integro-diffferential equations with involution (1) and the boundary
condition (2).

In the present paper, problem (1), (2) is studied by the parameterization method [3]. On the basis of this method,
we establish necessary and sufficient conditions for the unique solvability of the problem in question and propose an
algorithm for finding its solution.

Let us consider equation (1) for t = α(t):

dx(α(t))
dt

+diag(a1,a2, . . . ,an)
dx(t)

dt
=

T∫
0

K(α(t),s)x(s)ds+ f (α(t)), t ∈ [0,T ].

From the system

dx(t)
dt

+diag(a1,a2, . . . ,an)
dx(α(t))

dt
=

T∫
0

K(t,s)x(s)ds+ f (t), t ∈ [0,T ],

dx(α(t))
dt

+diag(a1,a2, . . . ,an)
dx(t)

dt
=

T∫
0

K(α(t),s)x(s)ds+ f (α(t)), t ∈ [0,T ],
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we obtain

diag(1−a2
1,1−a2

2, . . . ,1−a2
n)

dx(t)
dt

=

T∫
0

[K(t,s)−diag(a1,a2, . . . ,an)K(α(t),s)]x(s)ds

+[ f (t)−diag(a1,a2, . . . ,an) f (α(t))].

Under assumption that the matrix diag(1− a2
1,1− a2

2, . . . ,1− a2
n) is invertible, we can rewrite problem (1), (2) in

the form

dx(t)
dt

=

T∫
0

K1(t,s)x(s)ds+ f1(t), t ∈ [0,T ], (3)

Bx(0)+Cx(T ) = d, (4)

where K1(t,s) = diag(1/(1 − a2
1),1/(1 − a2

2), . . . ,1/(1 − a2
n))[K(t,s)− diag(a1,a2, . . . ,an)K(α(t),s)] and f1(t) =

diag(1/(1−a2
1),1/(1−a2

2), . . . ,1/(1−a2
n))[ f (t)−diag(a1,a2, . . . ,an) f (α(t))].

METHOD OF INVESTIGATION

Let us divide [0,T ] into N equal parts with a step size h: [0,T ) =
N⋃

r=1
[(r−1)h,rh). We denote by xr(t) the restriction of

the function x(t) to the r-th subinterval, i.e., xr(t) = x(t) for t ∈ [(r−1)h,rh). The original problem is then transformed
to an equivalent multipoint boundary value problem

dxr(t)
dt

=
N

∑
j=1

jh∫
( j−1)h

K1(t,s)x j(s)ds+ f1(t), t ∈ [(r−1)h,rh), r = 1,N, (5)

Bx1(0)+C lim
t→T−0

xN(t) = d, (6)

lim
t→sh−0

xs(t) = xs+1(sh), s = 1,N −1. (7)

Here (7) are conditions for the continuity of x(t) at the interior partition points t = sh, s = 1,N −1.
If x(t) is a solution to problem (3), (4), then the system of its restrictions x[t] = (x1(t),x2(t), . . . ,xN(t))′ is a solution

to multipoint problem (5)-(7). And vice versa, if a system of vector-functions x̃[t] = (x̃1(t), x̃2(t), . . . , x̃N(t))′ is a
solution to problem (5)-(7), then the function x̃(t) defined by the equations x̃(t) = x̃r(t), t ∈ [(r− 1)h,rh), r = 1,N,
and x̃(T ) = lim

t→T−0
x̃N(t), is a solution to original problem (3), (4).

Let us now introduce parameters λr, r = 1,N, that are equal to the values of the functions xr(t) at the points
t = (r − 1)h. Now, on each subinterval [(r − 1)h,rh), r = 1,N, we make the substitution xr(t) = ur(t) + λr. The
problem (5)-(7) is then reduced to an equivalent multipoint problem with parameters:

dur(t)
dt

=
N

∑
j=1

jh∫
( j−1)h

K1(t,s)[u j(s)+λ j]ds+ f1(t), (8)

ur[(r−1)h] = 0, t ∈ [(r−1)h,rh), r = 1,N, (9)

Bλ1 +CλN +C lim
t→T−0

uN(t) = d, (10)

020033-2



λs + lim
t→sh−0

us(t) = λs+1, s = 1,N −1. (11)

Problems (5)-(7) and (8)-(11) are equivalent in the following sense.
If a system of functions x[t] = (x1(t),x2(t), . . . ,xN(t))′ is a solution to problem (5)-(7), then the pair (λ ,u[t]) with
λ = (x1(0),x2(h), . . . ,xN [(N − 1)h])′ and u[t] = (x1(t)− x1(0),x2(t)− x2(h), . . . ,xN(t)− xN [(N − 1)h])′ is a solution

to problem (8)-(11). Vice versa, if a pair (λ̃ , ũ[t]) is a solution to (8)-(11), then the system of functions x̃(t) =
(λ̃1 + ũ1(t), λ̃2 + ũ2(t), . . . , λ̃N + ũN(t))′ is a solution to problem (5)-(7).

Emergence of initial conditions (9) allows us, for fixed λr, to determine ur(t), r = 1,N, from the system of integral
equations

ur(t) =
t∫

(r−1)h

N

∑
j=1

jh∫
( j−1)h

K1(τ,s)[u j(s)+λ j]dsdτ +
t∫

(r−1)h

f1(τ)dτ, t ∈ [(r−1)h,rh). (12)

By substituting the expressions for lim
t→T−0

uN(t) and lim
t→sh−0

us(t), s = 1,N, obtained from (12), into conditions

(10), (11), and multiplying both sides of (10) by h > 0, we get the system of linear algebraic equations in unknown
parameters λr, r = 1,N:

hBλ1 +hCλN +hC
Nh∫

(N−1)h

N

∑
j=1

jh∫
( j−1)h

K1(τ,s)λ jdsdτ

= hd −hC
Nh∫

(N−1)h

f1(τ)dτ −hC
Nh∫

(N−1)h

N

∑
j=1

jh∫
( j−1)h

K1(τ,s)u j(s)dsdτ, (13)

λs +

sh∫
(s−1)h

N

∑
j=1

jh∫
( j−1)h

K1(τ,s)λ jdsdτ −λs+1

=−
sh∫

(s−1)h

N

∑
j=1

jh∫
( j−1)h

K1(τ,s)u j(s)dsdτ −
sh∫

(s−1)h

f1(τ)dτ, s = 1,N −1. (14)

Let us denote by Q(h) the (nN×nN)-matrix corresponding to the left-hand side of system (13),(14). This system thus
can be represented in the form

Qh(λ ) =−F(h)−G(u,h), λ ∈ R
nN , (15)

where

F(h) =
(
−hd +hC

Nh∫
(N−1)h

f1(τ)dτ,
h∫

0

f1(τ)dτ, . . . ,
(N−1)h∫

(N−2)h

f1(τ)dτ
)′
,

G(u,h) =
(

hC
Nh∫

(N−1)h

N

∑
j=1

jh∫
( j−1)h

K1(τ,s)u j(s)dsdτ,

h∫
0

N

∑
j=1

jh∫
( j−1)h

K1(τ,s)u j(s)dsdτ, . . . ,
(N−1)h∫

(N−2)h

N

∑
j=1

jh∫
( j−1)h

K1(τ,s)u j(s)dsdτ
)′
.

Thus, to find a solution to problem (8)-(11), the pair (λ ,u[t]), we have the system of equations (12),(15). We will

find this solution as the limit of the sequence of pairs (λ (k),u(k)[t]) according to the following algorithm.

020033-3



Step 0. (a) Assuming that the matrix Q(h) is invertible, from the equation Qh(λ ) = −F(h) we find the initial

approximation to the parameter λ (0) = (λ (0)
1 ,λ (0)

2 , . . . ,λ (0)
N )′ ∈ R

nN : λ (0) =−[Q(h)]−1F(h).

(b) Substituting λ (0)
r , r = 1,N, into the right-hand side of the system of integro-differential equations (8) and solving

special Cauchy problems with initial conditions (9), we obtain u(0)[t] = (u(0)1 (t),u(0)2 (t), . . . ,u(0)N (t))′.
Step 1. (a) Substituting u(0)r (t), r = 1,N, into the right-hand side of (15), from the equation Qh(λ ) = −F(h)−

G(u(0),h) we determine λ (1) = (λ (1)
1 ,λ (1)

2 , . . . ,λ (1)
N )′.

(b) Substituting λ (1)
r , r = 1,N, into the right-hand side of (8) and solving special Cauchy problems (8),(9), we

obtain u(1)[t] = (u(1)1 (t),u(1)2 (t), . . . ,u(1)N (t))′, and so forth.

Proceeding by the algorithm, in the k-th step we find the pair (λ (k),u(k)[t]), k = 0,1,2, . . ..
As we said, the unknown functions u[t] = (u1(t),u2(t), . . . ,uN(t))′ are determined by solving special Cauchy prob-

lems (8),(9) for systems of integro-differential equations. But, unlike the Cauchy problems for ordinary differential
equations, special Cauchy problems for integro-differential equations are not always solvable.

RESULTS OF INVESTIGATION

The following theorem provides a sufficient condition for the unique solvability of the special Cauchy problem (8),(9)
for fixed values of parameters.

Theorem 1 Let the step size of the partition h = T/N satisfy the inequality

δ (h) = βT h < 1,

where β = max
(t,s)∈[0,T ]×[0,T ]

‖K1(t,s)‖. Then the special Cauchy problem (8),(9) has a unique solution.

Sufficient conditions for the convergence of the algorithm proposed, as well as for the unique solvability of problem
(1),(2) are established in the following statement.

Theorem 2 Let the condition of Theorem 1 be satisfied, the matrix Q(h) be invertible, and the following inequalities
hold:

‖[Q(h)]−1‖ ≤ γ(h),

q(h) =
δ (h)

1−δ (h)
γ(h)max(1,h‖C‖)< 1.

Then problem (1),(2) has a unique solution.

The proof of Theorem 2 is similar to that of Theorem 3 in [4] and is carried out by the algorithm proposed above
taking into account the specificity of system (1). In [5], the sufficient and necessary conditions were established for
the unique solvability of the linear boundary value problem for a system of integro-differential equations

dx
dt

=

T∫
0

K(t,s)x(s)ds+ f (t), t ∈ [0,T ], (16)

Bx(0)+Cx(T ) = d, d ∈ R
n. (17)

Theorem 3 (see [5, p.1216]) Problem (16),(17) is uniquely solvable if and only if there exists h ∈ (0,h0] : Nh = T
such that the matrix Q∗(h) is invertible.

Let us now state a corollary of this theorem regarding problem (1),(2).

Corollary 1 Problem (1),(2) is uniquely solvable if and only if there exists h ∈ (0,h0] : Nh = T such that the matrix
Q∗(h) is invertible.

Here h0 is determined by the condition q(h0) =
T

1+a βh0 < 1.
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Abstract. In this paper, the source identification problem for the telegraph equation is studied. We propose the first order
of accuracy absolute stable difference scheme for the numerical solution of the one-dimensional identification problem for the
telegraph equation with the Neumann condition. The obtained numerical results have been compared with the exact solution to
verify the accurate nature of our method.

INTRODUCTION

Identification problems play a very important role not only in engineering sciences such as quantum mechanics, but
also in mathematical physics, chemical physics, and communication system.

In last years, much attention has been given in the literature to the development, analysis, and implementation of
stable methods for the numerical solution of the one-dimensional identification problem for the telegraph equation,
and have been studied by many authors (see, e.g., [1-6] and the references given therein).

Direct and inverse boundary value problems for telegraph differential equations have been a major research area in
applied mathematics. The solvability of the inverse problems in various formulations with various overdetermination
conditions for telegraph and hyperbolic equations were studied in many works (see, e.g., [7-15] and the references
given therein).
In particular, the well-posedness of the source identification problem for a telegraph equation with unknown parameter
p

{
d2u(t)

dt2 +α du(t)
dt +Au(t) = p+ f (t) ,0 < t < T,

u(0) = ϕ,u′ (0) = ψ ,u(T ) = ζ

in a Hilbert space H with the self-adjoint positive definite operator A was proved in [12]. They established stability
estimates for the solution of this problem. In applications, three source identification problems for telegraph equations
were investigated.

In the present paper, the first order of accuracy absolute stable difference scheme for the numerical solution of
the one-dimensional identification problem for the telegraph equation with Neumann condition is presented. Some
numerical results are explained.

Finally, some references are introduced at the end. Note that we have computed the numerical results by MATLAB
programming.

NUMERICAL ALGORITHM FOR THE SOLUTION OF THE SOURCE
IDENTIFICATION TELEGRAPH PROBLEM

In this section, we study the numerical solution of the identification problem
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ 2u(t,x)
∂ t2 +2

∂u(t,x)
∂ t − ∂ 2u(t,x)

∂x2 = p(t)(cosx+1)− e−t (cosx+2) ,

x ∈ (0,π) , t ∈ (0,1) ,

u(0,x) = cosx+1,ut (0,x) =−(cosx+1) ,x ∈ [0,π] ,

ux (t,0) = ux (t,π) = 0, t ∈ [0,1] ,

∫ π
0 u(t,x)dx = πe−t , t ∈ [0,1]

(1)

for a telegraph equation. The exact solution pair of this problem is (u(t,x) , p(t)) = (e−t (cosx+1) ,e−t) .
For the numerical solution of problem (1), we present the following first order of accuracy difference scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
n −2uk

n+uk−1
n

τ2 +2
uk+1

n −uk
n

τ − uk+1
n+1−2uk+1

n +uk+1
n−1

h2

= pk (cosxn +1)− e−tk+1 (cosxn +2) ,

tk = kτ,xn = nh,1 � k � N −1,1 � n � M−1,

u0
n = 1+ cosxn,

u1
n−u0

n
τ =−(1+ cosxn) ,0 � n � M,Mh = π,Nτ = 1,

uk+1
0 = uk+1

1 ,uk+1
M−1 = uk+1

M ,∑M−1
i=1 uk+1

i h = πe−tk+1 ,−1 � k � N −1.

(2)

Algorithm for obtaining the solution of identification problem (2), {uk}N
k=0 =

{{
uk

n
}N

k=0

}M

n=0
and {pk}N−1

k=1 , contain

three stages. Now, let us define

uk
n = wk

n +ηk (cosxn +1) ,0 ≤ k ≤ N,0 ≤ n ≤ M. (3)

Applying difference scheme (2) and the formula (3), we obtain

ηk+1 =
πe−tk+1 −∑M−1

i=1 wk+1
i h

∑M−1
i=1 (cosxi +1)h

,−1 ≤ k ≤ N −1, (4)

and the difference scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk+1
n −2wk

n+wk−1
n

τ2 +2
wk+1

n −wk
n

τ − wk+1
n+1−2wk+1

n +wk+1
n−1

h2

+
∑M−1

i=1 wk+1
i h

∑M−1
i=1 (cosxi+1)h

cosxn
2(cosh−1)

h2 −2
∑M−1

i=1

wk+1
i −wk

i
τ h

∑M−1
i=1 (cosxi+1)h

(cosxn +1)

=− 2π e
−t

k+1−e−tk
τ

∑M−1
i=1 (cosxi+1)h

(cosxn +1)+ πe−tk+1

∑M−1
i=1 (cosxi+1)h

2(cosh−1)
h2 cosxn − e−tk+1 (cosxn +2) ,

1 � k � N −1,1 � n � M−1,

w0
n = 1+ cosxn,

w1
n−w0

n
τ =−(1+ cosxn) ,0 � n � M,

wk+1
0 = wk+1

1 ,wk+1
M−1 = wk+1

M ,−1 � k � N −1.

(5)

In the first stage, we find numerical solution
{{

wk
n
}N

k=0

}M

n=0
to the corresponding first order of accuracy difference

scheme (5). For obtaining the solution of difference scheme (5), we will write it in the matrix form as
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⎧⎨
⎩

Awk+1 +Bwk +Cwk−1 = f k,1 � k � N −1,

w0 = {cosxn +1}M
n=0 ,w

1 = (1− τ){cosxn +1}M
n=0 ,

(6)

where A,B,C are (M+1)× (M+1) square matrices, ws,s = k,k±1, f k are (M+1)×1 column matrices, and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 · · · 0 0 0 0
b a+ c1 b+ c1 c1 · · · c1 c1 c1 0
0 b+ c2 a+ c2 b+ c2 · · · c2 c2 c2 0
0 c3 b+ c3 a+ c3 · · · c3 c3 c3 0
...

...
...

...
. . .

...
...

...
...

0 cM−3 cM−3 cM−3 · · · a+ cM−3 b+ cM−3 cM−3 0
0 cM−2 cM−2 cM−2 · · · b+ cM−2 a+ cM−2 b+ cM−2 0
0 cM−1 cM−1 cM−1 · · · cM−1 b+ cM−1 a+ cM−1 b
0 0 0 0 · · · 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0 0 0
0 e+ z1 z1 z1 · · · z1 z1 z1 0
0 z2 e+ z2 z2 · · · z2 z2 z2 0
0 z3 z3 e+ z3 · · · z3 z3 z3 0
...

...
...

...
. . .

...
...

...
...

0 zM−3 zM−3 zM−3 · · · e+ zM−3 zM−3 zM−3 0
0 zM−2 zM−2 zM−2 · · · zM−2 e+ zM−2 zM−2 0
0 zM−1 zM−1 zM−1 · · · zM−1 zM−1 e+ zM−1 0
0 0 0 0 · · · 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

,

C =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 g · · · 0 0
...

...
. . .

...
...

0 0 · · · g 0
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦
(M+1)×(M+1)

,

,

f k =

⎡
⎢⎢⎢⎣

0
f (tk,x1)

.
f (tk,xM−1)

0

⎤
⎥⎥⎥⎦
(M+1)×1

,ws =

⎡
⎢⎢⎢⎣

ws
0

ws
1
.

ws
M−1
ws

M

⎤
⎥⎥⎥⎦ ,

for s = k,k±1. Here,

a =
1

τ2
+

2

τ
+

2

h2
,b =− 1

h2
,cn =

h
d

cosxn

[
2(cosh−1)

h2
− 2

τ

]
,
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d =
M−1

∑
i=1

(cosxi +1)h,e =− 2

τ2
− 2

τ
,g =

1

τ2
,zn =

2h
dτ

(cosxn +1) ,

f (tk,xn) =− 2π e
−t

k+1−e−tk

τ

∑M−1
i=1 (cosxi +1)h

(cosxn +1)+
πe−tk+1

∑M−1
i=1 (cosxi +1)h

2(cosh−1)

h2
cosxn − e−tk+1 (cosxn +2) ,

1 ≤ k ≤ N −1,1 ≤ n ≤ M−1.

So, we have the initial value problem for the first order difference equation (2) with respect to k with matrix coefficients

A,B and C. Since w0and w1are given, we can obtain the solution
{{

wk
n
}N

k=0

}M

n=0
of (6) by direct formula

wk+1 = A−1
(

f k −Bwk −Cwk−1
)
,k = 1, ...,N −1.

In the second stage, applying formulas

pk =
ηk+1 −2ηk +ηk−1

τ2
,1 ≤ k ≤ N −1. (7)

and (4), we can obtain {pk}N−1
k=1 . Finally, in the third stage, we obtain

{{
uk

n
}N

k=0

}M

n=0
by formulas (3) and (4). The

errors are computed by

Eu = max
0�k�N

(
M

∑
n=0

∣∣∣u(tk,xn)−uk
n

∣∣∣2 h

) 1
2

,

Ep = max
1�k�N−1

|p(tk)− pk| ,

where u(t,x) and p(t) represent the exact solutions, uk
n represent the numerical solutions at (tk,xn), and pk represent

the numerical solutions at tk. The numerical results are given in the following table:

TABLE 1. Error analysis

Error N = M = 20 N = M = 40 N = M = 80 N = M = 160

Eu 0.1180 0,0609 0.0309 0.015

Ep 0.3528 0.1780 0.0893 0.0447

As it is seen in Table 1, if N and M are doubled, the value of errors between the exact solution and approximate
solution decreases by a factor of approximately 1/2 for first order difference scheme (2).
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Abstract. Stochastic differential equations (SDEs) have been intensively used to analyze data from physics, finance, 
engineering, medicine, biology, and forestry. This study proposes general mixed effect parameters (fixed and random) 
multivariate SDE model of a population growth which includes random forces governing the dynamic of multivariate 
distribution of tree size variables. The dynamic of the multivariate probability density function of the size variables in a 
population is described by mixed effect parameters Gompertz type SDE. The advantages of the multivariate SDE model 
are that it does not need to choose many different equations to be tried, it relates the size variables dynamic against the time 
dimension, and considers the underlying covariance structure driving changes in the size variables. SDE model allows us 
a better understanding of processes driving the dynamic of natural phenomena. The new derived multivariate probability 
density function and its marginal univariate, bivariate, trivariate, conditional univariate, bivariate, trivariate, and much more 
distributions can be applied for the modeling of population attributes such as the mean value, quantiles and much more. 
This study introduces general multivariate mutual information measures based on the differential entropy to capture 
multivariate interactions between size variables. The purpose of the present study is therefore to experimentally confirm 
the effectiveness of using multivariate information measures to reconstruct multivariate interactions in size variables. The 
study of information sharing amongst size variables is illustrated using a dataset of the Scots pine (Pinus Sylvestris L.) 
stands measurements in Lithuania. 

INTRODUCTION 
 

In the last decades the theory of population growth treats the size variables of the population as stochastic 
continuous random vector that own a particular distribution. Traditionally, a dynamic model of a population is 
processed by deterministic and stochastic components that operate simultaneously. Noise term as a substantial 
component is generally introduced using a stochastic Brownian motion process. Stochastic excitations are 
mathematically represented by complex stochastic differential equations of the Itô type [1]. Stochastic differential 
equations (SDEs) were developed at the beginning of the twentieth century to quantify aspects of stochastic processes. 
The pioneering work of Bachelier [2] was primarily motivated by problems associated with introducing a 
mathematical model of Brownian motion and its use for valuing stock options. Subsequent paper by Einstein [3] 
helped to clarify the ability of so-called Brownian molecular motion to quantify the molecular kinetic theory of heat 
and bodies of a microscopically visible size. The modern theory of SDE has gradually been developed into an attractive 
approach for applications [4, 5]. Although applications of stochastic calculus theory can be highly technical, but the 
fundamental concepts of the SDEs theory are not difficult to understand. Moreover, they are profound in the sense 
that they apply to situations in which commonly used models produce unsatisfactory results. Fundamental SDEs 
theory is defined on random variables. The universality of the SDEs accounts for the wide range of applications of the 
theory including human population, forestry, engineering, and biology [5-8]. The fundamental advantage of stochastic 
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dynamical models over deterministic models is that they combine both deterministic and stochastic elements of 
dynamic, where the stochasticity is affected by the outside random fluctuations in population size variables.  

The fixed effect parameters univariate and bivariate Gompertz type SDEs are in-depth examined for modeling [9-
11]. In many cases a real-life process involves several random variables by a system of fixed- and mixed effect 
parameters SDE [12-15]. This paper focused on: 1) to present different aspects of the mixed effect parameters 
Gompertz type SDE models that may be applicable; 2) to derive the essential characteristics of these models; 3) to 
discuss the corresponding computational issues. Another goal is to study in a general way the interaction information 
measures of cross comparisons of all marginal and conditional distributions by using the Shannon type differential 
entropy [16-18]. Results are illustrated using sample dataset from Scots pine tree stands in Lithuania. Moreover, the 
mixed effect parameters are estimated by developed approximated maximum likelihood procedure. All results are 
implemented in the symbolic algebra system MAPLE. 

MATERIALS AND METHODS 
 

SDE Framework 
 

Let us consider n-variate reducible SDE of the Gompertz type to study the multivariate distribution problem of the 
population size variables. This equation results in an exact probability density function which parameters can be 
estimated by an approximated maximum likelihood procedure based on discrete time observations. The mixed effect 
parameters Gompertz-type SDE that describes the development of the population size variables is defined in the 
following form 
 ( ) = ( ( )) + ( ( )) ( ), i = 1, …, M, (1) 

 
here: M is the total number of individuals used for model fitting, t is the time, ( ) = ( ( ), . . . , ( )) , [ ; ], 0, ( ) = = ( , . . . , )) , > 0, …, > 0, ( ) = ( ), . . . , ( )  are independent n-
variate Brownian motions, , i=1, ..., M; j=1, ..., n are independent and normally distributed random variables with 
zero mean and constant variances ( ~ 0; ), { , . . . , , , . . . , , , , . . . , } is a set of fixed effect 
parameters to be estimated, the drift vector ( ) and diffusion matrix G(x) are defined, respectively 
 

 ( ) = + ( ) , . . . , ( + ) ( ) , (2) 
 

 ( ) = ( ) ( ) = 00 00 . (3) 

= , ( ) = 00 , 

 
Using the Itô [1] formula and transformation  ( ) = ( ( )), Eq. (1) can be converted into a well-studied n-

variate Ornstein-Uhlenbeck process [19]. Therefore, the conditional stochastic process ( )|X( )=   has the n-
variate lognormal distribution  ( ( ); ( )) with the mean vector 

 ( ) = ( ) + 1 ( ) , = 1. . . , (4) 

the variance-covariance matrix  

 ( ) = ( )
, , (5) 

and the probability density function 
 , . . . , , , , . . . , = (2 ) | ( )| ( … ) ( , . . . , , ) , (6) 
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 ( , . . . , , ) = ( ), = 1, . . . , ( ( )) ( ), = 1, . . . , . (7) 

 
According to the lognormal distribution of the random vector ( ) ( ) = , the univariate marginal 

process ( ) ( ) =  (j=1,…,n), and  m-variate sub-marginal processes ( ) ( ) = , = 1, . . . ,  

(m=1, …., n-1) are also lognormal distributed, respectively, ( ); ( )  and ( , ( ); ( )), where 
 

 , ( ) = ( ) + 1 ( ) , = 1, . . . ,  (8) 

 

 ( ) = ( )
 (9) 

 
The univariate marginal mean, median, mode, p-quantile (0<p<1) and variance trajectories ( ), ( ), ( ), ( , ) and ( ), 1  are defined, respectively, by 

 ( ) ( ) ( ) = = ( ) + ( ) , (10) 
 

 ( ) ( ) ( ) = = ( ) , (11) 
 

 ( ) ( ) ( ) = = ( ) ( ) , (12) 
 

 ( , ) ( ) ( ) = = ( ) + ( ) ( ) , (13) 
 

 ( ) ( ) ( ) = = 2 ( ) + ( ) ( ) 1 , (14) 
 

where: ( )is the inverse of standard normal distribution function. 

The conditional distribution of  ( ) ( ) =  (j=1, …., n) at a given  ( ) = , . . . , ( ) = , 1 1 is a univariate lognormal ( , ); ( )
 
with the mean, ( , ), = , . . . , , and 

variance, ( ) computed in the following forms 

 
 ( , ) = ( ) + ( )[ ( )] ( ( ) , ( )), (15) 

 
 ( ) = ( ) ( )[ ( )] ( ) , (16) 

 
 ( ) = ( ( ) ( )), (17) 

 

 ( ) = ( ) ( )( ) ( )  (18) 

 
The univariate conditional mean, median, mode, p-quantile (0<p<1) and variance trajectories ( , ), ( , ), ( , ), ( , , ) and ( , ), 1  are defined, respectively, by 
 

 ( , ) ( ) ( ) = , ( ) = , . . . , ( ) = = ( , ) + ( ) , (19) 
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 ( , ) ( ) ( ) = , ( ) = , . . . , ( ) = = ( , ) , (20) 

 
 ( , ) ( ) ( ) = , ( ) = , . . . , ( ) = = ( , ) ( )  (21) 

 
 ( , , ) ( ) ( ) = , ( ) = , … , ( ) =  = ( , ) + ( ) ( ) ,  (22) 

 
 ( , ) ( ) ( ) = , ( ) = , . . . , ( ) =  = 2 ( , ) + ( ) ( ) 1 .  (23) 

Information Interaction Measures  
 

Population modeling is concerned with complex systems in which there are many diverse interactions, and can 
provide a way of understanding how size variables change over time or their multiple dependencies. The central issue 
in population models is the prediction of the size variables structure of individuals by modeling size distributions and 
the detection of multivariable dependencies of diverse kinds. Characterization the dynamic of the joint probability 
distribution of the size variables is the base of describing the mathematical dependency among the size variables. 
Shannon entropy [16] is a measure of the amount of uncertainty associated with a random variable X. Uncertainty is 
something which is realizable but is unknown. The Shannon entropy of a continuous random variable, X, with 
probability density function p(x) is defined as [20] 

 
 ( ) ( ) ( )  (24) 

 
For the fixed effect scenario we assume that the random effects, , = 1, . . . , , are equal its mean value ( ) =0, ( ) ( ), 1 .  Therefore, the expressions of differential entropies (measured in nats) for univariate, 

m-variate (2 ) diffusions take the following forms 
 

 ( , ) , , 0 , , 0 = 2 ( ) + ( ), (25) 

 

 ( , ) , , 0 , , 0 = (| ( )|) + (2 ) + ( ) (26)  

Information measures can be used to explore the presence or absence of statistical interaction between size 
variables. The simplest information theory measure between two variables is described by the difference between the 
entropy and the conditional entropy, which is named as the interaction (mutual) information and defines the 
information contained in one size variable about another in the following form 

 
 ( , , ) = ( , ) + ( , ) ( , , ), 1 , .  (27) 

 
The author expects that the future development of information theory could address the concept of causality [21] 

that is commonly understandable as the capacity of one variable to influence another. The process of choosing between 
models can be performed using the normalized information measure defined as 

 

 = ( , , ), , ( , ) , 1 , . (28)  
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Data and Parameter Estimators  
 

The data used were obtained from Scots pine (Pinus sylvestris L.) stands in Lithuania [14]. The observed dataset 
of the diameter (D), total height (H), crown base height (CH), and crown width (CW) was obtained from the Institute 
of Forest Management and Wood Science at Vytautas Magnus University. The mixed effect (fixed and random) 
parameters of the SDE (1), were estimated using a new developed two-step approximated maximum log-likelihood 
procedure. 

TABLE 1. Estimates of parameters. 
Parameters of the drift term 

1 1 2 2 3 3 4 4  

17.5866 5.7033 17.5797 5.7879 10.4525 3.8980 6.6614 5.5462 0.6427 0.3816 
Parameters of the diffusion term 

11 12 13 14 22 23 24 33 34 44 
0.6119 0.2490 0.1092 0.5772 0.1702 0.1101 0.1765 0.1403 0.0009 1.0623 

Parameters of the random effect 

1 2 3 4       
1.4052 1.3291 1.1244 0.9799       

DISCUSSION 

To illustrate that the sample datasets of Scots pine trees do indeed follow the new developed mixed effect 
parameters marginal bivariate probability density function defined by Eq. (6) the contour plots are presented in Figure 
1 for two different stands. Figure 1 shows that the marginal bivariate mixed effect parameters distribution well capture 
the forthcoming values from the observed dataset for both forest stands. 

 

 
FIGURE 1. Contour plots (levels: 10-3, 10-4) of the estimated (see Table 1) bivariate lognormal probability density 

function defined by Eq. (6): (a) the first forest stand (55 years of age); (b) the second forest stand (94 years of age). 
 

Traditionally, the used statistical metrics for goodness-of-fit linear and nonlinear regression models mostly 
reflect only fitting criteria (not goodness of fit). Modeling of the dynamics of the tree size variables requires better 
understanding which predictor exerts primary control on response tree size variable. Therefore, for the ranging of the 
all developed models is advisable to use normalized interaction measures defined by Eq. (28). Figure 2 shows the 
dynamics of the bivariate normalized information measure for the tree diameter (with predictors: height, crown base 
height and crown width), and two different forest stands. The higher normalized information measure value of the 
bivariate normalized information measure (Eq. (28)) shows stronger relationship. Hence, for the quantifying tree 
diameter relationship against a single predictor variable it must be the height, as the corresponding bivariate 
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normalized information curve are on the top of the others. Eventually, for the quantifying of tree diameter relationship 
the worst predictor variable must be the crown base height. 
 

 
FIGURE 2. Dynamics of bivariate normalized information (Eq. 28): (a) the first forest stand (55 years of age); (b) the 
second forest stand (94 years of age); black color – height as a predictor for diameter; blue color – crown base height 
as a predictor for diameter; green color – crown width as a predictor for diameter. 
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Abstract. Heart failure is a condition that affects a great part of the world population. A heart transplant is one of the alternatives
to survive heart failure. Since the organ donors are very limited and the wait list for the organ is very long it is difficult to find the
organ. A viable alternative until the organ becomes available is the total artificial heart (TAH) and ventricle assisting devices. The
total artificial heart is used to bridge the time to heart transplants. There are different types of artificial hearts. In this paper, we
compared the various TAH devices by creating a database, and by using a simulation we determined which device is the best out
in the market. We used Fuzzy Promethee as the methodology. It is observed that with pneumatic (SynCardia) TAHs as a bridge to
transplant, promising results have been achieved, but still, they are not free of problems. Nevertheless, implantable total artificial
hearts have a long way to go if they are to replace the natural heart permanently, made for destination therapy. So far, the only
device that is commercially approved is SynCardia TAH, it’s the only one in the market for patient use.

INTRODUCTION

The artificial heart may sound like science fiction, but for over 35 years they have been in clinical use to help patients
with end-stage heart failure. An artificial heart is a medical device that is used to span the time to cardiac transplan-
tation, or to replace the heart indefinitely if heart transplantation is not feasible. Plenty of problems and difficulties
facing the manufacture of an artificial heart that can meet the minimum level of needs of the body to the blood. By
looking at the history of the development of the artificial heart, it will be observed that the natural heart was com-
pletely dispensed at the beginning but after a while the method will be proved to be a failure which led to the death of
the patient.Then a new generation of artificial hearts emerged in which the atria were maintained while pumps were
installed to replace the ventricles [1]. The newest generations of the artificial heart have tended to preserve the entire
heart and develop the mechanism to help ventricles contract. The problem of the heart transplant is the availability of
the donor. As the number of patients suffering from heart diseases increased over the years, the global organ donors
are limited [2].

MATERIAL AND METHODS

The decision making real-life challenges have multiple competing objectives and requirements to be addressed con-
currently. For example, the contrast needed to strike a balance between the efficiency, safety, and cost of the total
artificial heart. Different contradictions in the choosing of materials exist between material properties and efficiency
metrics. We have several multi-criteria decision-making methods such as TOPSIS (Technique for Order Preference by
Similarity to Ideal Solution), ELECTRE (ELimination Et Choix Traduisant la REalité), VIKOR (Vise Kriterijumska
Optimizacija I Kompromisno Resenje) and PROMETHEE (Preference Ranking Organization Method for Enrichment
Evaluations). In this paper, we will focus on Fuzzy Promethee. Fuzzy promethee method blends the promethee
method with fuzzy logic [3].

Fuzzy logic helps decision-makers to evaluate the method even in the unclear context and transform the linguistic
variable into the statistical variable in real-world situations. Hence, we can compare the fuzzy value in the Fuzzy
Promethee method. The fuzzy promethee method was discussed in detail in the study conducted by Ozsahin, et al. in
2017 [4, 5]. They compared several nuclear medicine imaging devices using the Fuzzy Promethee method. The same
method is used in this study to analyze the techniques for the total artificial heart.

Basic capabilities allow continuous monitoring of the right and left ventricular cardiac outputs. The right and left
atrial lines provide estimates of the ventricular right and left filling pressures. An arterial line helps in the assessment
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of blood pressure and artery structural resistance. The cardiac output sensor and diagnostic panel produce those
measurements. The key role of the COMDU system is to help the consumer to visualize the flows associated with
ventricular right and left filling and to track the pressure curves produced as blood is expelled from the ventricles [6].

Hemodynamic variables such as the flow (cardiac output) and press details [aortic pressure (LAP) and pulmonary
artery pressure (RAP)] are required for secure closed-loop operation. For the pressure and ventricular production, we
used two non-invasive hemodynamic estimators. The number alluded to in LAP is [7]:

Pneumatic energy input =
∫

LAP(t). f low(t)dt + f riction = LAP.SV1 + f riction,

where t is the time of measurement, and LAP and SVl are the mean amount of LAP and left stroke, respectively. A
mean LAP estimator may be set from this equation [8].

Estimates of the ventricular output were generated by using computational fluid dynamics techniques. Essentially,
the ventricular output is found using the method of finite volume to solve the fully incompressible, three-dimensional
Navier–Stokes equations in conjunction with the blood flow simulation model k-ÿ turbulence. Reynolds averaged
equations in Cartesian rectangular coordinates are the governing equations used for analyzation. The Reynolds-
averaged continuity and momentum equations of the tensor forms are given as follows [9]:

∂
∂x j

(
ρu j

)
= 0,

∂
∂ t

(
ρui

)
+ ∂

∂x j

(
ρu jui

)
=− ∂ p

∂xi
+ ∂

∂x j

(
μe f f

(
∂ui
∂x j

))
,

where ui is the xi directional velocity component, p is static pressure, ρ is the fluid density and μe f f is viscosity. In
the present analysis, the k−ε turbulent model along with the wall function is adopted to identify essential parameters
including tension from Reynolds, turbulent energy flux, and viscous job fluctuating [9].

The ventricular output estimators estimate the ventricular output to the left and right for each cycle (heart-beat).
As control operation is done (say, every five beats or more), if the cardiac output is less than the fixed value, inlet air
pressure decreases along with a higher heart rate if necessary. Meanwhile, the controlled output is tested and adjusted
by adjusting the systolic ratio, if required. When the cardiac output exceeds the fixed value, the inlet air pressure will
be reduced, and the controlled output will be tested. The ventricular output estimator measures the ventricular output
for each heart-beat, while the control operation is usually done every five (or more) beats and can be modified in the
system to keep the control mode constant. Additionally, a limitation was imposed on the beat length variability. If the
difference in the systolic period between two adjacent beats was more than 96 ms, the most recent estimate result was
discarded to maintain the stability of beat to beat. By using a Fuzzy Promethee and knowledge-based control scheme
as follows, the below control scheme (TABLE 1 ) can be accomplished [11, 12].

TABLE 1. The information about the TAH devices.

Device Energy source Volume, ml Weight, g Cost, $ Status

SynCardia Pneumatic 400 160 350,000 Commercially used
Carmat Electro-hydraulic 750 900 218,000 Clinical test
AbioCor Electromechanical 800 1090 250,000 Late stage of trails
ReinHeart Electromechanical 550 940 Not estimated Early stage of trails
BiVACOR Electrmagnetical 350 512 Not estimated Early stage of trails

1. If CO is less than COset , then raise inlet air pressure.

2. Change the right ventricular systolic ratio to sustain a good output at any control operation.

For this research, the criteria are used for linear choice and field of indifference. The function of Preference is defined
as follows [13]:
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Pj(t j) =

⎧⎨
⎩

0, t j ≤ g j,
(|| t j ||−g j)/(r j −g j), g j < t j ≤ r j,
1, t j > r j.

where t j = qi j − qk j denote the disparity in a choice between pairs in alternatives on criterion k j.r j and g j is choice
and the level of indifference, respectively.

Using the function of preference, we will obtain the degree of preference for a pair of alternatives on each criterion.
To achieve the average degree of preference D(Mi,Mk), the degree of choice will be aggregated according to the
formula [7]:

D(Mi,Mk) =
n

∑
j

ω jPj(Mi,Mk),

where ω j stands for the weight of g j.

The SynCardia TAH is the only commercially used device. It has 2 sizes 70 cc 400 ml (BSA) ≥ 1.7m2 and for
50cc (BSA) ≤ 1.85m2 [13]. The 70 cc is used for males and the 50cc is used for women and adolescence. One of
the advantages is a small size and lightweight device (160 g) [13]. The device is simple in which it does not have any
complicated batteries and electronics [14]. It provides an individual pumping on both sides; for optimal ejection and
filling. One of the drawbacks is that it’s a bridge to transplant instead of destination therapy.

However, the fuzzy scale of the linguistic data used for the TAH devices is given as seen in Table 2. The Yager
index has been applied for the defuzzification of the triangular fuzzy numbers, which are assigned to the linguistic
data.

TABLE 2. The triangular fuzzy scale of the linguistic data

Linguistic scale for evaluation Triangular fuzzy scale

Very High (VH) (0.75, 1, 1 )
High (H) (0.50, 0.75, 1)
Medium (M) (0.25, 0.50, 0.75)
Low (L) (0, 0.25, 0.50)
Very Low (VL) (0, 0, 0.25)

Furthermore, the life time, advantage, practicability, approvals and durability of the TAH devices are maximized
while weight, size and the disadvantages of the TAH devices are minimized. And the importance weights of the
criteria are selected equally. The decision maker also could get different ranking results based on the priority of the
criteria.

RESULT AND DISCUSSION

In this paper the different TAH devices based on several criteria such as practicability, lifetime, weight, advantage,
disadvantage, approvals, size, and durability. As shown in figure 1, the ranking of the devices starting from the left as
the best and ending to the right as the worst.

TABLE 3. The ranking of the devices.

Rank Phi Phi+ Phi-

1-SynCardia 0,0798 0,1685 0,0887
2-Carmat 0,0707 0,1647 0,0940
3-BiVACOR 0,0239 0,1340 0,1101
4-AbioCor -0,0006 0,1263 0,1269
5-ReinHeart -0,1738 0,0283 0,2021
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FIGURE 1. The chart compares the TAH devices based on several criteria

The Syncardia TAH is still the only satisfactory TAH despite the pneumatic drive. For addition, there is a larger
capacity of ReinHeart TAH pump machine. The surgical procedure is much more complex, together with the addi-
tional implantable components. On the other side, pericardium and lungs may not occupy the empty gap between the
Syncardia ventricles. This may become a source of infection due to clot and debris accumulation.

The TET system’s outer coil may be misaligned or detached. The internal battery provides power for up to 45
minutes in the case of disconnection. Without the additional equipment, we agree that this length is appropriate for
the patient’s body treatment. The expected service period of up to 12h for two external battery packs is equivalent
to the state of the art LVAD(Left Ventricular Assist Device) and TAH devices [20]. Nevertheless,implantable total
artificial hearts have a long way to go if they are to replace the natural heart permanently, made for destination
therapy. Problems such as management of anti-coagulation, size, energy, biocompatibility, and durability continue to
be a challenge. TAH is currently used as a bridge to transplantation instead of destination therapy. The AbioCor is in
the process of being approved by the Food and Drug Administration (FDA), but complications on its atrial attachments
associated with thromboembolic events and thrombus formation must be resolved before market and professional
approval is received. Other devices like Carmat TAH solved the thromboembolic events by having a membrane that is
made of bovine pericardial tissue treated fabric but it’s still undergoing feasibility studies. So far, the only device that
is commercially approved is SynCardia TAH, it’s the only one in the market for patient use. Bioengineering research
offers promising alternatives for optimizing the hemodynamics of TAH and achieving a high degree of natural heart
physiological and functional mimicry. TAH research remains an open avenue for creative minds, carrying forward a
bright future.

CONCLUSION

The pneumatic driver generates high noise that can interrupt the patient and the surrounding people. SynCardia TAH
has several approvals such as FDA, Health Canada, and European CE mark. Carmat is still undergoing feasibility
studies [16]. The device is biocompatible since the membrane and valves are obtained from bovine. It makes the
patients less dependent on anti-coagulation drugs. The device has sensors to track the pressure. The information is
delivered to the internal control system to modify the flow rate, for example when patient exercise [17]. The system is
self-regulated, based on the need of the patient. As in SynCardia TAH, it’s not completely implanted in the patient’s
body; carrying the driver all the time can impair the patient’s mobility [15]. BiVACOR is in the early stage of animal
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trails. It has intelligent controllers to adjust the action of the pump to alter the condition of the user. The device
is highly durable since the device life is up to more than 10 years [18]. The Abiocor lack trans-corporeal wires or
tubing in which greatly reduces the risk of infection and increases the mobility of patients. It has a large device size
in which it does not suit children and women. The durability and bio compatibility of the device are uncertain and
can cause thrombosis and mortality threats. The TET device (Transcutaneous Energy Transmission) uses about 40%
of the external battery capacity, which allows the patient to carry heavy portable batteries. The internal battery has a
short life, which must be replaced every 1-2 years, requires surgery. Reinheart is in the early stage of animal trails.
The complete unit pump configuration and fixed ventricles solved the problem of the space between the ventricles that
may not be filled by the lung and pericardium. The use of the transcutaneous energy transmission system to power
the inserted battery reduces the risk of permanent skin incisions causing infections. The device requires a complex
surgical procedure. The patient is connected to an external drive which limits his mobility. The external battery allows
the patient to disconnect the outer coil of TET system for 45 minutes only.

Although complete implantability and the TET system are encouraging, the TAH system also needs to be tested in
90-day animal testing. The Syncardia TAH is still the only satisfactory TAH despite the pneumatic drive. Also, there
is a larger capacity of the Reinheart TAH pump machine. The surgical procedure is much more complex, together
with the additional implantable components. On the other side, the pericardium and lungs may not occupy the empty
gap between the Syncardia ventricles. This may become a source of infection due to clot and debris accumulation
[19].
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Abstract. The initial value problem for the parabolic type involutory partial differential equation is studied. Applying Green’s
function of space operator generated by the differential problem, we get formula for solution of this problem. The theorem on
stability estimates for the solution of this problem with involution is established.

INTRODUCTION

In an experiment measuring the population growth of a species of water fleas, Nesbit (1997), used a delay differential
equation model in his study. In simplified form his population equation was (see, [1, 2])

N′(t) = aN(t −d)+bN(t).

He got into a difficulty with this model because he did not have a reasonable history function to carry out the solution
of this equation. To overcome this roadblock he proposed to solve a "time reversal" problem in which he sought the
solution to an involutory differential equation that is neither a delay differential equation, nor a functional differential
equation. He used a "time reversal" equation to get the juvenile population prior to the beginning time t = 0. The time
reversal problem is a special case of a type of equation called an involutory differential equation. These are defined as
equations of the form

y′(t) = f (t,y(t),y(u(t))), t ∈ I,y(t0) = y0. (1)

Here u(t) is involution function, that is u(u(t)) = t, and t0 is a fixed point of u. For the "time reversal" problem, we
have the simplest involutory differential equation, one in which the deviating argument is u(t) =−t. This function is
involution since u(u(t)) = u(−t) =−(−t) = t.

Differential equations with involution appear in mathematical models of ecology, biology, and population dynamics
(see, e.g, [3, 4, 5] and the reference given therein). In recent decades, one-dimensional partial differential equations
with involution have been investigated by many scientific in papers (see, e.g. [6, 7, 8, 9, 10, 11] and the references
given therein). In the study [6], the mixed problem of one dimensional parabolic equation with involution in x was
investigated. Applying operator tools, the stability and coercive stability estimates in Hölder norms for the solution
of this problem were established. In the paper [7], a mixed problem for two dimensional elliptic equation with
involution was studied. This problem was reduced to boundary value problem for the abstract elliptic equation in
Hilbert space with a self-adjoint positive definite operator. Operator tools permit us to obtain stability and coercive
stability estimates in Holder norms, in one variable, for the solution. In the paper [8], a stable difference scheme
for approximate solution of an elliptic equations with involution was constructed. Theorem on stability and almost
coercive stability and coercive stability of this difference scheme was established. The theoretical statements for
statements for the solution of this difference scheme were supported by the results of the numerical experiment. In
the paper [9], a mixed problem of one dimensional hyperbolic equation with the involution in x was investigated. The
stability estimates in maximum norm in t for the solution of this problem are established. In the paper [11], the theory
of the basis property of eigenfunctions of second order differential operators with involution was investigated, on this
basis the Fourier method was justified for solving direct and inverse problems for one dimensional parabolic equations
with involution in x. The applied value of these results in their importance in the study of several mathematical models
containing partial differential equations with involution in space variable. The existence and uniqueness of the solution
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of a mixed problem for a parabolic equation with an involution in x in the form of a Fourier series were established.
The classes of solvability of ill-posed problems for a parabolic equation with involution in x were considered. The
questions of solvability of inverse problems for the heat equation and their fractional analogues were investigated.
Solvability of inverse problems for a parabolic equation with an involution in x was proved.

As it mention before we need the values of unknown function at previous time for solving delay differential equa-
tions. There, there is important to study parabolic type differential equations with time involution. Noted that partial
differential equations with time involution are not investigated before as well.

Our goal in this paper is to investigate the stability of the solution of the initial value problem for the parabolic type
involutory partial differential equation⎧⎨

⎩
∂v(t,x)

∂ t − ∂ 2v(t,x)
∂x2 −b ∂ 2v(−t,x)

∂x2 = f (t,x),
t,x ∈ I = (−∞,∞),
v(0,x) = ϕ(x),x ∈ I = (−∞,∞).

(2)

Here f (t,x)(t,x ∈ I) and ϕ(x) are given smooth functions and |b| > 1. Applying Green’s function of space operator
generated by problem (2), we get formula for solution of this problem. The theorem on stability of the solution of this
problem under the condition |b|> 1 is established.

It is well-known that, methods of finding Green’s function of operator with involution and without involution are
different. Therefore, we obtain formula of solution of problem (2) involving the Green’s function of operator with
involution.

Problem (2) can be written as abstract initial value problem⎧⎨
⎩

dv(t)
dt +Av(t)+bAv(−t) = f (t), t ∈ I

v(0) = ϕ
(3)

in a Hilbert space H = L2(I) of all square integrable functions ψ (x) defined on I equipped with the norm

‖ψ‖L2(I) =

{∫ ∞

−∞
ψ2 (x)dx

}1/2

.

Here, positive operator A defined by the formula

Au =−u′′(x)

with domain D(A) = {u : u(x),u′′(x) ∈ L2(I)} , f (t) = f (t,x) and v(t) = v(t,x) are known and unknown abstract func-
tions with values in L2(I) and ϕ = ϕ(x) is the unknown element of L2(I). Now, we will obtain the initial value
problem for the second order differential equation equivalent to problem (3) under smoothness conditions of solution.

Using initial condition and equation in problem (2), we get

v(0) = ϕ,v′ (0) = f (0)− (1+b)Aϕ. (4)

Differentiating equation (2), we get

v
′′
(t) = bAv′(−t)−Av′(t)+ f ′(t). (5)

Substituting −t for t into equation (2), we get

v′(−t) =−bAv(t)−Av(−t)+ f (−t). (6)

Using these equations, we can eliminate v(−t) and v
′
(−t) terms. Actually, using equations (5) and (6), we get

v
′′
(t) =−b2A2v(t)−bA2v(−t)+bA f (−t)−Av′(t)+ f ′(t).
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Using that and equation (2), we get

v
′′
(t) =−b2A2v(t)+A

[
v′(t)+Av(t)− f (t)

]
+bA f (−t)−Av′(t)+ f ′(t)

or

v
′′
(t)+

(
b2 −1

)
A2v(t) =−A f (t)+bA f (−t)+ f ′(t). (7)

So, we get the initial value problem (4) and (7) for the second order differential equation in a Hilbert H = L2(I). It is
easy to see that

d2v(t)
dt2

+
(
b2 −1

)
A2v(t) =

(
d
dt

+ i
√

b2 −1A
)(

d
dt

− i
√

b2 −1A
)

v(t) .

Therefore, problem (4) and (7) can be written as abstract initial value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt v(t)+

√
b2 −1iAv(t) = u(t),v(0) = ϕ,

d
dt u(t)−√

b2 −1iAu(t) = F(t),

F(t) =−A f (t)+bA f (−t)+ f ′(t), t ∈ I,

u(0) = f (0)− (1+b)Aϕ + i
√

b2 −1Aϕ

(8)

for the system of first order abstract differential equations in a Hilbert H = L2(I). Integrating these equations, we can
write ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(t) = e−i
√

b2−1tAϕ +
t∫

0

e−i
√

b2−1(t−y)Au(y)dy,

u(t) = ei
√

b2−1tA
[

f (0)− (1+b)Aϕ + i
√

b2 −1Aϕ
]

+
t∫

0

ei
√

b2−1(t−s)A [−A f (s)+bA f (−s)+ f ′(s)]ds.

(9)

Therefore,

v(t) = e−i
√

b2−1tAϕ +

t∫
0

e−i
√

b2−1(t−2y)Ady
[

f (0)− (1+b)Aϕ + i
√

b2 −1Aϕ
]

+

t∫
0

e−i
√

b2−1(t−y)A
y∫

0

ei
√

b2−1(y−s)A [−A f (s)+bA f (−s)+ f ′(s)
]

dsdy.

Making the change of the order of integration and integration by parts, we can write

v(t) =
1

2

(
ei
√

b2−1tA + e−i
√

b2−1tA
)

ϕ − 1+b

2
√

b2 −1

(
ei
√

b2−1tA − e−i
√

b2−1tA
)

ϕ

+
1

2i
√

b2 −1

t∫
0

(
ei
√

b2−1(t−s)A − e−i
√

b2−1(t−s)A
)
[− f (s)+b f (−s)]ds (10)

−1

2

t∫
0

(
ei
√

b2−1(t−s)A + e−i
√

b2−1(t−s)A
)

f (s)ds.
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THE MAIN THEOREM ON STABILITY

Theorem 1 Assume that |b| > 1 and ϕ(x) ∈ W 2
2 (I) and f (t,x), ft(t,x) ∈ C(I,L2(I)). Then, for solutions of problem

(2) we have following stability estimates

sup
t∈I

‖v(t)‖L2(I) ≤ M1

[
‖ϕ‖L2(I) +

∫ ∞

−∞
‖ f (y)‖L2(I) dy

]
, (11)

sup
t∈I

‖vt(t)‖L2(I) + sup
t∈I

‖v(t)‖W 2
2 (I)

(12)

≤ M1

[
‖ϕ‖W 2

2 (I)
+‖ f (0)‖L2(I) +

∫ ∞

−∞

∥∥ f ′(y)
∥∥

L2(I)
dy
]
,

where M1 does not depend on ϕ(x) and f (t,x). Here, W 2
2 (I) is the Sobolev space of all square integrable functions

ψ (x) defined on I equipped with the norm

‖ψ‖W 2
2 (I)

=

{∫ ∞

−∞

[
ψ2 (x)+ψ2

xx (x)
]

dx
}1/2

,

C(I,L2(I)) is the Banach space of all continuous bounded in t and square integrable in x functions f (t,x) equipped
with the norm

‖ f‖C(I,L2(I)) = sup
t∈I

‖ f (t)‖L2(I) =

{∫ ∞

−∞
f 2 (t,x)dx

}1/2

.

Proof. For the self-adjoint positive definite operator A and t ∈ I, we have the following estimate

∥∥∥∥ei
√

b2−1tA
∥∥∥∥

H→H
� 1. (13)

Applying formula (10), triangle inequality and estimate (13), we get

‖v(t)‖H ≤ ‖ϕ‖H +
|1+b|√
b2 −1

‖ϕ‖H

+

(
1+

1+ |b|√
b2 −1

) ∞∫
−∞

‖ f (s)‖H ds

for any t ∈ I. From that it follows estimate (11). Applying formula (10), we get

Av(t) =
1

2

(
ei
√

b2−1tA + e−i
√

b2−1tA
)

Aϕ − 1+b

2
√

b2 −1

(
ei
√

b2−1tA − e−i
√

b2−1tA
)

Aϕ

− 1

(b2 −1)
[ f (t)−b f (−t)]+

1

2(1+b)

(
ei
√

b2−1tA + e−i
√

b2−1tA
)

f (0)

+
1

2i(b2 −1)

t∫
0

(
ei
√

b2−1(t−s)A + e−i
√

b2−1(t−s)A
)[− f ′(s)−b f ′(−s)

]
ds (14)
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+
1

2i
√

b2 −1

(
ei
√

b2−1tA − e−i
√

b2−1tA
)

f (0)

+
1

2i
√

b2 −1

t∫
0

(
ei
√

b2−1(t−s)A − e−i
√

b2−1(t−s)A
)

f ′(s)ds.

Applying formula (14), triangle inequality and estimate (13), we get

‖Av(t)‖H ≤ ‖Aϕ‖H +
|1+b|√
b2 −1

‖Aϕ‖H

+

[
1+ |b|
b2 −1

+
1

1+b
+

1√
b2 −1

]
‖ f (0)‖H

+

(
1√

b2 −1
+

2(1+ |b|)
b2 −1

) ∞∫
−∞

∥∥ f ′(s)
∥∥

H ds

for any t ∈ I. From that it follows estimate

sup
t∈I

‖v(t)‖W 2
2 (I)

≤ M1

[
‖ϕ‖W 2

2 (I)
+‖ f (0)‖L2(I) +

∫ ∞

−∞

∥∥ f ′(y)
∥∥

L2(I)
dy
]
.

In the same manner, we can prove that

sup
t∈I

‖vt(t)‖L2(I)

≤ M1

[
‖ϕ‖W 2

2 (I)
+‖ f (0)‖L2(I) +

∫ ∞

−∞

∥∥ f ′(y)
∥∥

L2(I)
dy
]
.

This completes the proof of Theorem 1.
Applying this approach we can obtain same stability estimates for the solution of the initial boundary value problem

for the involutory parabolic type differential equation⎧⎪⎨
⎪⎩

∂v(t,x)
∂ t − ∂ 2v(t,x)

∂x2 −b
∂ 2v

(
t0
2 −t,x

)
∂x2 = f (t,x),

t,x ∈ I = (−∞,∞),
v
( t0

2 ,x
)
= ϕ(x),x ∈ I = (−∞,∞).

CONCLUSION

In the present paper, the initial value problem for the parabolic type involutory partial differential equation is investi-
gated. Applying Green’s function of space operator generated by this problem with time involution, we get formula
for solution of this problem. The theorem on stability of the linear problem with time involution is proved. More-
over, applying the result of the monograph [12], the absolute stable difference schemes for the numerical solution of
the initial value problem (2) for parabolic type involutory linear partial differential equations can be constructed and
investigated.
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Abstract. The necessity of e-signature has been accepting by all organizations like finance, education, business. With the effect
of this, the popularity has been increasing day by day especially uncertainty times such as the Covid-19 pandemic. However, there
is a missing gap in the literature about e-signature studies. The literature review showed that the studies on e-signature awareness
and the benefits of e-signature usage in any organization or/and the person are not enough. For this reason, the purpose of the
study is to develop a valid and reliable scale to use in scientific studies to understand the awareness of users towards e-signature.
Therefore, both validity and reliability of scale have been investigated. Through the exploratory factor analysis, the AoE-sign scale
has 16 items and 2 subfactors which are “Awareness” and “Benefits”. The factor analysis results indicated that Cronbach Alpha for
Awareness was .888, for Benefits was .790 and for the overall scale was .889. Consequently, the study results demonstrated that
the AoE-sign scale is reliable and valid tool and the developed scale could be used by top-level managers, in developing countries
such as Cyprus, to be able to understand the awareness level of users. Moreover, they can organize staff training on e-signature to
make it possible to use e-signature efficiently in the organizations.

INTRODUCTION

Digital transformation is affecting all sectors all over the world. The results of the scientific researches showed
that new technologies made human life more easy, fast and secure than traditional tools and methods. In today’s
information society, all organizations’ aim is to increase their competitiveness, and move quickly [1]. In order for the
transactions to be carried out, it brings out the need for urgent approvals of the authorized person just on the needed
time. For this reason, approval processes, namely the signature process, also need to be digitalized. Digital signatures
usage has some benefits for the user such as increasing the speed of transactions [2] as well as and increasing security
[3] and reducing costs [4]. For this purpose, free and commercial digital signature software such as DocuSign,
PandaDoc, SignEasy, etc. were developed to create, manage, and sign documents online from anywhere, anytime on
any device like laptop, PC, smart phones etc. However, to adopt and use digital signature software, the user must know
that they will facilitate the importance and benefits for their life. For this reason, it is very important to determine the
awareness of users towards e-signature. However, when the literature was examined, it was determined that the scale
studies prepared in this direction were not sufficient. For this reason, the scale named AoE-sign, has been developed
in this study to understand the awareness of users towards e-signature. The literature indicated that the reliability
and validity studies must be investigated to develop a quality scale. The aim of this study is to develop a valid and
reliable scale for understanding the awareness of users towards e-signature. Thus, the process of this current study
was constructed to investigate the reliability and validity of the scale for the awareness of users towards e-signature
(AoE-sign).

MATERIAL AND METHODS

The process of this study was described in details in this part. Participants (n = 278) ( 53.2% (male), 46.8% (female))
were determined by convenience sampling and were voluntarily participating where n is number of participants. All
participants were between the ages of 18 and 35 years.
Data Analysis
SPSS 23 software was used in the analysis process. In this process, Exploratory factor analysis(EFA) was used to
investigate the characteristics of the scale for the construct validity. For the evaluation of the reliability of the scale,
Cronbach’s alpha and Sperman-Brown coefficient were calculated as internal consistency coefficients. Moreover, item
analysis was applied with corrected item-total correlation and Cronbach’s alpha if item deleted.
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Exploratory Factor Analysis

Factor analysis is a technique used to determine whether a number of variables (or items) X1,X2, . . . ,Xp are linearly
correlated to a lower number of factors F1,F2, . . . ,Fk ,where k < p. The logic is that there are underlying factors
and some variables can be measures of the identical factors. In this method, the variables are linear combinations of
the underlying factors. Factor analysis utilizes mathematical procedures to facilitate correlated measures to explore
model in a group of variables [5].

In the factor analysis model, it is assumed that there are p variables and k factors ,where k<p. In this model, the
variables X1,X2, . . . ,Xp, taken from a population with mean vector μ and variance matrix ∑. For each variable Xi, the
factor analysis model is defined as:

X1 = μ1 +λ11F1 +λ12F2 + · · ·+λ1kFk + e1,

X2 = μ2 +λ21F1 +λ22F2 + · · ·+λ2kFk + e2,

· · ·

Xp = μp +λp1F1 +λp2F2 + · · ·+λpkFk + ep,

where Fk are factors and ep are error terms. In the model, the λi j s are factor loadings that shows the contribution of
the common factor j on the variable i. The model assumes that the eis are independent and E(ei) = 0 and Var(ei) = ψi.
And another assumption is about the factors. The factors Fjs are independent and E(Fj) = 0 and Var(Fj) = 1. And
additionally, Cov(Fi,Fj) = 0,Cov(ei,Fj) = 0,andCov(ei,e j) = 0. According to these assumptions, Var(Xi) is obtained
as

Var(Xi) =
k

∑
m=1

λ k
im +ψi. (1)

From the Equation (1), it is seen that Var(Xi) has two parts: The first part, Var(Xi) = ∑k
m=1 λ k

im is the communality
(or common variance) of the variable. It is the proportion of the variance of each variable that is accounted by the
factors. It is denoted by h2 and defined as the total of square of the factor loadings for the variable. The second part
of Var(Xi), ψi is residual variance, the variance of the error term ei.
The factor analysis model can also be defined as matrix form as in Equation (2):

x = μ +ΛF + e, (2)

where X = (X1,X2, . . . ,Xp)
′
, μ = (μ1,μ2, . . . ,μp)

′
, F = (F1,F2, . . . ,Fk)

′
, e = (e1,e2, . . . ,ep)

′
and Λ = (λi j) with

i = 1,2, . . . , p and j = 1,2, . . . ,k. And covariance matrix is defined as

Var(X) = ΛΛ
′
+ψ, (3)

where Ψ= diag(ψ1,ψ2, . . . .,ψp). There are several methods for estimation of the factor loadings Λ and communalities
in factor analysis. These are principal component method, principal factor solution, and maximum likelihood method.
The most commonly preferred method is the principal component method. This method investigates the values of
factor loadings by estimating the total common variance (or communality) fairly close to the sum of the oberved
variances. Principal components are described as linear combinations of the variables, factors are described as linear
combinations of the underlying variables. The principal component method is used to obtain the sample covariance
matrix S from a sample of data and after achieve an estimator Λ̂. The sample covariance matrix S ≈ Λ̂Λ̂′ is defined in
the form of singular value decomposition (SVD) as in Equation (4):

S =CKC
′
=CK(1/2)K(1/2)C

′
, (4)

where C is an orthogonal matrix of eigenvectors of S and K = diag(θ1,θ2, . . . ,θp) represents diagonal matrix of

eigenvalues θ1,θ2, . . . ,θp of S. In SV D,CK(1/2) is matrix with order pxp. However, Λ̂ is order of pxk. Thus, the first
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k columns of CK(1/2) to describe Λ̂ with θ1 > θ2 > · · ·> θk. There are several ways to choose the number of factors.
Some of these ways are exploring the number of eigenvalues higher than the mean eigenvalue or plotting a scree plot.
Factor analysis may not be suitable for all data structures. The suitability of the data for factor analysis can be
examined with the Kaiser-Meyer-Olkin (KMO) coefficient and Barlett sphericity test. The KMO coefficient gives
information about whether the data matrix is suitable for factor analysis and the suitability of the data structure for
factor extraction as the measure of the adequecy of sampling. The KMO index is calculated as

KMO =
∑i ∑i�= j ri j

2

∑i ∑i�= j ri j2 +∑i ∑i�= j bi j
2
, (5)

where the correlation matrix is R= (ri j), the inverse of the correlation matrix R(−1) = (gi j), and partial correlarion

matrix is B = (bi j), bi j =
−gi j√
(gi j∗gi j)

. For factorability, KMO is expected to be higher than 0.60. Approach of KMO

values to zero indicates that there exist high partial correlations when compared to total correlations.
Barlett sphericity test examines whether there is a relationship between variables on the basis of partial correlations.
If the calculated chi-square statistic is significant, then it is an indicator that the data matrix is suitable. The significant
test result can also be seen as an indicator of the normality of the scores. The Barlett’s test statistic is calculated by:

χ2 =−
(

n−1− 2p+5

6

)
x ln
∣∣R∣∣∣ (6)

with
[

px (p−1)
2

]
number of degrees of freedom where p is the number of variables.

The researcher can be subjected to an axis rotation to provide dependence, clarity, and significance in interpretation of
k important factors obtained by applying a factor analysis technique [6]. There are two types of rotation approaches,
orthogonal and oblique. In orthogonal rotation, factors are rotated by the same angle without changing the position
of the axes. In oblique rotation, which is based on the idea that the factors are related to each other, the rotation is
done at different angles. There are different techniques for the orthogonal rotation such as varimax, quartimax and for
oblique rotation such as oblimin, promax.
Another important point in factor analysis is the quality of the factor model, in other words, its reliability. There are
numerious criteria for the reliability of the factor model. The internal consistency reliability is commonly provided
by Cronbach’s alpha coefficient (α) [7]. Cronbach’s alpha usually increases if the correlations between the variables
increase. Therefore, this coefficient measures the internal consistency of the test or scale. For the given X1, . . . ,Xp
and Xt = ∑p

j=1 Xj, Cronbach’s alpha coefficient is obtained as

α =
p

p−1

(
1− ∑p

j=1 var(Xj)

var(Xt)

)
. (7)

It is a generally accepted rule that Cronbach’s alpha coefficient is 0.70 and above for the internal consistency.

RESULTS

EFA was performed to explore the underlying factor structure of the scale using principal-components analysis with
oblimin rotation. In EFA, the factors of the scale were determined based on eigenvalues>1 and scree-plot. The
factorability of the 20 items of the scale was investigated. KMO measure of sampling adequacy and Bartlett’s test
of sphericity were computed to ensure that the characteristics of the data were suitable for the factor analysis. KMO
was .890, indicating that sample size is sufficient for the analysis. Bartlett’s test of sphericity result was significant
(χ2=1793;df=120; p < 0.001), indicating that the data has multivariate normal distribution and is appropriate for the
analysis. This research took 0.4 as the threshold value of factor loadings and factor loadings lower than 0.4 were
not used. Any item with communality values lower than 0.2 were removed from the analysis (Child 2006). One
item was removed, as the factor loading was low, at 0.31. It is also seen that 3 items had relatively high load values
in both factors according to EFA results obtained. It was deemed appropriate to exclude these items, which have
high load values in both factors. The remaining 16 items were clustered under two factors based on the number of
eigenvalues that are higher than or equal to 1.0. The variance explained by these two factors for the scale is 50.483%.
The eigenvalues showed that the first factor, which was determined to be important, explained 38.225% of the total
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variance regarding the scale, and 12.258% of the variance was explained by the second factor. Similarly, scree plot
analysis results supported a two factor solution. When the items are examined in the first factor and the second factor,
respectively, subfactor 1 with 9 items was renamed “awareness” and “benefit” for subfactor 2 with 7 items. Item
factor loadings ranged from .433 to .838 and communalities ranged from 0.312 to 0.649. The Cronbach’s alpha of the
overall 16-item AoE-sign scale was 0.889 indicating good internal consistency. Both AoE-sign subscales indicated
good internal consistency with Cronbach’s alpha value of 0.888 (awareness; 9 items) to 0.790 (benefits; 7 items).
It was observed that the corrected item-total corelation ranged between 0.353 and 0.680, for all items in the AoE-
sign scale. The corrected item-total correlation values of the items in the scale were observed to be higher than the
threshold value, 0.3 (expected to be higher than 0.3). Also, the corrected item-total correlation of overall items were
above 0.3 for both subscales. In addition, Cronbach’s Alpha value found when the items in the scale were deleted
separately were not greater than the Cronbach’s alpha of the overall 16-items of 0.889. At the same time, there was no
increase in Cronbach’s alpha value by removing any item for both subscales. These results of item analysis indicated
that overall 16-items should remain in AoE-sign scale. These findings can be interpreted as the items in the scale have
high validity and are items aimed at measuring the same behavior.

CONCLUSION

In the digitalizing world, the need for e-signature usage is increasing day by day and even its use has become a ne-
cessity. Everyday, many documents need to be signed and the business process should be shaped. It is difficult to
reach the authorized person by manual to obtain their approval, i.e., their signature. It is even seen that there are prob-
lems in the work-flow due to this. For this reason, there is an urgent necessity for business users to create awareness
about e-signature and to ensure that those who do not use digital signature use it with the necessary assistance. For
this purpose, a developed scale consists of 16 items, through EFA, the “Scale for the Awareness of Users towards
E-Signature” was validated in two factors: “Awareness,” and “benefits”. The developed scale is suitable for develop-
ing countries like Cyprus. The results of the analysis showed that the reliability and validity of this scale met all the
necessary criteria. Therefore, the AoE-sign scale can be scientifically used to identify the level of the users’ awareness
of e-signature. In the future, we are planning to use the AoE-sign scale in the study to investigate the users’ who are
working at the different sectors in different countries all around the world, awareness towards e-signature.
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Abstract. In this paper, a fractional order mathematical model is constructed to study the dynamics of coronavirus. The model
consists of a system of eight non-linear fractional order differential equations in Caputo sense. Existence and uniqueness of the
solution of the model are studied.

INTRODUCTION

Some epidemic diseases are capable of producing large number of infections starting from a fewer ones, an example
of such diseases is Covid-19 [1]. Coronavirus disease is an inspiratory and zoonotic disease, caused by a virus of
the coronaviridae family which originated in the city of Wuhan China on December 01, 2019 [2]. The virus strain is
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in fever, coughing, breathing difficulties,
fatigue, and myalgia. It may transform into pneumonia of high intensity.
We need modelling approach to understand the exact dynamics of the disease. This is what motivates this research.
It is important to note that, in the classical order model, the state of epidemic model does not depend on its history.
However, in real life memory plays a vital role in studying the pattern of spread of any epidemic disease. It was found
that the waiting times between doctor visits for a patient follow a power law model [4]. It is worth to know that Caputo
fractional time derivative is a consequence of power law [5]. When dealing with real world problem Caputo fractional-
order derivatives allows traditional initial and boundary conditions. Furthermore, due to its non-local behavior and its
ability to change at every instant of time Caputo fractional-order gives better result than the integer order.
The aim of this research is to study existence and uniqueness of solution of fractional order epidemic model that
investigates the dynamics of Covid-19. Based on the memorability nature of Caputo fractional-order derivatives, this
model can be fitted with data reasonably well.

FORMULATION OF THE MODEL

Let the total population be N(t). The population is divided into eight compartments, namely; susceptible popula-
tion S(t), exposed population E(t), asymptomatic infective population IA(t), symptomatic infective population IS(t),
isolated infective population II(t), hospitalized infective population IH(t), recovered population R(t), and dead indi-
viduals D(t). The dynamics of this population is represented by the following system of fractional order differential
equations (FODE) and the meaning of parameters is given in Table 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDυ
0+

S(t) =−βS(αIA +ξ II + IS),
CDυ

0+
E(t) = βS(αIA +ξ II + IS)− kE,

CDυ
0+

IA(t) = (1− p)kE − γAIA,
CDυ

0+
IS(t) = pkE −qIS,

CDυ
0+

II(t) = q(1−Ψ)IS − (γS +μS)II ,
CDυ

0+
IH(t) = qΨIS − (γH +μH)IH ,

CDυ
0+

R(t) = γA + γS + γH ,
CDυ

0+
D(t) = μS)IS +μHIH .

(1)
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TABLE 1. Description of the parameters.

Parameters Descriptions

β effective contact rate
α reduction of infectiousness in asymptomatic people
ξ reduction of infectiousness in isolated people
k progression from exposed to infectious class
p proportion of asymptomatic cases
q progression from asymptomatic unaware to self-isolated
Ψ proportion of hospitalized people
γA,γS,γH recovery rate for asymptomatic, symptomatic and hospitalized individuals respectively
μS,μH mortality rate in isolated and hospitalized classes

EXISTENCE AND UNIQUENESS RESULTS

The theory of existence and uniqueness of solutions is one of the most dominant fields in the theory of fractional-order
differential equations. The theory has recently attracted the attention of many researchers, we are referring to [6] and
the references therein for some of the recent growth.

In this section, we discuss the existence and uniqueness of solution of the proposed model using fixed point theo-
rems. Let us reformulate the proposed model (1) in the subsequent form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDυ
0+

S(t) = Θ1(t,S,E, IA, IS, II , IH ,R,D),
CDυ

0+
E(t) = Θ2(t,S,E, IA, IS, II , IH ,R,D),

CDυ
0+

IA(t) = Θ3(t,S,E, IA, IS, II , IH ,R,D),
CDυ

0+
IS(t) = Θ4(t,S,E, IA, IS, II , IH ,R,D),

CDυ
0+

II(t) = Θ5(t,S,E, IA, IS, II , IH ,R,D),
CDυ

0+
IH(t) = Θ6(t,S,E, IA, IS, II , IH ,R,D),

CDυ
0+

R(t) = Θ7(t,S,E, IA, IS, II , IH ,R,D),
CDυ

0+
D(t) = Θ8(t,S,E, IA, IS, II , IH ,R,D),

(2)

where

Θ1(t,S,E, IA, IS, II , IH ,R,D) =−βS(αIA +ξ II + IS),
Θ2(t,S,E, IA, IS, II , IH ,R,D) = βS(αIA +ξ II + IS)− kE,
Θ3(t,S,E, IA, IS, II , IH ,R,D) = (1− p)kE − γAIA,
Θ4(t,S,E, IA, IS, II , IH ,R,D) = pkE −qIS,
Θ5(t,S,E, IA, IS, II , IH ,R,D) = q(1−Ψ)IS − (γS +μS)II ,
Θ6(t,S,E, IA, IS, II , IH ,R,D) = qΨIS − (γH +μH)IH ,
Θ7(t,S,E, IA, IS, II , IH ,R,D) = γA + γS + γH ,
Θ8(t,S,E, IA, IS, II , IH ,R,D) = μS)IS +μHIH .

(3)

Thus, the proposed model (1) takes the form

CDα
0 Φ(t) = K (t,Φ(t)); t ∈ J = [0,b],0 < α ≤ 1,

Φ(0) = Φ0 ≥ 0,
(4)

on condition that

Φ(t) = (S,E, IA, IS, II , IH ,R,D)T ,
Φ(0) = (S0,S0, IA0, IS0, II0, IH0,R0,D0)

T ,
K (t,Φ(t)) = (Θi(t,S,E, IA, IS, II , IH ,R,D))T , i = 1, · · · ,8,

(5)

where (·)T represents the transpose operation. In view of Theorem in [10], problem (5) is given by

Φ(t) = Φ0 +J υ
0+K (t,Φ(t)) = Φ0 +

1

Γ(υ)

∫ t

0
(t − τ)υ−1K (τ,Φ(τ))dτ. (6)
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Let E = C([0,b];R) denotes the Banach space of all continuous functions from [0,b] to R endowed with the norm
defined by

‖Φ‖= sup
t∈J

|Φ(t)|,

where
|Φ(t)|= |S(t)|+ |E(t)|+ |IA(t)|+ |IS(t)|+ |II(t)|+ |IH(t)|+ |R(t)|+ |D(t)| and S,E, IA, IS, II , IH ,R,D ∈C([0,b]).

Theorem 1 Suppose that the function K ∈ C([J,R]) and maps bounded subset of J ×R
8 into relatively compact

subsets of R. In addition, there exists constant LK > 0 such that (A1) |K (t,Φ1(t))−K (t,Φ2(t))| ≤ LK |Φ1(t)−
Φ2(t)|; for all t ∈ J and each Φ1,Φ2 ∈ C([J ,R]). Then the integral equation (6) which is equivalent with the
proposed model (1) has a unique solution provided that ΩLK < 1, where Ω = bυ

Γ(υ+1) .

Proof. Consider the operator P : E→ E defined by

(PΦ)(t) = Φ0 +
1

Γ(υ)

∫ t

0
(t − τ)υ−1K (τ,Φ(τ))dτ. (7)

Obviously, the operator P is well defined and the unique solution of model (1) is just the fixed point of P. Indeed,
let us take supt∈J ‖K (t,0)‖ = M1 and κ ≥ ‖Φ0‖+ΩM1. Thus, it is enough to show that PHκ ⊂ Hκ , where the set
Hκ = {Φ ∈ E : ‖Φ‖ ≤ κ}, is closed and convex. Now, for any Φ ∈Hκ , yields

|(PΦ)(t)| ≤ |Φ0|+ 1

Γ(υ)

∫ t

0
(t − τ)υ−1|K (τ,Φ(τ))|dτ (8)

≤ Φ0 +
1

Γ(υ)

∫ t

0
(t − τ)υ−1 [|K (τ,Φ(τ))−K (τ,0)|+ |K (τ,0)|]dτ

≤ Φ0 +
(LK κ +M1)

Γ(υ)

∫ t

0
(t − τ)υ−1dτ ≤ Φ0 +

(LK κ +M1)

Γ(υ +1)
bυ ≤ Φ0 +Ω(LK κ +M1)≤ κ.

Hence, the results follow. Also, given any Φ1,Φ2 ∈ E, we get

|(PΦ1)(t)− (PΦ2)(t)| ≤ 1

Γ(υ)

∫ t

0
(t − τ)υ−1|K (τ,Φ1(τ))−K (τ,Φ2(τ))|dτ (9)

≤ LK

Γ(υ)

∫ t

0
(t − τ)υ−1|Φ1(τ)−Φ2(τ)|dτ ≤ ΩLK |Φ1(t)−Φ2(t)|,

which implies that ‖(PΦ1)− (PΦ2)‖ ≤ ΩLK ‖Φ1 −Φ2‖. Therefore, as a consequence of Banach contraction princi-
ple, proposed model (1) possess a unique solution.

Next, we prove the existence of solutions of the proposed model (1) by employing the concept of well-known
Krasnoselskii’s fixed point theorem.

Theorem 2 Let M �= /0 be a closed, bounded and convex subset of a Banach Space E. Let P1,P2 be two operators that
obey the given relations

• P1Φ1 +P2Φ2 ∈ M, whenever Φ1,Φ2 ∈ M;

• P1 is compact and continuous;

• P2 is a contraction mapping.

Then there exists u ∈ M such that u = P1u+P2u [7].

Theorem 3 Suppose that the function K : J ×R
8 → R is continuous and satisfies condition (A1). In addition,

assume that (A2) |K (t,Φ)| ≤ ψ(t), for all(t,Φ) ∈ J×R
8andψ ∈C([0,b],R+).

Then the proposed model (1) has at least one solution provided

LK‖Φ1(t0)−Φ2(t0)‖< 1.
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Proof. Setting sup
t∈J

|ψ(t)|= ‖ψ‖ and η ≥‖Φ0‖+Ω‖ψ‖, we consider Bη = {Φ∈E : ‖Φ‖≤η}. Consider the operators

P1,P2 on Bη defined by

(P1Φ)(t) =
1

Γ(υ)

∫ t

0
(t − τ)υ−1K (τ,Φ(τ))dτt ∈ J,

and

(P2Φ)(t) = Φ(t0), t ∈ J.

Thus, for any Φ1,Φ2 ∈ Bη , yields

‖(P1Φ1)(t)+(P2Φ2)(t)‖ ≤ ‖Φ0‖+ 1

Γ(υ)

∫ t

0
(t − τ)υ−1‖K (τ,Φ1(τ))‖dτ ≤ ‖Φ0‖+Ω‖ψ‖ ≤ η < ∞. (10)

Hence, (P1Φ1 +P2Φ2) ∈ Bη .
Next, we prove the contraction of the operator P2.
Obviously, given any t ∈ J and Φ1,Φ2 ∈ Bη , gives

‖(P2Φ1)(t)− (P2Φ2)(t)‖ ≤ ‖Φ1(t0)−Φ2(t0)‖. (11)

Since the function K is continuous, the operator P1 is also continuous. Moreover, for any t ∈ J and Φ1 ∈ Bη ,

‖P1Φ‖ ≤ Ω‖ψ‖<+∞

implies that P1 is uniformly bounded. Finally, we show that the operator P1 is compact. Define sup
(t,Φ)∈J×Bη

|K (t,Φ(t))|=
K ∗, gives

|(P1Φ)(t2)− (P1Φ)(t2)|= 1

Γ(υ)

∣∣∣∣∣
∫ t1

0
[(t2 − τ)υ−1 − (t1 − τ)υ−1]K (τ,Φ(τ))dτ

+
∫ t2

t1
(t2 − τ)υ−1K (τ,Φ(τ))dτ

∣∣∣∣∣
≤ K ∗

Γ(υ)
[2(t2 − t1)υ +(tυ

2 − tυ
1 )]→ 0 as t2 → t1. (12)

Thus, P1 is equicontinuous and so is relatively compact on Bη . Hence, as consequences of Arzelá Ascoli theorem, P1

is compact on Bη . Since all the hypotheses of Theorem [7] are true, proposed model (1) has at least one solution.

CONCLUSION

In conclusion, this paper consists of a system of eight non–linear fractional order differential equations in Caputo
sense. The existence and uniqueness of solution of the proposed model using fixed point theorems is discussed.
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Abstract. A three stage (9-point, 5-point and 5-point) difference method for solving the Dirichlet problem for Laplace’s equation
on a rectangle is proposed and justified. It is proved that the proposed difference solution converges uniformly to the exact solution
of order O(h8 |lnh|), h is the mesh size, when the boundary functions are from C9,1. Numerical experiment is illustrated to support
the analysis made.

INTRODUCTION

In many versions of the domain decomposition, composite grids, and combined methods in solving Laplace’s bound-
ary value problems the obtained system of equations is separated into a fixed number of subsystems, each of which
is adequate for the difference equations on a rectangle. Therefore, the detailed error analysis for the classical finite
difference or finite element methods for the problems in rectangular domains becomes important.

In [1] for 5-point, and in [2] for 9-point solution for the convergence order O(h2) and O(h6) are obtained by

requiring minimum smoothness of the functions given on the sides of the boundary in Hölder classes Ck,λ , 0 < λ < 1,
for k = 2, and k = 6, respectively. In [3] it is proved that for the 5-point solution the error in maximum norm is of
order O(h2(|lnh|+ 1)), when the boundary function is from C1,1. In [4], for the classical 9-point scheme on square
grids in solving the Dirichlet problem for Laplace’s equation on rectangles it was proved that the order of accuracy
in maximum norm is O(h6(|lnh|+ 1)),when the given boundary functions are from C5,1. These requirements on the

boundary functions cannot be lowered in Hölder classes Ck,λ .
In this paper a three-stage difference method which was announced in [5] for the solution of the Dirichlet problem

for Laplace’s equation on a rectangular domain is justified, when the boundary functions are from the classes C9,1.
By using at the first stage the 9-point, and at the second and third stages the 5-point scheme the obtained approximate
solution converges of order O(h8(|lnh|+1)) Numerical experiment is illustrated to support the analysis made.

DIFFERENTIAL AND DIFFERENCE DIRICHLET PROBLEMS

Let Π = {(x,y) : 0 < x < a, 0 < y < b} be rectangle, a/b be rational, γ j(γ ′j), j = 1,2,3,4, be the sides, including

(excluding) the ends, enumerated counterclockwise starting from the left side (γ0 ≡ γ4, γ1 ≡ γ5) and let γ = ∪4
j=1γ j be

the boundary of Π. Denote by s the arc length, measured along γ , and by s j the value of s at the beginning of γ j. We

say that f ∈Ck,λ (D), if f has kth derivatives on D satisfying a Hölder condition with exponent λ ∈ (0,1], which is a
Lipschitz condition when λ = 1.
We consider the boundary value problem

Δu = 0 on Π, u = ϕ j(s) on γ j, j = 1,2,3,4, (1)

where Δ ≡ ∂ 2/∂x2 +∂ 2/∂y2, ϕ j, j = 1,2,3,4 are given functions of s. Assume that

ϕ j ∈ C9,1(γ j), 0 < λ < 1, j = 1,2,3,4, (2)

ϕ(2q)
j (s j) = (−1)qϕ(2q)

j−1 (s j), q = 0, ...,4. (3)

Lemma 1 Under the conditions (2) and (3) the solution u of the Dirichlet problem (1) belongs to the class C9,λ (Π),
0 < λ < 1.
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Lemma 2 The following type of partial derivatives of the solution u to problem (1) satisfy the next inequality

max
0≤p≤5

sup
(x,y)∈Π

∣∣∣∣ ∂ 10u
∂x2p∂y10−2p

∣∣∣∣< ∞. (4)

We introduce the functions wm, m = 4,8 on Π as

wm = wm(x,y) =
∂ mu(x,y)

∂xm , (5)

where u is the solution to Dirichlet problem (1).

From Lemma 1 it follows that, for each of m = 4,8 the function (5) is the solution of the boundary value problem

Δwm = 0 on Π, (6)

wm = Ψm
k = Ψm

k (y) on γk, k = 1,3, (7)

wm = Ψm
l = Ψm

l (x) on γl , l = 2,4, (8)

where

Ψm
k (y) =

dmϕk

dym , k = 1,3, Ψm
l (x) =

dmϕl

dxm , l = 2,4. (9)

Furthermore, as it follows from Lemma 2 the following (10−m)-th order derivatives are bounded on Π :

max
0≤p≤(10−m)/2

sup
(x,y)∈Π

∣∣∣∣ ∂ 10−mwm

∂x2p∂y10−m−2p

∣∣∣∣< ∞, m = 4,8. (10)

ERROR ESTIMATION FOR THE FINITE DIFFERENCE SOLUTION

Let h > 0, and a/h ≥ 8, b/h ≥ 8 be integers. We assign Πh a square grid on Π with step size h, obtained by the lines
x,y = 0,h,2h, .... Let γh

j be a set of nodes on the interior of γ j, and let

γh =
4∪

j=1
γh

j ,
.

γ j = γ j−1 ∩ γ j, γh =
4∪

j=1
(γh

j ∪
.

γ j), Πh
= Πh ∪ γh.

Let the operator Bp, p ∈ {0,1} be defined as follows:

Bpu(x,y) =
1

5− p
{u(x+h,y)+u(x−h,y)+u(x,y+h)+u(x,y−h)}

+
1− p

20
{u(x+h,y+h)+u(x−h,y+h)+u(x+h,y−h)

+u(x−h,y−h)}. (11)

We consider for the approximation of problems (6)-(8) the following system of difference equations:

w4
h =B0w4

h on Πh, w4
h = Ψ4

j on γh
j ∪

.
γ j, j = 1,2,3,4; (12)

w8
h =B1w8

h on Πh, w8
h = Ψ8

j on γh
j , j = 1,2,3,4. (13)

By the maximum principle, problems (12) and (13) have the unique solution.
In what follows and for simplicity c,c0,c1, ... denote the positive constants independent of h and the nearest factor,

the identical notation is allowable for various constants.
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Let ϖ be a solution of the problem

Δϖ = 0 on Π, ϖ = θp, j(s) on γ j, j = 1,2,3,4, (14)

where θp, j, j = 1,2,3,4 are given functions and

θp, j ∈ C23−p,λ (γ j), 0 < λ < 1, j = 1,2,3,4, (15)

θ (2q)
p, j (s j) = (−1)qθ (2q)

p, j−1(s j), q = 0, ..,3−2p; p ∈ {0,1} . (16)

The proofs of the following Lemmas 3 and 4 are curried out by analogy with the proof of Theorem 3.1 in [4].

Lemma 3 The estimation holds

max
(x,y)εΠ

|Bpϖ −ϖ | ≤ ch23−p
(|lnh|+1) , where p ∈ {0,1} (17)

and ϖ is the solution of problem (14)-(16) on Πh
.

Lemma 4 The estimation holds

max
Πh

|wm
h −wm| ≤ ch10−m (|lnh|+1) , m ∈ {4,8} , (18)

where w4
h and w8

h is a solution of system (12) and (13) respectively; wm are the traces of the functions (5) on Πh
.

Let w4
h and w8

h be a solution of the difference problem (12) and (13) respectively. We approximate the solution of the

given Dirichlet problem (1) on the grid Πh
as a solution uh of the following difference problem

uh =B1uh − h4

4!
w4

h −
h8

8!
w8

h on Πh, uh = ϕ j on γh
j , j = 1,2,3,4. (19)

By virtue of (19) and Lemmas 3-4 the following Theorem is proved:

Theorem 5 On Πh, the pointwise estimation is true

max
Πh

|uh −u| ≤ ch8 (|lnh|+1) , (20)

where u is the trace of the exact solution of problem (1) on Πh, uh is the solution to system (19).

NUMERICAL RESULTS

Let Π = {(x,y) : 0 < x < 1, 0 < y < 1} , and let γ be the boundary of Π. We consider the following problem :

Δu = 0 on Π, u = ϕ(x,y) on γ j, j = 1,2,3,4,

where

ϕ(x,y) = (x10 −45x8y2 +210x6y4 −210x4y6 +45x2y8 − y10) tan−1
(y

x

)
+(10x9y−120x7y3 +252x5y5 −120x3y7 +10xy9) ln

√
x2 + y2.

We denote by ‖Uh −U‖
Πh = max

Πh
|Uh −U | and by En

U =
‖U−U2−n‖Πh∥∥∥U−U

2−(n+1)

∥∥∥
Πh

, where U is the trace of the exact solution

of the continuous problem on Πh
, and Uh is its approximate values.
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TABLE 1. Results by the proposed method

h = 2−n
∥∥w4

h −w4
∥∥

Πh En
w4

∥∥w8
h −w8

∥∥
Πh En

w8 ‖uh −u‖Πh En
u

2−3 1.083E −08 62.632 2.045E −02 3.694 1.404E −12 250.578

2−4 1.729E −10 62.844 5.535E −03 3.872 5.604E −15 256.146

2−5 2.751E −12 63.495 1.430E −03 3.936 2.188E −17 256.037

2−6 4.333E −14 63.761 3.632E −04 3.968 8.545E −20 256.059

2−7 6.796E −16 9.154E −05 3.337E −22

CONCLUSION

A three stage method in solving the Dirichlet problem for Laplace’s equation in a rectangle is proposed and justified.
It is assumed that the boundary functions on the sides are from C9,1 and at the vertices satisfy the compatibility
conditions for the even order derivatives up to eighth order, which result from the Laplace equation. Under these
conditions, the constructed approximate solution by this method converges to the exact solution in the uniform metric
of order O(h8 |lnh|).

The proposed method can be applied when the boundary functions are from the classes Ck,1 (see [4]), and can be
generalized for the Laplace and Poisson equations on a multidimensional parallelepiped, which will be investigated
in sequential papers.

Furthermore, this method can be used to obtain a highly accurate approximation in the different type of domain
decomposition methods (see [1, 6, 7, 8, 9]).
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Abstract. In this paper, we consider a variant of the fictitious domain method associated with the modification of nonlinear terms
in a fictitious subdomain. The model problem shows the effectiveness of using this modification. The proposed version of the
method is used to solve the problem of an arbitrary region and to set a boundary condition for pressure. A numerical solution is
implemented and the results of numerical results are given.

INTRODUCTION

The method of fictitious domains is widely used for the numerical solution of mathematical physics problems in an
arbitrary domain [1, 2]. A. N. Konovalov [2] constructed a theory of fictitious domains method to solve the problem of
an arbitrary domain in the numerical implementation of discrete models. On its basis, a new class of locally-bilateral
approximations in direct and spectral problems was created.

The works of A. N. Bugrov, Sh. S. Smagulov were dedicated to the fictitious domain method for the Navier-Stokes
equations [3]. In the work of Sh. S. Smagulov and M. K. Orunkhanov was proposed a method of fictitious domains
for the equations of hydrodynamics in multiply connected domains [4].

In work [5], one version of the fictitious domain method was proposed for the Navier – Stokes equations of a
viscous incompressible fluid in a variable velocity and pressure field. Moreover, at the boundary of the auxiliary
region, a boundary condition is set for pressure with a zero value. This condition makes it possible to obtain the
Dirichlet problem for pressure for the Poisson equation, for which with the help of known methods can be developed
iterative difference schemes.

The works of R. Glowinski, T-W. Pan, J. Periaux [6] consider a family of a region-division method based on
the explicit use of the Lagrange multiplier defined on the actual boundary. The proposed technique associated with
genuine boundary conditions is common for modeling inviscid incompressible potential flows. According to the
proposed methodology, the initial differential problem is posed with the optimal control problem with a saddle point,
and for the numerical implementation iterative method of conjugate gradients is used.

In work [7], for the numerical simulation of the suspension concentration, the method of fictitious regions without
Lagrange multipliers is used. To distinguish between the areas occupied by the liquid and the solid particles, the
boundary is tracked as a function. The particle indicator function is constructed using the Heaviside function. Further,
the Heaviside function in a small vicinity (proportionally to the grid step) around the boundary is approximated using
the hyperbolic tangent. Such a continuous function provides smooth change, increasing numerical accuracy and
reliability.

In this paper considered one version of the method of fictitious domains associated with the modification of nonlin-
ear terms in the fictitious subdomain. The model problem shows the effectiveness of using such a modification. The
proposed version of the method is used to solve the problem of an arbitrary region and to set the boundary condition
for pressure.

FORMULATION OF THE PROBLEM

In a limited area Ω ⊂ R
2 with curved border S consider the initial-boundary-value problem for the unsteady flow of

a viscous incompressible fluid. The problem is reduced to solving a system of non-linear Navier-Stokes equations in
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velocity-pressure variables

∂v
∂ t

+(v ·∇)v = μΔv−∇p+ f , (1)

divv = 0, (2)

v
∣∣∣
t=0

= v0 (x) , v
∣∣∣
S
= 0. (3)

The auxiliary problem corresponding to the method of fictitious domains reduces to solving a system of nonlinear
equations with variable coefficients in D = D1 ∪Ω with boundary S:

∂vε

∂ t
+(vε ·∇)(aε vε) = div(με ∇vε)−∇pε + f , (4)

divvε = 0, (5)

vε
∣∣∣
t=0

= 0, vε · τ
∣∣∣
S1

= 0, pε
∣∣∣
S1

= 0, (6)

with the terms of the agreement on the border S

[(aε vε (δvε)−με ∇vε − pε ·δ )n]|S = 0, [vε ]|S = 0 (7)

where τ - tangent vector to the border S1, [ · ] defines a jump when crossing through S, δ - metric tensor, n - normal to
the border S, f - is continued in D1, keeping the norm L2 (Ω).

με =

⎧⎨
⎩

μ, in Ω,

μ
ε2 , in D1,

(8)

aε =

⎧⎨
⎩

1, in Ω,

1
ε2 , in D.

(9)

Condition (7) is obtained after a preliminary transformation of nonlinear terms

(vε ·∇)(aε vε) = (vε ·∇)(aε vε)+aε vε (∇ · vε) = ∇ · (aε vε (δvε)) . (10)

Introduce the set of infinitely differentiable solenoidal in D vector functions v(x), with tangent components that
vanish on the S1, M (D) = {v(x) ∈C∞ (D) , divv = 0, v(x) · τ (x) = 0, x ∈ S1}.

Spaces obtained by closure M (D) in norms L2 (D) and W̊ 1
2 (D) is defined accordingly through their conjugate spaces

V ∗ (D), V ∗
1 (D).

A definition of generalized solutions to problem is given (4)-(7), a lemma is proved for a vε function from a
L2 (0,T ;V1 (D))∩L∞ (0,T ;L2 (D)) class, and numerical calculations are presented.

To illustrate the advantages of the proposed approach, considered the numerical solution of the auxiliary problem
(4)-(7).

As the region under consideration, took a curved channel with solid boundaries (figure 1). A region D1 - is a
fictitious region, Ω - is a physical region.

For the numerical implementation of auxiliary problem (4)-(7), used the finite difference method and the splitting
scheme for physical processes [8]. The solution domain is covered by the so-called MAC-grid [9], which provides
approximation with the second order of accuracy in space and the first order in time.

In the numerical implementation were set the pressure values and zero values of the tangent component of the fluid
velocity at the inlet and outlet of the computational domain. On the «solid» boundaries, the pressure values are set in
the form of linear functions and the tangential component of the velocity is equal to zero.
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FIGURE 1. Schematic representation of the area under consideration

FIGURE 2. Fields of the velocity vector

For numerical implementation, a 50x20 grid and the following dimensionless parameter values were used:

0 < xi < 2, 0 < yi < 1, τ = 0.001, μ =
1

Re
= 0.001, ε = 10−5.

The upper and lower solid curved boundaries are described by the equations

y1 = 0.2−0.1cos(2πx) , y2 = 0.8−0.1cos(2πx) .

The isolines of the stream function show the vorticities of the flow at the folds of the boundary, which arise at
flowing around smooth bodies, the boundary layer of the stream directly adjacent to the streamlined body is inhibited
more strongly than the layers removed from the boundary. This leads to a reduction to zero of the tangential friction
on the streamlined surface, separation of the flow from it and the formation of a return flow behind the separation line
(figure 3). On the reverse side of the bend of the boundary, a mixture of the oncoming flow and the return flow, i.e.
the formation of vortex movements.

From the Figure 4 it can be seen that during the flow on convex bends the velocity component is positive, and
negative on concave bends. And on the next convex bend, the shapes of the velocity profiles are repeated. And where
the fictitious region, the velocity profiles have values close to zero.
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FIGURE 3. Isolines of the current function

FIGURE 4. The velocity profile in sections a) at x = 0.5; b) at x = 1.0; c) at x = 1.5
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Abstract. Some factors related to students maths anxiety are perceived to be important for academic failure. Such of these
factors and some other factors contribute immensely to the problem of mathematics achievement that is spreading among students
of Economics and Administrative Sciences. Considering such a problem as a maths anxiety, we propose a mathematical model
to study how this problem is spread in the Faculty. We have discussed about basic properties of the system. Basic reproduction
numbers are calculated. Our numerical findings are illustrated through computer simultaneous using MATLAB, which show
the reliability of our model from the practical point of view. Students’ math-anxiety implications of our analytical findings are
addressed critically. The model analysis reveals that all of the students start to show better maths achievement on the positive
way during the semester (approximately 3,5 months). The sensitivity analysis of the parameters of the model shows that reducing
maths anxiety by focusing positive change of behaviour in relation to the teaching of maths and the teachers’ way of teaching is an
effective on students’ achievement of maths.

INTRODUCTION

Mathematics is an agent in people’s understanding the world and life better and raising ideas. Therefore, in all the
reforms in education today, the most important target is to create a system to help learners learn better by understand-
ing mathematics. However, one of the factors affecting this target negatively is the anxiety learners experience in
mathematics [1]. Anxiety is a feeling and experience an individual goes through at certain times. This feeling affects
life negatively and many times causes uneasiness, leading to a feeling of fear of weak performance [2]. Mathematics
anxiety is defined as an experience of negative feelings. It affects numerical and mathematical thoughts negatively. It
is true that anxiety affects performance in mathematics. It has been observed that individuals with anxiety experience
exhibited low performance, were less self-confident and less motivated in basic tasks, mental calculations, and math-
ematics problems [3]. As Ahmed [4] argues, anxiety is one of the most common among academic anxiety types at
school. It can be defined as “a feeling of strain and nervousness hindering manipulation and solution of numbers”.

In recent development, mathematical model of epidemics has sufficiently proved to be reliable and successfully
applied to the different settings consisting of social problems such as use of drugs, computer viruses, and global ideas
[5, 10]. Indeed, a simple epidemic model of SIR type was proposed in [6] to get insights on how alcoholic drinking
spread and how it can be limited. In [16, 18] found out that variables such as type of high school, teachers’ attitude,
lack of self-confidence and motivation, stress experienced in maths classes and disappointment increased anxiety.

The significance of this study is that it dealt with the key variables in the anxiety university students experience,
evaluate their features and the steps to be taken to prevent anxiety about mathematics. However, this study is motivated
by students of the faculty of Economics and Administrative Sciences against the pasted results for the second semester
2018/2019 academic-year. Such an act indicates that there is a need to take appropriate measure to lessen maths
anxiety. To address such a problem, we propose a deterministic mathematical model of SIR type to get insights on
how to overcome the problem.

The remaining part of the paper is organized as follows: In Section 2, we formulate the model. The model is
rigorously analyzed in Section 3. In Section 4, we provide a concluding remarks.

MODEL DESCRIPTION

We divide the faculty students of their primary, elementary and high school maths average levels into 3 different
classes: W, average students; B, below average students; and A, above average students. We have choose these
definitions in relation to academic performance since primary to high school. The students population, N is assumed
to be constant. Note that cohort replacement plays an important role on contagion among students regarding academic
calender but that is not considered here for simplicity. The model is given by the following system of non-linear
ordinary differential equations:
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TABLE 1. Parameters for the model and basic reproduction number

Parameters Descriptions

μ Participant rate from Faculty of Economics and Administrative Sciences
β1 Transmission rate of weak students to above average students
β2 Transmission rate of weak students to below average students
p Fraction (proportion) of average students
γ , τ Rates of positive change of behavior in relation to the teaching of maths and the teachers’ way of teaching

⎧⎨
⎩

dW
dt = μ − p(τ + γ)β1AW − (1− p)(τ + γ)β2BW −μA,

dB
dt = (1− p)(τ + γ)β2BW −μB,
dA
dt = p(τ + γ)β1AW −μA.

(1)

The parameters given in the Table I.

Equilibrium Points

Equating the equations in (1) to zero and solving simultaneously we find the following three equilibrium points.
1.Problem-free equilibrium,

E0 = (1,0,0),

always exists.
2.Below weak students-free equilibrium,

E1 = (
μ

β1 p(τ + γ)
,

β1 p(τ + γ)−μ
β1 p(τ + γ)

,0),

exists when RA
0 > 1.

3.Above weak-students-free equilibrium,

E2 = (
μ

β1 p(τ + γ)
,

β1 p(τ + γ)−μ
β1 p(τ + γ)

,0),

exists when RB
0 > 1.

Threshold Parameters

The threshold parameter is denoted by R0 and it is usually called the basic reproduction number. In this paper we use
next generation of matrix method to find R0 and we found two threshold parameters

RA
0 =

β1 p(τ + γ)
μ

(2)

and

RB
0 =

β2(1− p)(τ + γ)
μ

. (3)
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GLOBAL STABILITY ANALYSIS OF THE EQUILIBRIA

In this section, stability analysis of the two equilibrium points is obtained by the use of Lyapunov function. The
conditions for the global stability of the equilibria in each case depends on the magnitude of the basic reproduction
ratio R0. Hence we have the following theorems and their proofs.

Theorem 1 The problem free equilibrium is globally asymptotically stable when RA
0 < 1 and RB

0 < 1.

Proof. We construct the following Lyapunov function

V = (W −W0ln(W ))+A+B+1, (4)

which is positive definite at the disease free equilibrium point. By the derivative of Eq. 4, we have

V ′ = 1−A′+B′+W ′ W
W0

= μW0(2− W
W0

− W0

W
)+(p(τ + γ)β1W0 −μ)A+((1− p)(τ + γ)β2W0 −μ)B.

Relation between geometric and arithmetic means we have 2− W
W0

− W0
W < 0. Hence, V ′ ≤ 0 when RA

0 < 1 and RB
0 < 1.

Therefore, the problem free equilibrium is globally asymptotically stable when RA
0 < 1 and RB

0 < 1.

Theorem 2 Below average students-free equilibrium E1 is globally asymptotically stable when RB
0 < 1.

Proof. We construct the following Lyapunov function

V = (W −W1 ln(W ))+(A−A1 ln(A))+B+C, (5)

where

C =−[W1 −W1 ln(W1)+A1 −A1 ln(A1)].

Here, V is positive definite at the below average student free equilibrium point. From the derivative of Eq. 5, we get

V ′ =W ′(1− W
W1

)+(1− A
A1

)A′+B′

=μW0(2− W
W1

− W1

W
)+((1− p)(τ + γ)β2W0 −μ)B.

By the relation between geometric and arithmetic means 2− W
W1

− W1
W < 0. Therefore, if RB

0 < 1, then we have V ′ < 0.

Hence, below average students-free equilibrium E1 is globally asymptotically stable when RB
0 < 1.

Theorem 3 Above average students-free equilibrium E1 is globally asymptotically stable when RA
0 < 1.

Proof. We construct the following Lyapunov function

V = (W −W2 ln(W ))+A+(B−B2 ln(B))+C, (6)

where

C =−[W2 −W2 ln(W2)+B2 −B2 ln(B1)].

Here, V is positive definite at the above average student free equilibrium point. The derivative of Eq. 6 is less than
zero when RA

0 < 1. Hence, above average students-free equilibrium E2 is globally asymptotically stable when RA
0 < 1.
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CONCLUSION

We present a modelling of mathematical anxiety as a three-dimensional in Economics and Administrative Sciences.
The proposed model is analyzed and the analysis reveals that the dynamics of such a problem is determined by the
basic reproduction numbers RA

0 and RB
0 . The model analysis reveals that all of the students start to show better maths

achievement on the positive way during the semester (approximately 3,5 months).

FIGURE 1. Rt values from March 11, 2020 to May 15, 2020.

The simulation with given in Fig. 1 shows that reducing maths anxiety by focusing positive change of behaviour in
relation to the teaching of maths and the teachers’ way of teaching is an effective on students’ achievement of maths.
In conclusion, the proposed model suggests that reducing maths anxiety by focusing positive change of behaviour in
relation to the teaching of maths and the teachers’ way of teaching is an effective on students’ achievement of maths.
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Abstract. In this article the solvability of the problem of optimal control of oscillatory processes described by the integro-
differential equation with the Fredholm operator, with given control limitation is investigated.
It is established that the desired control is among the solutions of the nonlinear Fredholm integral equation of the first kind.
Sufficient conditions for the existence of a solution of nonlinear optimization problem are found.

OPTIMIZATION PROBLEM STATEMENT

The article investigates the unique solvability of nonlinear optimization problem of oscillatory processes (see [1,2]),
where it is necessary to minimize the integral functional

J[u] =
∫ 1

0
[V (T,x)−ξ (x)]2dx+β

∫ T

0
p[t,u(t)]dt,β > 0 (1)

on the set of solutions of boundary value problem

Vtt =Vxx +λ
∫ T

0
K(t,τ)V (τ,x)dτ +g(t,x) f [u(t)], 0 < x < 1, 0 < t ≤ T,

V (0,x) = ψ1, Vt(0,x) = ψ2, 0 < x < 1, (2)

Vx(t,0) = 0,Vx(t,1) = 0, 0 < t < T.

Here the control u(t) is an element of a Hilbert space H(0,T ), i.e., u(t) ∈ H(0,T ); f [u(t)] ∈ H(0,T ) is external
influence function, which is nonlinear and monotonic with respect to the functional variable u(t) i.e.,

fu[u(t)] �= 0, ∀t ∈ [0,T ], (3)

where functions p[t,u(t)] ∈ H(0,T ), ξ (x) ∈ H(0,1), g(t,x) ∈ H(Q), Q = (0,1)× (0,T ), ψ1(x) ∈ H1(0,1), ψ2(x) ∈
H(0,1), K(t,τ) ∈ H(D), D = (0,T )× (0,T ) and number

K0 =
∫ T

0

∫ T

0
K2(t,τ)dτdt

are considered as given, λ is a parameter, H1(0,1) is the first order Sobolev space, T is fixed time point.

In this task, the desired control u0(t) ∈ H(0,T ) is searched among the elements of the set

M = {u(t) ∈ H(0,T )| fu[u(t)] �= 0, pu[t,u(t)] = 0} (4)

which minimizes the functional (1) together with the corresponding solution V (t,x) of the boundary value problem
(2).
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OPTIMIZATION PROBLEM SOLUTION

Generalized solution V (t,x) ∈ H(Q) of boundary value problem (2) is constructed, which for each u(t) ∈ H(0,T ) and
valid condition (3), is uniquely determined by the formula

V (t,x) =
∞

∑
n=1

[
λ
∫ t

0
Rn(t,s,λ )q(s)ds+q(t)

]
zn(x), (5)

where R(t,s,λ ) is resolvent of kernel

Kn(t,s) =
1

λ

∫ t

0
sinλn(t − τ)K(τ,s)dτ, K(0,s) = 0

of integral equation

Vn(t) = λ
∫ T

0
Kn(t,s)Vn(s)ds+qn(t), (6)

qn(t) = ψ1ncosλnt +
ψ2n

λn
sinλnt +

1

λn

∫ t

0
gn f [u(τ)]sinλn(t − τ)dτ.

In formulas ( 5) and (6), zn(x) =
√

2cosλnx is orthonormal system of eigenfunctions of the boundary value problem

z′′n(x)+λ 2
n zn = 0, z′(0) = 0, z′(1) = 0, λn = nπ, n = 1,2,3, ...,

resolvent R(t,s,λ ) is a continuous function which exists for parameter values satisfying inequality

|λ |< λ1√
K0T 2

,

∫ T

0
R2(t,s,λ )ds <

K0T(
λn −|λ |

√
K0T 2

)2
, (7)

gn(t), ψ1n, ψ2n are Fourier coefficients, accordingly of functions g(t,x), ψ1(x), ψ2(x).
Calculating the increment functional (1) we obtain the relation

ΔJ[u(t)] = J[u(t)+Δu(t)]− J[u(t)] =−
∫ T

0
ΔΠ[t,V (t,x),ω(t,x)]dx f [u(t)]+

∫ T

0
ΔV 2(T,x)dx,

where

Π [t,V (t,x),ω(t,x)] =
∫ 1

0
g(t,x)ω(t,x)dx f [u(t)]−β p[t,u(t)],

ΔΠ[·,u(t)] = Π[·,u(t)+Δu(t)]−Π[·,u(t)].
The set of valid values of control is an open set. Therefore, we have the following optimality conditions in the form
of the equality

∫ 1

0
g(t,x)ω(t,x)dx fu[u(t)]−β pu[t,u(t)] = 0 (8)

and in the form of differential inequality

∫ 1

0
g(t,x),ω(t,x) fuu[u(t)]dx−β puu[t,u(t)]< 0, (9)
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where ω(t,x) is a generalized solution of the conjugate boundary value problem

ωtt = ωxx +λ
∫ T

0
K(τ, t)ω(τ,x)dτ, 0 < x < 1, 0 < t < T,

ω(T,x) = 0, ωt(T,x)−2[V (T,x)−ξ (x)] = 0, 0 < x < 1, (10)

ωx(t,0) = 0, ωx(t,1) = 0, 0 ≤ t < T

and has a form

ω(t,x) =−2
∞

∑
n=1

[
λ
∫ T

0
Cn(s, t,λ )yn(s)ds+ yn(t)

]
zn(x). (11)

Here Cn(s, t,λ ) is a resolvent of kernel

Bn(s, t) =
1

λn

∫ T

0
sinλn(τ − t)K(τ,s)dτ, Bn(s,T ) = 0,

of integral equation

ωn(t) = λ
∫ T

0
Bn(s, t)ωn(s)ds+ yn(t), (12)

yn(t) =
2

λn
[Vn(T )−ξn]sinλn(T − t), (13)

where ξn are Fourier coefficients of the function ξ (x).
On the set M the optimality conditions (8), (9) takes the form

∫ 1

0
g(t,x)ω(t,x)dx = 0, (14)

puu[t,u(t)]> 0. (15)

According to (11), equality (14) has the form

∞

∑
n=1

gn(t)
[

λ
∫ T

0
Cn(s, t,λ )yn(s)ds+ yn(t)

]
= 0,

which, taking into account (13), we rewrite in the form

2
∞

∑
n=1

gn(t)
1

λn

[
sinλn(T − t)+λ

∫ T

0
Cn(s, t,λ )sinλn(T − s)ds

]
(Vn(T )−ξn) = 0.

This equality is valid only if Vn(T )−ξn = 0, i.e., only when

V (T,x) = ξ (x). (16)

Therefore, we find only those controls, for which equality (16) takes place. Taking into account (5) and (6) we rewrite
the equality (16) in the form

∫ T

0
Gn(t,λ ) f [u(t)]dt = ψn(T,λ ), n = 1,2,3, ..., (17)

where

Gn(t,λ ) =
gn(t)

λn

[
sinλn(T − t)+λ

∫ T

0
Rn(T,s,λ )sinλn(s− t)ds

]
, (18)
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ψn(T,λ ) = ξn −ψ1n

[
cosλnT +λ

∫ T

0
Rn(T,s,λ )cosλn(s)ds

]
− ψ2n

λn

[
sinλnT +λ

∫ T

0
Rn(T,s,λ )sinλn(s)ds

]
(19)

Now we investigate the system of nonlinear integral equations (17). We introduce the following notation

f [u(t)] = ν(t). (20)

Note that, by (3), the function u(t) is uniquely defined, i.e. there is a such ϕ(·) function, that the equality

u(t) = ϕ [ν(t)] (21)

takes place. According to (20), we rewrite the system (17) in the form∫ T

0
Gn(t,λ )ν(t)dt = ψn(T,λ ), n = 1,2,3, ... (22)

and in

G[ν ] = h (23)

operator form, where

G[ν ] =
∫ T

0
Gn(t,λ )ν(t)dt, h = {ψ1(T,λ ), ...,ψn(T,λ ), ...},

G(t) = {G1(t,λ ), ...,Gn(t,λ ), ...}.
It is proved that the operator equation (23) has a solution in a form

ν(t,γ) =
∞

∑
n, j=1

Gn(t,λ )αn + γ

=
∞

∑
n, j=1

Gn(t,λ )
∞

∑
k=1

εnk(t,λ )
[

ψk(T,λ )−
∫ T

0
Gk(t,λ )dt · γ

]
+ γ, (24)

in

�2 = {b = (b1, ...,bn, ...)| ‖b‖ �2
=

∞

∑
k=1

b2
n < ∞}

Hilbert space. Here γ is arbitrary constant. Substituting this solution into (21), we obtain the solution of the system of
nonlinear Fredholm integral equations of the first kind (17)

u(t,γ) = ϕ [ν(t,γ)] (25)

On each of these controls the equality (16) takes place.
Now from the optimality conditions pu[t,u(t)] = 0, puu[t,u(t)] > 0 we find a control u = u∗(t) ∈ H(0,T ). The

question now arises - is u∗(t) included in controls family (25)? It is established that there is a unique γ0 value at which
the equality

u(t,γ0) = u∗(t)

takes place. Thus, it is stated that on the set M there is a unique u0 = u∗(t) element that minimizes functional (1) and
equality (16) is valid.
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Abstract. In the present article the Analytic Hierarchy Process (AHP) method, which has an important place among multi-criteria
decision making methods, will be used in the solution. In addition, the group decision making will be applied as it will be beneficial
to the result that there will be more than one decision maker. The method will be handled with the Interval Type-2 Fuzzy Sets
(IT2FSs) that have high success in handling uncertainties.

INTRODUCTION

Nowadays, there are many applications for smart phones that are widely used. These phone applications created
initially with small-scale sources. They grow with the investments of developers and appeal to a wider population.
However, not every application may have a high level of success. Therefore, which application the investor will
support is an important decision making problem. A hierarchy of goal, criteria, sub-criteria and alternatives has been
created for this decision making problem.

The selection and classification of criteria in decision-making problems and the creation of a hierarchy are the first
and the most important stage of the solution. It is also important to weigh the selected criteria correctly and measure
the alternatives according to these weights. For this, it is necessary to choose the most appropriate decision making
tool depending on the type of problem. Among the multi-criteria decision making methods, AHP method is very
successful in criterion weighting. AHP method was developed by Saaty [1]. Saaty sampled the problem of choosing
a school as the first application. Fuzzy sets, which allow uncertain situations to be taken into account, were proposed
by Zadeh [2]. The first adaptation of the AHP method to fuzzy numbers was made by Laarhoven and Pedrycz [3]. Its
full adaptation to fuzzy numbers was made by Buckley [4]. Regarding uncertainty, Zadeh [5] further expanded the
existing fuzzy set theory and introduced type-2 fuzzy sets into the literature. Then Mendel, John and Liu [6] added
the concept of spacing to type-2 fuzzy sets. Interval type-2 fuzzy numbers, a special case of IT2FSs, were used by
Chen [7] for the first time in decision making. Thus, Kahraman et al. [8] was able to adapt the AHP methodology to
the interval type-2 fuzzy numbers. In this application, AHP method based on IT2FSs will be applied to an investment
problem together with the group decision making.

PRELIMINARIES

An interval type-2 fuzzy number can be defined by the upper membership function and the lower membership func-
tion. Accordingly, the Interval Type-2 Trapezoidal Fuzzy Number (IT2TrFN) can be represented by

˜̃Ai =
((

aU
i1,a

U
i2,a

U
i3,a

U
i4;H1

(
ÃU

i
)
,H2

(
ÃU

i
))

,
(
aL

i1,a
L
i2,a

L
i3,a

L
i4;H1

(
ÃL

i
)
,H2

(
ÃL

i
)))

. (1)

The sum of two IT2TrFN is calculated by

˜̃A1 ⊕ ˜̃A2 =
(
aU

11 +aU
21,a

U
12 +aU

22,a
U
13 +aU

23,a
U
14 +aU

24;min
(
H1

(
ÃU

1

)
,H1

(
ÃU

2

))
,min

(
H2

(
ÃU

1

)
,H2

(
ÃU

2

)))
,(

aL
11 +aL

21,a
L
12 +aL

22,a
L
13 +aL

23,a
L
14 +aL

24;min
(
H1

(
ÃL

1

)
,H1

(
ÃL

2

))
,min

(
H2

(
ÃL

1

)
,H2

(
ÃL

2

)))
.

(2)

The multiplication of two IT2TrFN is calculated by

˜̃A1 ⊗ ˜̃A2 =
(
aU

11 ×aU
21,a

U
12 ×aU

22,a
U
13 ×aU

23,a
U
14 ×aU

24;min
(
H1

(
ÃU

1

)
,H1

(
ÃU

2

))
,min

(
H2

(
ÃU

1

)
,H2

(
ÃU

2

)))
,(

aL
11 ×aL

21,a
L
12 ×aL

22,a
L
13 ×aL

23,a
L
14 ×aL

24;min
(
H1

(
ÃL

1

)
,H1

(
ÃL

2

))
,min

(
H2

(
ÃL

1

)
,H2

(
ÃL

2

)))
.

(3)
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The inverse of an IT2TrFN is calculated by

˜̃A−1 = 1/ ˜̃A =

((
1

aU
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,
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3

,
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,
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1
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,
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(
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)))
. (4)

The n-th root of an IT2TrFN is calculated by

˜̃A1/n =

((
n
√

aU
1 ,

n
√

aU
2 ,

n
√

aU
3 ,

n
√

aU
4 ;H1

(
ÃU) ,H2

(
ÃU)) ,

(
n
√

aL
1 ,

n
√

aL
2 ,

n
√

aL
3 ,

n
√

aL
4;H1

(
ÃL) ,H2

(
ÃL))) . (5)

AHP METHODOLOGY

In this section we introduce the methodology:
Step 1. The components at each level of the hierarchy, which show the structure of the problem, are compared pair-

wise by decision-makers according to the level above, and pairwise comparison matrices are created using Equation
(4)

˜̃A =

⎡
⎢⎢⎢⎢⎣

˜̃1 ˜̃a12 . . . ˜̃a1n
˜̃a21

˜̃1 . . . ˜̃a2n
...

...
. . .

...

˜̃an1 ˜̃an2 . . . ˜̃1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

˜̃1 ˜̃a12 . . . ˜̃a1n

1/ ˜̃a12
˜̃1 . . . ˜̃a2n

...
...

. . .
...

1/ ˜̃a1n 1/ ˜̃a2n . . . ˜̃1

⎤
⎥⎥⎥⎥⎦ .

Step 2. Consistency analysis is performed for all fuzzy pairwise comparison matrices created in Step 1. For this, the
consistencies of the crisp pairwise comparison matrices obtained by defuzzifying the pairwise comparison matrices
are calculated. If the matrices are not consistent, re-evaluation is asked from decision makers.
Step 3. Fuzzy pairwise comparison matrices that created separately for each decision maker are aggregated with
geometric mean using Equations (3) and (5).
Step 4. In pairwise comparison matrices, the geometric mean of each row is again calculated using Equations (3) and
(5). Then the weights obtained are normalized and fuzzy normalized weights are found.
Step 5. Fuzzy utility values of alternatives are obtained by multiplication of fuzzy weights and geometric mean of
rows by using Eq. (3).
Step 6. The final rankings of alternatives are found by defuzzifying and normalizing the fuzzy utility values.

APPLICATION

In practice, a hierarchy was created by gathering the criteria taken from [9, 10, 11]. Also, evaluations were made with
4 alternatives. The hierarchical structure of the problem is illustrated by Figure 1. Comparisons were made with a
group of 3 decision makers.
Step 1. Decision makers were asked to compare criteria, sub-criteria and alternatives in pairs. Thus, fuzzy pairwise
comparison matrices are created with the help of linguistic variables. The interval type-2 trapezoidal fuzzy number
equivalents of linguistic variables are given in Table 1. Pairwise comparisons are shown in Tables 2–17.

TABLE 1. Fuzzy scales of linguistic variables

Linguistic variables Interval type-2 fuzzy set

Absolutely Strong (AS) (7,8,9,9;1,1),(7.2,8.2,8.8,9;0.8,0.8)
Very Strong (VS) (5,6,8,9;1,1),(5.2,6.2,7.8,8.8;0.8,0.8)
Fairly Strong (FS) (3,4,6,7;1,1),(3.2,4.2,5.8,6.8;0.8,0.8)
Slightly Strong (SS) (1,2,4,5;1,1),(1.2,2.2,3.8,4.8;0.8,0.8)
Exactly Equal (E) (1,1,1,1;1,1),(1,1,1,1;1,1)
If factor i has one of the above linguistic variables assigned to it when compared

Reciprocals of above
with factor j, the j has the reciprocal value when compared with i
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FIGURE 1. The hierarchical structure of the problem

TABLE 2. Pairwise comparisons of efficiency

P R

P (E,E,E) (E,1/SS,SS)
R (E,SS,1/SS) (E,E,E)

TABLE 3. Pairwise comparisons of software

E C S

E (E,E,E) (VS,SS,E) (1/VS,1/FS,1/AS)
C (1/VS,1/SS,E) (E,E,E) (1/AS,1/AS,1/AS)
S (VS,FS,AS) (AS,AS,AS) (E,E,E)

TABLE 4. Pairwise comparisons of user interface

L U F

L (E,E,E) (SS,1/FS,1/FS) (FS,1/AS,1/FS)
U (1/SS,FS,FS) (E,E,E) (SS,1/FS,E)
F (1/FS,AS,FS) (1/SS,FS,E) (E,E,E)

TABLE 5. Pairwise comparisons of visual

Q P O

Q (E,E,E) (SS,1/SS,VS) (FS,1/AS,VS)
P (1/SS,SS,1/VS) (E,E,E) (SS,1/VS,E)
O (1/FS,AS,1/VS) (1/SS,VS,E) (E,E,E)

TABLE 6. Pairwise comparisons of main criteria

E S U V

E (E,E,E) (E,E,E) (AS,AS,VS) (VS,AS,VS)
S (E,E,E) (E,E,E) (AS,AS,VS) (VS,AS,VS)
U (1/AS,1/AS,1/VS) (1/AS,1/AS,1/VS) (E,E,E) (1/SS,E,E)
V (1/VS,1/AS,1/VS) (1/VS,1/AS,1/VS) (E,E,E) (E,E,E)

TABLE 7. Pairwise comparisons of alternatives
w.r.t performance

A1 A2 A3 A4

A1 (E,E,E) (AS,VS,AS) (FS,SS,FS) (AS,E,SS)
A2 (1/AS,1/VS,1/AS) (E,E,E) (1/SS,1/FS,1/FS) (E,1/VS,1/VS)
A3 (1/FS,1/SS,1/FS) (SS,FS,FS) (E,E,E) (SS,1/SS,1/SS)
A4 (1/AS,E,1/SS) (E,VS,VS) (1/SS,SS,SS) (E,E,E)

TABLE 8. Pairwise comparisons of alternatives
w.r.t response time

A1 A2 A3 A4

A1 (E,E,E) (FS,VS,SS) (E,E,SS) (SS,SS,SS)
A2 (1/FS,1/VS,1/SS) (E,E,E) (1/FS,1/VS,E) (1/SS,1/FS,E)
A3 (E,E,1/SS) (FS,VS,E) (E,E,E) (SS,SS,E)
A4 (1/SS,1/SS,1/SS) (SS,FS,E) (1/SS,1/SS,E) (E,E,E)

TABLE 9. Pairwise comparisons of alternatives
w.r.t error-free

A1 A2 A3 A4

A1 (E,E,E) (SS,FS,E) (E,E,VS) (1/SS,E,FS)
A2 (1/SS,1/FS,E) (E,E,E) (1/SS,1/FS,VS) (1/FS,1/FS,FS)
A3 (E,E,1/VS) (SS,FS,1/VS) (E,E,E) (1/SS,E,1/SS)
A4 (SS,E,1/FS) (FS,FS,1/FS) (SS,E,SS) (E,E,E)

TABLE 10. Pairwise comparisons of alternatives
w.r.t compability

A1 A2 A3 A4

A1 (E,E,E) (SS,SS,1/SS) (1/SS,E,1/SS) (1/SS,AS,1/FS)
A2 (1/SS,1/SS,SS) (E,E,E) (1/FS,1/SS,E) (1/FS,FS,1/SS)
A3 (SS,E,SS) (FS,SS,E) (E,E,E) (E,AS,1/SS)
A4 (SS,1/AS,FS) (FS,1/FS,SS) (E,1/AS,SS) (E,E,E)

TABLE 11. Pairwise comparisons of alternatives
w.r.t security

A1 A2 A3 A4

A1 (E,E,E) (FS,VS,E) (FS,E,1/FS) (SS,E,1/AS)
A2 (1/FS,1/VS,E) (E,E,E) (E,1/VS,1/FS) (1/SS,1/VS,1/AS)
A3 (1/FS,E,FS) (E,VS,FS) (E,E,E) (1/SS,E,1/SS)
A4 (1/SS,E,AS) (SS,VS,AS) (SS,E,SS) (E,E,E)
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TABLE 12. Pairwise comparisons of alternatives
w.r.t language

A1 A2 A3 A4

A1 (E,E,E) (FS,SS,SS) (E,FS,FS) (E,E,SS)
A2 (1/FS,1/SS,1/SS) (E,E,E) (1/FS,SS,SS) (1/FS,1/SS,E)
A3 (E,1/FS,1/FS) (FS,1/SS,1/SS) (E,E,E) (E,1/FS,1/SS)
A4 (E,E,1/SS) (FS,SS,E) (E,FS,SS) (E,E,E)

TABLE 13. Pairwise comparisons of alternatives
w.r.t usability

A1 A2 A3 A4

A1 (E,E,E) (VS,AS,AS) (VS,VS,FS) (FS,SS,SS)
A2 (1/VS,1/AS,1/AS) (E,E,E) (E,1/SS,1/FS) (1/SS,1/VS,1/VS)
A3 (1/VS,1/VS,1/FS) (E,SS,FS) (E,E,E) (1/SS,1/FS,1/SS)
A4 (1/FS,1/SS,1/SS) (SS,VS,VS) (SS,FS,SS) (E,E,E)

TABLE 14. Pairwise comparisons of alternatives
w.r.t features

A1 A2 A3 A4

A1 (E,E,E) (E,FS,FS) (E,E,SS) (1/FS,1/SS,1/SS)
A2 (E,1/FS,1/FS) (E,E,E) (E,1/FS,1/SS) (1/FS,1/AS,1/AS)
A3 (E,E,1/SS) (E,FS,SS) (E,E,E) (1/FS,1/SS,1/VS)
A4 (FS,SS,SS) (FS,AS,AS) (FS,SS,VS) (E,E,E)

TABLE 15. Pairwise comparisons of alternatives
w.r.t content quality

A1 A2 A3 A4

A1 (E,E,E) (SS,FS,1/FS) (FS,SS,1/AS) (FS,1/SS,1/VS)
A2 (1/SS,1/FS,FS) (E,E,E) (SS,1/SS,1/FS) (SS,1/AS,1/SS)
A3 (1/FS,1/SS,AS) (1/SS,SS,FS) (E,E,E) (E,1/VS,SS)
A4 (1/FS,SS,VS) (1/SS,AS,SS) (E,VS,1/SS) (E,E,E)

TABLE 16. Pairwise comparisons of alternatives
w.r.t content presentation

A1 A2 A3 A4

A1 (E,E,E) (SS,VS,FS) (SS,1/SS,1/FS) (1/SS,E,1/FS)
A2 (1/SS,1/VS,1/FS) (E,E,E) (E,1/AS,1/AS) (1/VS,1/VS,1/AS)
A3 (1/SS,SS,FS) (E,AS,AS) (E,E,E) (1/VS,1/SS,E)
A4 (SS,E,FS) (VS,VS,AS) (VS,1/SS,AS) (E,E,E)

TABLE 17. Pairwise comparisons of alternatives
w.r.t content organization

A1 A2 A3 A4

A1 (E,E,E) (VS,AS,AS) (FS,SS,E) (VS,E,SS)
A2 (1/VS,1/AS,1/AS) (E,E,E) (1/SS,1/FS,1/AS) (E,1/AS,1/VS)
A3 (1/FS,1/SS,E) (SS,FS,AS) (E,E,E) (SS,1/SS,SS)
A4 (1/VS,E,1/SS) (E,AS,VS) (1/SS,SS,1/SS) (E,E,E)

Step 2. Consistency analysis was performed for all pairwise comparison matrices. Matrices have been found to be
consistent.
Step 3. Geometric means of pairwise comparison matrices created separately for each decision maker were taken.
Step 4. Weights of criteria and alternatives were calculated and normalized. The results obtained are shown in Tables
18, 19 and 20.

TABLE 18. Fuzzy weights of main criteria

Efficiency (0.353, 0.398, 0.490, 0.546; 1,1), (0.362, 0.409, 0.477, 0.534; 0.8 0.8) User Interface (0.042, 0.045, 0.059, 0.072; 1,1), (0.043, 0.047, 0.056, 0.069; 0.8 0.8)
Software (0.353, 0.398, 0.490, 0.546; 1,1), (0.362, 0.409, 0.477, 0.534; 0.8 0.8) Visual (0.048, 0.055, 0.073, 0.088; 1,1), (0.049, 0.057, 0.071, 0.084; 0.8 0.8)

TABLE 19. Fuzzy weights of sub-criteria
Performance (0.103, 0.158, 0.309, 0.467; 1,1), (0.114, 0.170, 0.286, 0.424; 0.8 0.8) Usability (0.008, 0.013, 0.029, 0.049; 1,1), (0.009, 0.014, 0.026, 0.044; 0.8 0.8)
Response Time (0.103, 0.158, 0.309, 0.467; 1,1), (0.114, 0.170, 0.286, 0.424; 0.8 0.8) Features (0.010, 0.015, 0.032, 0.053; 1,1), (0.011, 0.016, 0.029, 0.047; 0.8 0.8)
Error-free (0.037, 0.050, 0.087, 0.120; 1,1), (0.040, 0.054, 0.082, 0.113; 0.8 0.8) Content Quality (0.012, 0.019, 0.044, 0.072; 1,1), (0.013, 0.021, 0.040, 0.065; 0.8 0.8)
Compability (0.020, 0.024, 0.040, 0.058; 1,1), (0.020, 0.026, 0.037, 0.053; 0.8 0.8) Content Presentation (0.006, 0.009, 0.022, 0.037; 1,1), (0.006, 0.010, 0.020, 0.033; 0.8 0.8)
Security (0.204, 0.270, 0.437, 0.558; 1,1), (0.216, 0.288, 0.410, 0.530; 0.8 0.8) Content Organization (0.009, 0.013, 0.028, 0.045; 1,1), (0.009, 0.014, 0.025, 0.40; 0.8 0.8)
Language (0.004, 0.006, 0.015, 0.025; 1,1), (0.005, 0.007, 0.013, 0.022; 0.8 0.8)

Performance

Alternative 1 (0.307, 0.438, 0.732, 0.964; 1,1), (0.334, 0.465, 0.693, 0.906; 0.8 0.8)
Alternative 2 (0.034, 0.043, 0.070, 0.103; 1,1), (0.036, 0.045, 0.066, 0.094; 0.8 0.8)
Alternative 3 (0.079, 0.117, 0.237, 0.386; 1,1), (0.087, 0.126, 0.219, 0.343; 0.8 0.8)
Alternative 4 (0.114, 0.158, 0.279, 0.411; 1,1), (0.123, 0.168, 0.262, 0.375; 0.8 0.8)

Response Time

Alternative 1 (0.191, 0.313, 0.604, 0.853; 1,1), (0.216, 0.338, 0.568, 0.790; 0.8 0.8)
Alternative 2 (0.049, 0.064, 0.114, 0.179; 1,1), (0.052, 0.068, 0.107, 0.161; 0.8 0.8)
Alternative 3 (0.167, 0.235, 0.403, 0.570; 1,1), (0.181, 0.248, 0.381, 0.525; 0.8 0.8)
Alternative 4 (0.085, 0.120, 0.239, 0.415; 1,1), (0.092, 0.128, 0.220, 0.362; 0.8 0.8)

Error-free

Alternative 1 (0.213, 0.284, 0.455, 0.602; 1,1), (0.228, 0.299, 0.434, 0.565; 0.8 0.8)
Alternative 2 (0.089, 0.117, 0.207, 0.310; 1,1), (0.094, 0.123, 0.194, 0.282; 0.8 0.8)
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Alternative 3 (0.103, 0.137, 0.231, 0.326; 1,1), (0.110, 0.144, 0.218, 0.300; 0.8 0.8)
Alternative 4 (0.154, 0.229, 0.405, 0.549; 1,1), (0.169, 0.244, 0.384, 0.512; 0.8 0.8)

Compability

Alternative 1 (0.097, 0.146, 0.298, 0.497; 1,1), (0.106, 0.157, 0.274, 0.438; 0.8 0.8)
Alternative 2 (0.076, 0.112, 0.228, 0.388; 1,1), (0.083, 0.120, 0.210, 0.341; 0.8 0.8)
Alternative 3 (0.186, 0.285, 0.518, 0.732; 1,1), (0.207, 0.305, 0.487, 0.675; 0.8 0.8)
Alternative 4 (0.117, 0.180, 0.334, 0.473; 1,1), (0.130, 0.194, 0.314, 0.437; 0.8 0.8)

Security

Alternative 1 (0.160, 0.209, 0.322, 0.414; 1,1), (0.170, 0.219, 0.308, 0.392; 0.8 0.8)
Alternative 2 (0.050, 0.061, 0.096, 0.133; 1,1), (0.052, 0.064, 0.091, 0.123; 0.8 0.8)
Alternative 3 (0.147, 0.188, 0.304, 0.426; 1,1), (0.155, 0.197, 0.288, 0.393; 0.8 0.8)
Alternative 4 (0.228, 0.327, 0.547, 0.729; 1,1), (0.249, 0.347, 0.519, 0.683; 0.8 0.8)

Language

Alternative 1 (0.214, 0.320, 0.559, 0.753; 1,1), (0.236, 0.340, 0.530, 0.705; 0.8 0.8)
Alternative 2 (0.067, 0.096, 0.189, 0.307; 1,1), (0.072, 0.102, 0.175, 0.273; 0.8 0.8)
Alternative 3 (0.073, 0.096, 0.174, 0.276; 1,1), (0.077, 0.101, 0.162, 0.247; 0.8 0.8)
Alternative 4 (0.171, 0.239, 0.405, 0.560; 1,1), (0.185, 0.253, 0.383, 0.519; 0.8 0.8)

Usability

Alternative 1 (0.305, 0.446, 0.801, 1.103; 1,1), (0.333, 0.477, 0.754, 1.027; 0.8 0.8)
Alternative 2 (0.032, 0.040, 0.069, 0.107; 1,1), (0.033, 0.042, 0.065, 0.097; 0.8 0.8)
Alternative 3 (0.051, 0.070, 0.133, 0.209; 1,1), (0.055, 0.075, 0.123, 0.187; 0.8 0.8)
Alternative 4 (0.114, 0.175, 0.358, 0.565; 1,1), (0.126, 0.189, 0.332, 0.508; 0.8 0.8)

Features

Alternative 1 (0.108, 0.144, 0.255, 0.382; 1,1), (0.115, 0.152, 0.239, 0.347; 0.8 0.8)
Alternative 2 (0.043, 0.053, 0.089, 0.132; 1,1), (0.045, 0.056, 0.084, 0.121; 0.8 0.8)
Alternative 3 (0.082, 0.108, 0.189, 0.284; 1,1), (0.087, 0.114, 0.177, 0.258; 0.8 0.8)
Alternative 4 (0.287, 0.437, 0.808, 1.116; 1,1), (0.317, 0.469, 0.758, 1.039; 0.8 0.8)

Content Quality

Alternative 1 (0.111, 0.173, 0.343, 0.512; 1,1), (0.123, 0.186, 0.320, 0.467; 0.8 0.8)
Alternative 2 (0.072, 0.111, 0.234, 0.386; 1,1), (0.080, 0.120, 0.216, 0.343; 0.8 0.8)
Alternative 3 (0.114, 0.175, 0.343, 0.523; 1,1), (0.126, 0.188, 0.319, 0.473; 0.8 0.8)
Alternative 4 (0.164, 0.250, 0.486, 0.733; 1,1), (0.181, 0.268, 0.452, 0.665; 0.8 0.8)

Content Presentation

Alternative 1 (0.104, 0.149, 0.277, 0.412; 1,1), (0.113, 0.159, 0.259, 0.376; 0.8 0.8)
Alternative 2 (0.037, 0.045, 0.072, 0.100; 1,1), (0.039, 0.048, 0.068, 0.093; 0.8 0.8)
Alternative 3 (0.166, 0.232, 0.387, 0.520; 1,1), (0.179, 0.246, 0.366, 0.486; 0.8 0.8)
Alternative 4 (0.253, 0.343, 0.560, 0.750; 1,1), (0.271, 0.361, 0.531, 0.701; 0.8 0.8)

Content Organization

Alternative 1 (0.285, 0.398, 0.646, 0.838; 1,1), (0.309, 0.422, 0.614, 0.790; 0.8 0.8)
Alternative 2 (0.035, 0.043, 0.067, 0.095; 1,1), (0.037, 0.045, 0.063, 0.088; 0.8 0.8)
Alternative 3 (0.120, 0.180, 0.338, 0.504; 1,1), (0.132, 0.193, 0.316, 0.459; 0.8 0.8)
Alternative 4 (0.108, 0.144, 0.251, 0.377; 1,1), (0.115, 0.152, 0.235, 0.342; 0.8 0.8)

Step 5. Fuzzy utility values were calculated. The values found are shown in Table 21.

TABLE 21. Fuzzy utility values of alternatives

Alternative 1 (0.103, 0.213, 0.686, 1.367; 1,1), (0.122, 0.244, 0.602, 1.168; 0.8 0.8)
Alternative 2 (0.026, 0.047, 0.148, 0.323; 1,1), (0.030, 0.053, 0.129, 0.269; 0.8 0.8)
Alternative 3 (0.068, 0.132, 0.418, 0.880; 1,1), (0.079, 0.149, 0.366, 0.740; 0.8 0.8)
Alternative 4 (0.084, 0.169, 0.533, 1.087; 1,1), (0.099, 0.193, 0.466, 0.920; 0.8 0.8)

Step 6. The calculated fuzzy utility values were defuzzified and then normalized. The defuzzified utility values and
normalized utility values are shown in 22.

As a result, the order of alternatives was obtained as Alternative 1 � Alternative 4 � Alternative 3 � Alternative 2.
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TABLE 22. Defuzzified utility values and normalized utility values

Alternative Defuzzified utility value Normalized utility value

Alternative 1 0.542 0.378
Alternative 2 0.124 0.086
Alternative 3 0.341 0.238
Alternative 4 0.427 0.298

CONCLUSION

In this study, mobile applications were evaluated. AHP method was used to see which of the applications are superior.
In order to increase the effectiveness of the decision-making method, the method was based on IT2FSs. A hierarchy
including sub-criteria was created for modeling of the problem. Also, group decision making technique was used for
the effectiveness of the decision. Thus, the most superior alternative has been found.
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Abstract. In this paper, the Sinc-Galerkin method is applied to construct the numerical solution of telegraph equation with
variable coefficients. This study shows that the Sinc-Galerkin method is a very effective and powerful tool in solving such problems
numerically.

INTRODUCTION

A lot of attention has been given to the Sinc-Galerkin method and its efficiency has been proved for both linear and
nonlinear partial differential equations [1, 2, 3, 4, 5, 6]. In [1] author proposed an application of Sinc-Galerkin method
for solving space fractional boundary value problems. Numerical solution of time-dependent partial differential equa-
tions is proposed by authors of [2, 3, 4].
The purpose of this work is to introduce a numerical approach based on Sinc function for the approximate solution of
a telegraph equation with variable coefficients.

THE SINC-GALERKIN METHOD

Consider the following telegraph equation with variable coefficients

∂ 2u
∂ t2

+a(x)
∂u
∂ t

+b(x)u− ∂ 2u
∂x2

= f (x, t) (1)

for all (x, t) ∈ (0,1)× (0,+∞). Subject to the initial and boundary conditions

u(x,0) = ut(x,0) = 0, u(0, t) = u(1, t) = 0,

where a and b are analytic on [0,1]. We shall assume that u and f are analytic with respect to x in a neighbourhood of
[0,1] and that u and f are analytic with respect to t in [0,+∞].
We consider Sinc approximation by the formula

u(x, t) =
N

∑
i=−N

N

∑
j=−N

ui, jSi, j(x, t), (2)

where

Si, j(x, t) = Si(x)S j(t)
= [S(i,hx))oφ(x)][S( j,ht)oψ(t)]

and

φ(x) = ln
(

x
1− x

)
, ψ(t) = ln(t).

We define the inner product denoted <,> of two analytic functions f and g by

< f ,g >=

∫ 1

0

∫ 1

0
f (x, t)g(x, t)W (x, t)dxdt,

where w(x,y) is weight function given by

W (x,y) = w(x)v(t) = [
1

φ ′(x)1/2
][ψ ′(t)]−1/2.
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The unknown coefficients ui, j in (2) can be determined by the orthogonality the residual with respect to the Sinc basis
functions Si, j(x,y). This yields the discrete Galerkin system

< LuNx,Nt − f (x, t),Skl >= 0, −Nx ≤ k ≤ Nx, −Nt ≤ l ≤ Nt , (3)

where

Lu : u −→ ∂ 2u
∂ t2

+a(x)
∂u
∂ t

+b(x)u− ∂ 2u
∂x2

.

MAIN RESULTS

Theorem 1
The following relations hold:

< f (x, t),SkSl >≈ ht hx
w(xk) f (xk, tl)v(tl)

φ ′(xk)ψ ′(tl)
, (4)

< b(x)u,SkSl >≈ ht hx
w(xk)b(xk)u(xk, tl)v(tl)

φ ′(xk)ψ ′(tl)
, (5)

<
∂ 2u
∂x2

,SkSl >≈ ht hx
v(tk)
ψ ′(tl)

Nx

∑
i=−Nx

2

∑
j=0

u(xi, tl)
φ ′(xi)

[
1

h j
x

δ ( j)
ki ρ j

]
, (6)

<
∂ 2u
∂ t2

,SkSl >≈ ht hx
w(xk)

φ ′(xk)

Nt

∑
j=−Nt

2

∑
i=0

u(xk, t j)

ψ ′(t j)

[
1

hi
t

δ (i)
l j ηi

]
, (7)

< a(x)
∂u
∂ t

,SkSl >≈ hx ht
a(xk)w(xk)

φ ′(xk)

Nt

∑
j=−Nt

1

∑
i=0

u(xk, t j)

ψ ′(t j)

[
1

hi
t
δ (i)

l j μi

]
(8)

for some functions ρ j, μi, ν j to be determined. Consequently, we have a linear system of (2n+ 1) equations of the
(2n+1) unknown coefficients.

APPLICATION

In this section, we consider numerical examples to test the efficiency of the new scheme for solving the telegraph
equation. The following computations and graphical representations were prepared by using Maple. We consider the
following example ⎧⎪⎪⎨

⎪⎪⎩
∂ 2

∂ t2
u(x, t)+(1− x)

∂
∂ t

u(x, t)+
√

xu(x, t) =
∂ 2

∂x2
u(x, t)+ f (x, t),

u(0, t) = u(1, t) = 0,

u(x,0) = ut(x,0) = 0,

(9)

where a(x) = 1− x, b(x) = x1/2,

f (x, t) = te−t x5/2(1− x)5/2(6−6t + t2)+ t2e−t x5/2(1− x)7/2(3− t)

+t3e−t x1/2(1− x)1/2[(1− x)2(x5/2 −15/4)+ x((25/2)(1− x)− (15/4)x].

The exact solution is given by

u(x, t) = t3e−t x5/2(1− x)5/2.
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TABLE 1. Numerical results at t = 2.45

x Exact(x, t) Apprx(x, t) Err(x, t)
0.30 0.00308377757554 0.00312781372528 0.0000440361497052

0.60 0.0358100458207 0.0362585654039 0.000448519583086

0.90 0.0256463171905 0.0259687181574 0.000322400966537

We will choose

φ(x) = ln(
x

1− x
), ψ(t) = ln(t),W (x, t) = w(x)v(t) =

1√
φ(x)

1√
ψ(t)

,

Nx = Nt = 12; h = s =
2√
N
,xk =

ekh

1+ ekh , t j = e js, N = 12.

FIGURE 1. Exact and approximate solutions
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Abstract. This study used two quantitative methods to investigate the efficacy of different methods in preventing enamel deminer-
alization around orthodontic brackets under similar in vitro conditions. The study included 90 extracted bovine incisors randomized
into six groups: fluoride toothpaste(FT), non-fluoride toothpaste(NFT), fluoride varnish plus fluoride toothpaste(FV+FT), casein
phosphopeptide–amorphous calcium phosphate(CPP-ACP) varnish plus fluoride toothpaste(CPP-ACP+FT), medical mineral gel
plus non-fluoride toothpaste(MMG+NFT), and no intervention(control). All groups were subjected to a pH cycle. The buccal
surfaces were assessed with a DIAGNOdent pen(DD) at baseline(T0) and the 19th day(T1). For each group, the mean Ca2+ loss
was also measured by the colorimetric method. The current study focused on the assessment of total mineral loss using DD and
colorimetric methods.

INTRODUCTION

Preventing demineralization has become a vital issue during orthodontic therapy. A clinical study found that when
high-dose FV (6% NaF and CaF) was applied around the orthodontic bracket, the mean demineralization depth was
approximately 40% lower than in the control group [1]. Recently, a more advanced FV has been developed: MI
Varnish (GC, Tokyo, Japan), with added CPP-ACP (5%) [2]. Self-applied agents under the guidance of dentists,
such as gel systems, require close cooperation from patients. R.O.C.S. Medical Minerals Gel (DRC-Group, Russia)
is a newcomer in the field of prevention and treatment of caries. Its mechanism of action is based on the release
of bioavailable calcium, phosphate, and magnesium; the system is indicated to treat early carious lesions through
remineralization [3].

Early diagnosis of WSLs is of great importance because it helps clinicians take preventive steps to monitor the
process of demineralization before lesions progress. One reliable and efficient method that can be used intraorally
is the DIAGNOdent pen (DD; KaVo, Biberach, Germany). DD has been used widely both in vivo and in vitro for
detecting enamel demineralization [4, 5]. This portable handheld instrument also uses fluorescence laser to distinguish
between carious and healthy tooth structure by measuring reflected laser fluorescence from the tooth surface [6, 7].

While our previous study [8] observed the path of demineralization for treatment materials using visual assessment
and colorimetric method at certain time points, the current study focused on the assessment of total mineral loss using
DD and colorimetric methods for 19 days. The present study aimed to investigate the preventive effect of the medical
mineral gel (MMG) and compare it with that of two types of varnish (FV and CPP-ACP varnish) using DD and
evaluate the results with colorimetric method measurements. We hypothesized that the results of DD and colorimetric
measurements would be parallel.

MATERIALS AND METHODS

Ninety incisor teeth were collected and selected from the mandibles of 15, three-year-old freshly slaughtered bovines.
All teeth was stored in a 0.1% thymol solution at 4◦C. To standardize the exposed enamel surface, a window of 4 x 6
mm2 was created and placed 5mm gingivally at the incisal edge and in the clinical crown’s mesiodistal middle. All the
teeth were painted on all surfaces except the window area with a thin coat of acid-resistant nail polish. Metal lower
incisor brackets (3M Unitek, MN, USA) were bonded in the center of the exposed region with a light-curing resin
composite cement (Transbond XT, M Unitek, MN, USA) [8].
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DIAGNOdent Pen Assessment

The detailed description of the visual assessment, conducted in accordance with the scoring criteria established by
Ekstrand et al. [9], has been fully described in our previous investigation [8]. Only lesions scoring 1 according to
those criteria were included in the study.

In addition to visual evaluation, at the beginning (T0) and the 19th day (T1) of the experiment, the enamel around
the brackets of each tooth was evaluated using DD as we can see in Table 1 and Figure 1.

TABLE 1. DIAGNOdent Scale.

Display Value Clinical Situation

0-10 Sound tooth enamel
11-20 Outer-half demineralized enamel
21-30 Inner-half demineralized enamel
30+ Dentinal caries

FIGURE 1. Baseline measurements for the teeth to be included in the study with DD.

Treatment Groups and Cycling Procedure

Table 2 shows the treatment groups and materials applied in each group.

Determination of Demineralization

In the current study, the total average calcium loss during the experiment period, as shown in Table 3, was considered
for each group, to compare the results with DD readings at day 19.
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TABLE 2. In this table, the treatment groups, materials applied and experimental procedure for each group are shown.

Groups Materials Procedure

No intervention (control) – Received no treatment

Fluoride toothpaste(FT) Colgate Total (14450ppmF-) Colgate-
Palmolive Company, NY, USA

Brushed with FT for 2 sec per tooth

Non-fluoride toothpaste(NFT) R.O.C.S. Pro Brackets & Ortho, ‘DRC-
Group’ Company, Russia

Brushed with NFT for 2 sec per tooth

Fluoride varnish plus fluoride
toothpaste(FV+FT)

Bifluorid 12 (6%NaF), Voco, Cux-
haven, Germany+Colgate Total,
Colgate-Palmolive Company, NY, USA

Bifluorid 12 varnish was applied once
at the beginning of the experiment and
brushed with FT for 2 sec per tooth

CPP-ACP varnish plus fluoride
toothpaste(CPP-ACP+FT)

MI Varnish (CPP-ACP (5%)), GC,
Tokyo, Japan+Colgate Total, Colgate-
Palmolive Company, NY, USA

MI Varnish was applied once at the be-
ginning of the experiment and brushed
with FT for 2 sec per tooth

Medical minerals gel plus non-fluoride
toothpaste(MMG+NFT)

R.O.C.S. Medical Minerals; ‘DRC-
Group’ company, Russia+R.O.C.S. Pro
Brackets&Ortho, ‘DRC-Group’ Com-
pany, Russia

R.O.C.S. Medical Minerals gel was ap-
plied daily 30 min before next deminer-
alization cyle and brushed with NFT

TABLE 3. Ca(mg/dL) over time by group. Calcium dissolution (mg/dL)-(Mean±St.Dev.)

Day MEG+NFT FT FV+FT CPP-ACP+FT NFT CONTROL

1 0.314±0.07 0.557±0.14 0.157±0.08 0.014±0.04 0.486±0.21 0.929±0.15
2 0.357±0.08 0.643±0.14 0.486±0.12 0.043±0.05 0.586±0.23 0.943±0.21
3 0.329±0.11 0.700±0.10 0.586±0.09 0.100±0.08 0.586±0.20 0.914±0.23
4 0.362±0.11 0.705±0.11 0.590±0.10 0.076±0.10 0.762±0.19 0.948±0.26
5 0.419±0.07 0.719±0.11 0.590±0.15 0.148±0.09 0.719±0.11 0.919±0.22
6 0.490±0.10 0.733±0.12 0.676±0.15 0.148±0.11 0.833±0.15 1.019±0.20
7 0.533±0.12 0.705±0.21 0.619±0.17 0.162±0.11 0.790±0.14 0.962±0.16
8 0.562±0.11 0.805±0.23 0.748±0.19 0.219±0.12 0.976±0.15 1.062±0.11
9 0.590±0.13 0.833±0.19 0.790±0.15 0.233±0.12 0.962±0.18 1.190±0.17
10 0.586±0.16 0.929±0.28 0.771±0.21 0.200±0.13 0.914±0.21 1.171±0.21
11 0.605±0.15 0.790±0.19 0.762±0.18 0.205±0.11 0.933±0.16 1.148±0.19
12 0.586±0.12 0.886±0.15 0.786±0.27 0.214±0.09 0.943±0.19 1.114±0.20
13 0.600±0.13 0.814±0.16 0.786±0.20 0.243±0.10 0.871±0.23 1.114±0.09
14 0.600±0.14 0.886±0.15 0.800±0.22 0.243±0.13 0.929±0.24 1.086±0.20
15 0.571±0.17 0.814±0.17 0.771±0.21 0.243±0.11 0.929±0.21 1.000±0.12
16 0.414±0.13 0.757±0.33 0.700±0.26 0.029±0.11 0.771±0.25 0.986±0.17
17 0.719±0.17 1.090±0.20 1.019±0.24 0.376±0.13 1.005±0.28 1.176±0.20
18 0.671±0.17 1.129±0.29 0.986±0.19 0.314±0.17 0.971±0.28 1.143±0.16
19 0.543±0.14 0.957±0.24 0.800±0.15 0.271±0.15 0.886±0.13 0.943±0.19

TABLE 4. Diagnodent Pen readings at day 1 and 19.

Groups MEG+NFT FT FV+FT CPP-ACP+FT NFT CONTROL
Day 1 3,43 3,57 3,43 3 3,43 3,29
Day 19 10,3 11,7 9,57 3 12,71 14
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STATISTICAL EVALUATIONS

Ca Loss Measurements

Repeated analysis of variance results yielded a significant F statistic (F [5,36] = 36.394,P < 0.001), suggesting sig-
nificant differences between groups. A post hoc Bonferroni test revealed significant differences between groups [11,
12] which can be seen in Table 5. A power analysis was conducted using the Wilcoxon test data to ensure that the
sample size and the magnitude of the observed effect were sufficient. The statistical analysis was performed using
SPSS software (version 24.0.1, SPSS, Chicago, IL, USA).

TABLE 5. Statistical analysis of Ca loss measurements according to groups. In below table, cell entries are p-values. Bold values
denote p < 0.05.

Group MEG+NFT FT FV+FT CPP-ACP+FT NFT CONTROL
MEG+NFT - 0.001 0.869 0.001 0.001 0.000

FT 0.001 - 0.183 0.000 1.000 0.086
FV+FT 0.869 0.183 - 0.000 0.249 0.000

CPP-ACP+FT 0.001 0.000 0.000 - 0.000 0.000
NFT 0.001 1.000 0.249 0.000 - 0.062

CONTROL 0.000 0.086 0.000 0.000 0.062 -

DIAGNOdent Pen Measurements

Descriptive statistics were calculated. The Kolmogorov–Smirnov test was used to test data normality. All six groups
were statistically compared with a Bonferroni test to detect differences between groups. Wilcoxon comparison tests
were performed to identify significance between T0 and T1. The results were considered significant at p = 0.05. The
statistical analysis was performed using SPSS software (version 24.0.1, SPSS, Chicago, Ill).

TABLE 6. Statistical analysis of DIAGNOdent Pen measurements according to groups. In below table, cell entries are p-values.
Bold values denote p < 0.05.

Group MEG+NFT FT FV+FT CPP-ACP+FT NFT CONTROL
MEG+NFT - 0.088 1 0.000 0.000 0.000

FT 0.088 - 0.001 0.000 0.716 0.001
FV+FT 1 0.001 - 0.000 0.000 0.000

CPP-ACP+FT 0.000 0.000 0.000 - 0.000 0.000
NFT 0.000 0.716 0.000 0.000 - 0.185

CONTROL 0.000 0.001 0.000 0.000 0.185 -

RESULTS

The initial DD readings for all groups were not statistically different from each other (P > 0.05). A statistically
significant difference was found in demineralization over time for all groups except for the CPP-ACP+FT group
(P < 0.05). The results of the Ca+2 loss measurements confirm the findings of the DD readings and indicate that the
extent of prevention in the CPP-ACP+ FT group was significantly higher than all other groups.

No statistical difference was found between the FV+FT and MMG+NFT groups for either method at day 19 (P >
0.05). However, considering the numerical data obtained from DD measurements, while the FV+FT group showed
less demineralization than the MMG+NFT group, the numerical values of the Ca+2 loss findings showed the opposite
for these groups.

The difference between FT and NFT was not significant for either measurement method.
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CONCLUSION

The findings of this 19-day in vitro study indicate that:
1. A clinical advantage was seen in the daily use of MMG and the one-time application of 5% FV as a protective

agent during orthodontic treatment compared to no treatment.
2. One-time application of the CPP-ACP varnish as an adjunct to the FT was significantly the most protective

treatment against demineralization.
3. Both toothpastes (fluoride and non-fluoride) had a weak preventive effect.
In addition to the contribution of our previous research on various preventive approaches, the current study provides

an idea of the validity of the laser fluorescence approach for early detection of WSLs in routine clinical applications.
Although DD measures with accuracy, it may be helpful to support with another method such as visual evaluation, so
as not to overlook the WSLs during their formation.
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Abstract. Employee satisfaction plays an important role in the effective operation of any type of organization. The study
aimed to investigate the explanatory factors influencing job satisfaction and model the satisfaction of employees (teachers) using
logistic regression. Analysis results indicated that current workplace experience had a positive influence on teacher job satisfaction.
However, as the teachers’ education level and their overall years of experience in teaching increased their satisfaction levels
decreased.

INTRODUCTION

An important factor influencing the efficiency and effectiveness of any organization is employees’ job satisfaction.
In an educational context, teachers’ job satisfaction contribute to the school performance and to the teachers’ perfor-
mance ( [1, 2]). Teacher job satisfaction is an important research topic as teachers with high levels of job satisfaction
can provide higher teaching quality and better support for the students [3]. According to [4], teachers’ job satisfaction
can be described as the association between teachers and their teaching duties. Thus, individual factors about teachers
play an important role in their job satisfaction [5].

This study investigates the effect of demographical factors on the job satisfaction of teachers working in Turkish
Republic of Northern Cyprus (TRNC). Logistic regression approach is adopted to test the influence of gender, age,
education, overall experience in teaching, experience at their current workplace (school), and marital status on job
satisfaction.

PRELIMINARY INFORMATION

Job Satisfaction

Job satisfaction is the positive perceptions and emotions of employees towards their work regarding their expectations
from their work [5]. Initially, [6] separated factors which determine job satisfaction as hygiene (extrinsic) and mo-
tivational (intrinsic) factors. The extrinsic factors are supervision, co-workers, salary, and working conditions. The
intrinsic factors are recognition, achievement, progression, and work itself [7]. These factors have been proven to be
significant factors of job satisfaction and they influence the employee performance. Job satisfaction is a crucial aspect
in todays’ organizations to achieve efficiency and better employee performance amongst the company [8]. In other
words, unsatisfied employees may cause unfavourable performance outcomes.

Demographics and Job Satisfaction

Studies have been conducted in relation to demographic factors and the job satisfaction relationship and studies have
indicated mixed results. Some studies have found that female teachers tend to show stronger job satisfaction than
male teachers ( [1, 9]). According to [10], being employed as a respectful teacher in schools can be the major source
of job satisfaction in developing countries. In contrast, [11] concluded that male teachers showed a higher level of job
satisfaction than female teachers. In addition, marital status can affect the job satisfaction of employees. For instance,
[12] indicated that job satisfaction can be positively influenced by marital status. It was reported by [13] that level of
experience and job ranks had an effect on job satisfaction. These findings are in line with [14] who found that age,
gender, education, and experience had an impact on job satisfaction. However, several studies found that age, gender,
education, and marital status do not have a significant effect on job satisfaction ( [13, 15]). The study conducted by
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[16] supported these findings that mixed results on the relationship between experience and job satisfaction of teachers
is that country-specific factors can play an important role.

Logistic Regression Analysis

Logistic regression analysis (LRA) extends the techniques of multiple regression analysis to research situations in
which the outcome variable is categorical [17]. In practice, situations involving categorical outcomes are quite com-
mon. The Multiple Regression model is applicable when the outcome variable, Y , is continuous, but is not appropriate
for situations in which Y is categorical. For example, if Y takes on the value 1 for "success" and 0 for "failure," the
multiple regression equation would not result in predicted values restricted to exactly 1 or 0. The model for logistic
regression analysis is a more realistic representation of the situation when an outcome variable is categorical. The
model for logistic regression analysis assumes that the outcome variable, Y , is categorical (e.g., dichotomous), but
LRA does not model this outcome variable directly. Rather, LRA is based on probabilities associated with the values
of Y ( [18], [19]).
For theoretical, mathematical reasons, LRA is based on a linear model for the natural logarithm of the odds (i.e.,
the log-odds) in favor of Y = 1. Dependent variable Y becomes a binary variable taking a categorical value of 1 if
individual/household satisfied from his/her job or taking a value of 0 otherwise.
Linear Probability Model can produce predicted probabilities more than 1 and/or less than 0 which causes statistics
problem. Such outcome simply doesn’t make sense. Since the probability of satisfaction cannot exceed 1 or 0.
In developing the logistic function following two conditions must be met.

1. The probability function must be positive (since p ≥ 0).

2. The probability function must be less than 1 (since p ≤ 1).

We need to constrain p such that 0 ≤ p ≤ 1. The formula can be given by

p =
eα+βx

1+ eα+βx (1)

satisfies these two conditions. Exponential of any number + or − is always + any number divided by another
that slightly greater than it will always result in a value less than 1. Adding 1 to denominator is always satisfies the
condition of bound 0 and 1. The logistic function is nonlinear. Fortunately, by performing some algebra we can rewrite
the logistic expression to obtain the following function, which is the logistic regression model. ln( p

1−p ) = α +βX
is the natural log of odds ratio. P is the probability of satisfaction, 1−P is the probability of dissatisfaction. The
term ( p

1−p ) is called the ‘odds ratio’. Odds ratio increase as the likelihood of non-approval in the nominator (P) is

increases. In the logit model;

Probability of Satisfaction = P(Y = 1) = P = eα+βx

1+eα+βx

Probability of Dissatisfied = P(Y = 0) = P = 1− eα+βx

1+eα+βx

Odds ratio;

p
1− p

=

eα+βx

1+eα+βx

1− eα+βx

1+eα+βx

. (2)

Theorem 1 The odd ratio measures the probability that Y = 1 relative to the probability that Y = 0.

Proof. λ = α +βx, then,

p
1− p

=

eλ

1−eλ

1− eλ

1−eλ

. (3)
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Therefore;

p
1− p

= eλ = eα+β . (4)

By taking the natural logarithm of both sides, we find the logistic regression model as

ln(
p

1− p
). (5)

For the estimation of parameters of the logistic regression model maximum likelihood estimation method has been
used. After running the regression model, we calculate the estimated probability, i.e., the probability of satisfaction:

Ê p =
eâo+â1X

1+ eâo+â1X , (6)

where the â0 and â1 are estimates from the regression [20].

AN APPLICATION: THE INFLUENCE OF DEMOGRAPHIC VARIABLES ON JOB
SATISFACTION

The study aims to investigate the explanatory factors influencing job satisfaction and model the satisfaction of em-
ployees using Logistic regression. In order to test the proposed model it was necessary to compile job satisfaction
data from middle school teachers in the Turkish Republic of Northern Cyprus (TRNC). The short-form Minnesota
Satisfaction Questionnaire (MSQ) [21] was utilized. The short-form MSQ consists of 20 items/facets of the job (such
as ability utilization, compensation, responsibility, and recognition) and the aggregate of these 20 facets measures
overall job satisfaction. Teachers were asked to express the extent of their satisfaction with each of the 20 facets of
their job on a five-point Likert scale ranging from 1 (very dissatisfied) to 5 (very satisfied). A total of 165 teachers
agreed to complete the questionnaire and the data collection process took place in April 2019.
To analyze data, a Binary Logistic Regression Method was used and regression coefficients are estimated to predict
the probability of the outcome of interest. To conduct the binary logistic regression, the degrees of satisfaction were
recoded with the value of “not satisfied” = 0 and “satisfied” = 1. The study used 6 explanatory variable which are
age, marital status, education, experience, current experience, and gender. These variables are used as a proxy for job
satisfaction. The functional form of the model is:

Y = α +β1X1 +β2X2 + · · ·+β6X6 + ε, (7)

where: X1: Age, X2: Current Experience, X3 : Education, X4: Experience, X5: Gender, X6: MStatus Y = 1: if satisfied,
0: otherwise.
Therefore, Y becomes a binary variable taking a categorical values of 1 if individual/household satisfied his/her job
and 0 if not. Here the Y -intercept (i.e., the expected value of Y when all X’s are set to 0), β j is a multiple (partial)
regression coefficient (i.e., the expected change in Y per unit change in Xj assuming all other X ′s are held constant)
and ε is the error of prediction. If error is omitted, the resulting model represents the expected, or predicted, value of
Y :

E(Y |X1, · · · ,Xϕ) = Y
′
= α +α +

ϕ

∑
j−1

β jXj. (8)

Data analysis was carried out with E-views 11 software. Diagnostics test was imposed and all of the tests are sta-
tistically significant. In the Logit model usual statistical tests cannot be used because the dependent variable is not
continuous, thus the testing the model would be biased. There are other test that can be used to test the significance
and reliability of the model, such as Wald test and Goodness of Fit test. The statistical significance of individual
regression coefficients is tested using the Wald chi-square statistics (Table 1). According to the Table 1, current ex-
perience, education and experience variables were significant predictors (p > .05) of job satisfaction, intercept term,
age, gender and marital status are not significant predictors (p > .05).
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TABLE 1. Wald Test

Chi-square Probability

Constant 0.1819 0.6697
Education 4.5648 0.0326∗
Current Experience 4.7923 0.0286∗
Age 0.522709 0.4697
Experience 3.9759 0.0462∗
Gender 0.182173 0.6695
MStatus 0.027912 0.8673

TABLE 2. Goodness-of-Fit Evaluation for Binary Specification. Andrews and Hosmer-Lemeshow Tests

H-L Statistic 10.5858 Prob. Chi-Sq(8) 0.4263

To check the goodness of fit of the logistic regression model Hosmer - Lemeshaw test performed [22]. According to
the test result H-L test statistics value is 10.5858 with a p-value of 0.4263, suggesting that the model is a fit to the data
well. In other words the hypothesis of a good model fit to the data is not rejected. So, the test is significant (Table 2).

Logistic regression analysis was carried out by the Logistic procedure in E-views 11 software. The results can be
seen in Table 3.
According to the model, the log of the odds of job satisfaction is positively related to Age (p < .05), Current Experi-
ence (p < .05), Gender (p < .05), and MStatus (p < .05). The log of odds of job satisfaction is negatively related to
Education (p < .05) and Experience (p < .05). If the coefficients are substituted with the numerical values obtained
from the regression output, the following result is obtained:

ln(
p

1− p
) =−0.5227+0.3168X1 +0.4955X2 −0.1032X3 − .1217X4 +0.2108X5 +0.07136. (9)

However, these variables cannot be interpreted in the same way as the OLS method. The most appropriate way to
interpret the regression output is by explaining the odds ratio and the marginal effect. Equation (9) states that the log
of the odds ratio is a linear function of the coefficients and variables, where the overall equation known as logit (log
of the odds ratio). The odds ratio of job satisfaction shows the probability that a person satisfied with their job to the
probability that they are not satisfied with their job. For a logistic regression the relationship between the odds ratio
and the regression coefficient is the exponential function of the coefficient can be seen as below:

ln(
p

1− p
) = e(−0.5227+0.3168X1+0.4955X2−0.1032X3+−.1217X4+0.2108X5+0.07136). (10)

According to the odds ratio, the impact of each variable is multiplicative. For each one unit increase in explanatory
variable, the predicted odds are increased by a factor of exponential of the odds ratio. For example, each one-unit
increase (decrease) in given predictor, the estimated odds are increased (decrease) by an exponential factor. The
results can be expressed in terms of probabilities by use of the logistic function.
The database is used for the purpose of illustration. The outcome variable is satisfied (1) and dissatisfied (0). Three
statistically significant explanatory variables are used in three different scenarios. In each scenario only one variable
is changed (doubled)(see Table 4).

Scenario 1 assumes that the experience of teachers in their current workplace doubles while the other predictors
are held constant. Expected probability, which is shown by p-hat, exhibits that if the current workplace experience
doubles then the probability that the teachers are satisfied with their job increases by 69.6 %. On the other hand,
scenario 2 assumes the education level of the teachers doubles while the other predictors are held constant. As a
result, the expected probability of 0,397 shows that the probability that teachers are satisfied with their job decreases
by 39.7%. Finally, scenario 3 assumes that the overall experience of teachers gained from teaching doubled while the
other predictors are held constant. As a result, the probability that teachers are satisfied with their job decreases by
37.9%.
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TABLE 3. Logistic Regression Results. Here, Dependent Variable: SAT_UNSAT, Method: ML - Binary Logit (Newton-Raphson
/ Marquardt steps), Date: 07/03/20, Time: 21:32, Sample: 1 135, Included observations: 133, Convergence achieved after 4
iterations, and Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.

C -0.522781 1.225500 -0.426585 0.0697
AGE 0.316896 0.438315 1.722986 0.0497
CURRENT EXPERIENCE 0.495578 0.226379 2.189150 0.0286
EDUCATION -0.103256 0.453137 2.227869 0.0197
EXPERIENCE -0.121798 0.285009 2.427349 0.0091
GENDER 0.210829 0.493956 1.426818 0.0395
MSTATUS 0.071326 0.426927 1.167069 0.0773

McFadden R-squared 0.468148 Mean dependent var 0.789474
S.D. dependent var 0.509224 S.E. of regression 0.402321
Akaike info criterion 0.959855 Sum squared resid 20.39464
Schwarz criterion 1.011979 Log likelihood -13.48037
Hannan-Quinn criter. 0.921672 Deviance 26.9607
Restr. deviance 36.8977 Restr. log likelihood -28.44887
LR statistic 19.93702 Avg. log likelihood -0.477296
Prob(LR statistic) 0.007330

Obs with Dep=0 28 Total obs 133
Obs with Dep=1 105

TABLE 4. Application- Predicted Probabilities

CURRENT EXPERIENCE EDUCATION EXPERIENCE

Coefficients 0.495578 -0.103256 -0.121798
Scenario 1 2 1 1

Current Experience Doubled ln( p
1−p ) =

e0,8423

e0,8423+1
p-hat 0,6960
Scenario 2 1 2 1

Education Doubled ln( p
1−p ) =

e0,248

e0,248+1
p-hat 0,397
Scenario 3 1 1 2

Education Doubled ln( p
1−p ) =

e0,225

e0,225+1
p-hat 0,397

CONCLUSION

The study aimed to investigate the explanatory factors (demographical) influencing job satisfaction and model the sat-
isfaction of school teachers using logistic regression. Among the demographical factors examined were age, gender,
years of experience teaching, years of experience at the current school, and education. The results of the analysis
conducted indicated that current workplace experience had a positive influence on teacher job satisfaction. How-
ever, results also indicated that as the education level and the overall years of experience in teaching increases the
satisfaction levels of teachers decrease.
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Abstract. In this research paper, we extended an existing SIR epidemic integer model containing two strains and two vaccinations
by using a system of fractional ordinary differential equations in the sense of Caputo derivative of order σ ∈ (0,1]. Four equilibrium
points were established which are disease free equilibrium, strain1 disease free equilibrium, strain2 disease free equilibrium and
endemic equilibrium. Explicit analysis of the equilibrium points of the model was given by applying fractional calculus and
Routh-Hurwitz criterion. Stability analysis of the equilibrium points was carried out by employing the Jacobian matrix. Numerical
simulations were iterated to support the analytic results. It was shown that when both of the reproduction numbers R1 and R2 are
less than one, the disease die out over time and while it persist in relation to the thriving strain when either of them is greater than
one. We also studied the effect of vaccine. With the fractional order technique, the memory effect of the system is made visible
and hence easier to predict.

INTRODUCTION

Mathematical models are needed for understanding the dynamics of epidemic models [2]. Many authors [3] have
tried to work on a fractional order epidemic model for influenza dynamics by applying the reimbursements of the
fractional-order concept to influenza dynamic. Here the purpose is to postulate conditions under which the epidemic
can be contained. Other scientists like [4] and [5] have adopted the fractional-order unification on influenza dynamics
and have even extended it to an SIRC model. Fractional calculus techniques allows memory effects which gives a
better insight in the history of spread of a disease.

Influenza, also known as flu, is a communicable disease caused by the influenza virus that is transmitted via air-
borne droplets and attacks the respiratory system [1]. Some of its common symptoms include: fevers sore throat,
coughing, running noses and headache. Vaccines and antiviral drugs have been formulated and recommended by the
World Health Organization(WHO) and Centers for Disease Control and Prevention(CDC) for curbing and control-
ling the disease. It is estimated that, between 2018 and 2019, over 35 million people living in the United State of
America(USA) have shown related symptomatic illness from the influenza virus.

In 2018, [6] constructed two strain epidemic model with two vaccines where the second strain is the mutation of
the first strain. In our work, we extended the model which is given in [6] by adding fractional derivative.

THE FRACTIONAL MODEL ANALYSIS

Adding fractional-order σ as the order of the differential equation on the model in paper [6], we arrive at the following
system ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dσ S(t)
dtσ = ∧− (β1I1 +β2I2 +λ )S,

dσV1(t)
dtσ = r1S− (k1I2 +μ)V1,

dσV2(t)
dtσ = r2S− (k2I1 +μ)V2,

dσ I1(t)
dtσ = (k2V2 +β1S) I1 −α1I1,

dσ I2(t)
dtσ = (k1V1 +β2S) I2 −α2I2,

(1)

where σ ∈ (0,1] is the order of the fractional derivative, λ = r1 + r2 + μ , α1 = μ + v1 + γ1, and α2 = μ + v2 + γ2.
Here it is assumed that there is a constant recruitment into susceptible class through birth and immigration and there
is no double infection. The average life expectancy is μ and di (i = 1,2) are infection death rates of strain 1 and 2,
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respectively. The average time spent in class I1 and I2 until becoming recovered are 1/γ1 and 1/γ2, respectively. The
susceptible individuals are vaccinated with constant rate r1 for strain 1 and r2 for strain 2. The vaccinated individual
V1 can also be infected by strain 2 at a rate k1 and the vaccinated individual V2 can also be infected by strain 1 at a
rate k2. β1 and β2 are transmission coefficients of susceptible individuals to strain 1 and strain 2, respectively. The
variables and parameters are positive.

The fractional derivative of the model is in the sense of Caputo as Caputo technique. This technique is often used in
real life application as it allows initial values for the fractional differential equations with Caputo derivatives similar
to the integer order differential equations.

The biological feasible region of the model is given by

ϕ =

{(
S,V1,V2, I1, I2,R ∈ R6

+ : 0 ≤ N ≤ ∧
μ

)}
.

Observe that all parameters used are non-negative. So, since the system is bounded for given any initial condition,
the solution is defined for any time t ≥ 0 and it remains in the region. Therefore, the region ϕ is positively invariant.

Basic Reproduction Ratio and Local Stability Analysis

The equilibrium points are computed in the paper [6] and the disease free equilibrium point is obtained as follows:

E0 =
(
∧
λ ,

∧r1
μλ , ∧r2

μλ ,0,0
)

.

By using the next generation matrix

G = FV−1 =

⎛
⎝ k2V 0

2 +β1S0

α1
0

0
k1V 0

1 +β2S0

α2

⎞
⎠ ,

the reproduction number obtained as R0 = max{R1,R2} where R1 =
k2r2∧
α1μλ + β1∧

α1λ and R2 =
k1r1∧
α2μλ + β2∧

α2λ .

Details of the equilibrium dynamics and reproduction number are in [6].

Theorem 1 The disease-free equilibrium E0 is locally asymptotically stable if R1 < 1 and R2 < 1.

Proof. Evaluating the Jacobian matrix of model (1) at the disease free equilibrium E0, we get⎛
⎜⎜⎜⎜⎜⎜⎝

−λ 0 0
−β1∧

λ
−β2S

λ
r1 −μ 0 0 −k1r1∧

μλ
r2 0 −μ −k2r2∧

μλ 0

0 0 0 k2r2∧
μλ + β1∧

λ −α1 0

0 0 0 0 k1r1∧
μλ + β2∧

λ −α2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Solving for the eigenvalues we arrive at

(−λ − p)(−μ − p)(−μ − p)
[(

k2r2∧
μλ

+
β1∧
λ

−α1

)
− p

][(
k1r1∧

μλ
+

β2∧
λ

−α2

)
− p

]
= 0. (2)

Further solving and simplifying (2), we get that p1 =−λ , p2 = p3 =−μ , and the quadratic p2 +a1 p+a2 = 0,
where a1 = (α1(−R1 +1)+α2(−R2 +1)) and a2 = (α1(R1 −1)α2(R2 −1)).
Observe that a1 and a2 will be positive only when the conditions R1 < 1 and R2 < 1 hold. So, by Routh-Hurwitz
criterion, all eigenvalues are negative

(|argλ j|= π > σπ
2 , j = 1,2, . . . ,5

)
if we have R1 < 1 and R2 < 1. Therefore,

the disease-free equilibrium E0 is locally asymptotically stable for σ ∈ (0,1] if R1 < 1 and R2 < 1.
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Theorem 2 The Strain 1 disease equilibrium E1 is locally asymptotically stable if R1 < 1.

Proof. The eigenvalues of the Jacobian matrix at the point E1 are found,
p1 =−β1I1 +λ , p2 =−k1I2 +μ, p3 =−μ and the quadratic p2 +a1 p+a2 = 0,
where

a1 =
(

−α2λ
β2I2+λ

(
k1r1∧

α2λ (k1I2+μ) +
β2∧
α2λ −1− β2I2

λ

))
+
(

−α1λ
β2I2+λ

(
R1 −1− β2I2

λ

))
and

a2 =
(

α2λ
β2I2+λ

(
k1r1∧

α2λ (k1I2+μ) +
β2∧
α2λ −1− β2I2

λ

))
+
(

α1λ
β2I2+λ

(
R1 −1− β2I2

λ

))
.

Here, a1 and a2 will only be positive when R1 < 1. So, by Routh-Hurwitz criterion, all eigenvalues are negative(|argλ j|= π > σπ
2 , j = 1,2, . . . ,5

)
at the equilibrium point E1 if R1 < 1. Therefore, the strain 1 disease equilibrium

E1 is locally asymptotically stable for σ ∈ (0,1] if R1 < 1.

Theorem 3 The Strain2 disease equilibrium E2 is locally asymptotically stable if R2 < 1.

Proof. The proof is similar with the proof of Theorem 2.

NUMERICAL SIMULATIONS OF THE FRACTIONAL MODEL

Numerical simulations were carried out to support the analytic results that we obtained. In these simulations,
we used the MATLAB code fde12.m which implements the Predictor-Corrector Method [7]. Parameters were
calculated and adopted from previous studies [8]. In this study, the assumed initial conditions are as follows:
(S(t),V1(t),V2(t), I1(t), I2(t)) = (200,133,133,2,2) with a time prospect of 100 days and varying values of the order
of the derivative between 0 and 1.

FIGURE 1. Disease free equilibrium E0. Here both strains die out. Parameter values are: ∧ = 200,λ = 0.01,r1 = 0.3,r2 =
0.3,μ = 0.02,α1 = 0.0003,α2 = 0.0003,β1 = 0.00001,β2 = 0.00001,k1 = 0.07,k2 = 0.09 and order of the derivative is 0.6 and
0.4 simultaneously

CONCLUSION

In this paper, we have investigated a fractional order two strain epidemic model with two vaccinations as a generaliza-
tion of the integer order model proposed by [6]. The reproduction number R0 has been computed and used to prove
the stability equilibrium of the fractional-order model of the seasonal influenza disease. Analytically and numerically,
the disease free equilibrium is locally asymptotically stable when R1 < 1 and R2 < 1 which implies that the disease
will die out in the population over a period of time. Also, the strain1 disease free equilibrium locally asymptotically
stable if R1 < 1 and R2 > 1 while the strain2 disease free equilibrium locally asymptotically stable if R1 > 1 and
R2 < 1. Therefore, to evade a pandemic of the disease, it is sufficient to shrink the threshold value of the reproduction
number below 1 by dropping the occurrence of the recruitment rate or by possibly vaccinating the entire population if
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FIGURE 2. Strain1 disease free equilibrium E1. Parameter values are: ∧ = 20,λ = 0.5,r1 = 0.3,r2 = 0.3,μ = 0.02,α1 =
0.0721,α2 = 0.0719,β1 = 0.0000001,β2 = 0.0000001,k1 = 0.0089,k2 = 0.0099 and order of the derivative is 0.5

FIGURE 3. Strain2 disease free equilibrium E2. Parameter values are: ∧= 43,λ = 0.0001,r1 = 0.03,r2 = 0.003,μ = 0.02,α1 =
0.000001,α2 = 0.01,β1 = 0.00001,β2 = 0.001,k1 = 0.0089,k2 = 0.0099 and order of the derivative is 0.5

FIGURE 4. Endemic equilibrium E3. Parameter values are: ∧ = 200,λ = 0.01,r1 = 0.3,r2 = 0.3,μ = 0.02,α1 = 0.0003,α2 =
0.0003,β1 = 0.001,β2 = 0.001,k1 = 0.0089,k2 = 0.009 and order of the derivative is 0.5

the vaccines are effective and safe, as many flu vaccines cause neurological disorder.
More so, from the numerical simulations, the memory effect can clearly be appreciated, deduced from incorporating
the fractional order on the system as compared to the integer order; where the values of the fractional order were varied
between 0 and 1. In Figure 1, we see a transitional memory effect from the order of the derivative as it increases from
0.4 to 0.6 and approaches 1; the disease eventually die out over time, with its description in stages.The 0.5 order of
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FIGURE 5. Endemic effect of vaccine. Parameter values are: ∧= 200,λ = 0.03,r1 = 0.3,r2 = 0.3,μ = 0.02,α1 = 0.0009,α2 =
0.0007,β1 = 0.00003,β2 = 0.00003,k1 = 0.003,k2 = 0.003 and order of the derivative is 0.6 and 0.4 simultaneously

derivative as used through Figure 2 to Figure 4 gives a faster convergence of result as compared to that of the integer.
Figure 5 in one view give us a detailed history of the behaviour of the disease as the vaccines are lowered with respect
to the order of the derivative between 0.4 and 0.6. So, with the fractional system, we can have a clearer picture of the
dispositions of the disease, giving an insight of how the parameters gradually changes the behaviour of the disease
over time.
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Abstract. This paper presents Multi-robot co-operative hunting behavior using Differential game approach. Two robots were
used as pursuers while another robot is used as evader, the two robots (pursuers) try to search and surround the prey (evader) robot.
The aim of the game is for the two robots to detect the evader at the minimum possible time while at the same time the evader
dodged the pursuer to the maximum possible time. Differential game approach was used to construct the problem using system of
ordinary differential equation. We give the required conditions for the two pursuers to catch the evader. It was also shown that the
evader maximize the capture time, while the pursuers minimize the capture time.

INTRODUCTION

Multi-robot systems consist of group of robots that are working together to achieve a common goal. These systems are
designed to work in a way that the common purpose of the overall system can be achieved. Cooperative control laws
are mostly used to control these systems. In the analysis of these systems, it is important to first model the cooperative
behavior of the system [1, 2]. There are two most essentials models, first is a mathematical model which gives all the
necessary properties required for computer simulations of the robot, secondly is another model that gives all the tools
required in multi-robot system analysis and maintaining the important aspects of the system operation.

Differential game is an area in applied mathematics which is attracting more attention of researchers because of its
application in solving practical problems in the fields of engineering, behavioral biology, economics, missile guidance,
mention but few. It was first introduced by Rufus Isaacs [3], as “the homicidal chauffeur game” one of the games
analyzed. The fundamental concepts of differential games were given in [3,4]. Pursuit evasion differential game is
one of the many types of differential games that are in literature. It consists of two players, called pursuer and evader,
with contradictory aims [5-10].

In this paper Multi-robots co-operative hunting game was studied using Differential game approach, in which two
robots (R1 and R2), were used as Pursers and another robot (E), was used as Evader. The objective here from the
pursuers’ point of view is for the two pursuers to catch the evader at the minimum possible time while from the
evader’s point of view is to maximize the time taken for the capture. The problem was represented mathematically
and the condition for the termination of the game was given and proved.

FORMULATING THE PROBLEM

In this work, multi-robot system consists of identical reactive robots interacting implicitly with each other and also
working together to achieve a common goal. These robots act as pursuers, Pi for i = 1,2, searching for a single prey,
another robot E (the evader). The cooperative pursuit is a very challenging task for the multi-robot system. The
performance of the task has significance for multi-robot collaborative behaviors.

Method of Hunting

There are three behaviors of the hunting: searching, following, and surrounding. First, the pursuers will search the
evader with group of sensors (searching). If the evader comes into detecting area, the pursuers will follow it based on
one of the tracking algorithms (following). The pursuers will then move to the ambient region of the evader whenever
possible (surrounding). This will be repeated until the evader is captured.

International Conference on Analysis and Applied Mathematics (ICAAM 2020)
AIP Conf. Proc. 2325, 020049-1–020049-3; https://doi.org/10.1063/5.0040282

Published by AIP Publishing. 978-0-7354-4069-2/$30.00

020049-1



If one pursuer detects an evader, it will follow it and wait for the other pursuer to cooperate with it. If there is no
other pursuer detecting the robot within a certain period, the pursuer will go ahead and capture the evader. On the
other hand, when another searching robot detects the same evader, the team will go together and capture the evader .

MATHEMATICAL FORMULATION OF THE PROBLEM

Consider an evader E and two robots pursuers R1 and R2 with simple motion dynamics and constant speeds SE , SR1

and SR2, respectively. Thus, the controls of E, R1 and R2 are their respective instantaneous headings φ , ψ1, and ψ2.
The states of E, R1 and R2 are defined by their Cartesian coordinates in the realistic plane.
XE = (xE ,yE), XR1

= (xR1
,yR1

), and XR2
= (xR2

,yR2
), respectively.

Thus, the complete state of the hunting is defined as:

X = (xE ,yE ,xR1
,yR1

,xR2
,yR2

) ∈R6.

The evader’s control variable is the instantaneous heading angle, UE = φ . While R1 and R2 affect the state of
the hunting by choosing their states instantaneous respective headings ψ1, and ψ2, so the pursuers control variable
is UR = {ψ1,ψ2}. The normalized dynamics in the realistic plane (Ẋ = f (x,UR,UE)) are specified by the system of
ordinary differential equations:

ẋE = cosφ , ẏE = sinφ ,
ẋR1

= β1cosψ1, ẏR1
= β1sinψ1,

ẋR2
= β2cosψ2, ẏR2

= β2sinψ2.

Here, β1 =
SR1
SE

> 1 and β2 =
SR2
SE

> 1 are the normalized speeds of the two pursuers (robots) and they are not neces-

sarily the same.
The initial state is:

X0 = (xE 0,yE 0, xR10
,yR10

, xR20
,yR20

) = X(t0).

The hunting (game) ends at t f when the state of the system satisfies one of the following conditions:

a) xR1
= xE , yR1

= yE ,
b) xR2

= xE , yR2
= yE ,

c) Both a) and b)

The terminal state is:

Xf = (xE f ,yE f , xR1 f ,yR1 f , xR2 f ,yR2 f ) = X(t f ).

The evader tries to maximize the capture time, while the pursuers try to minimize the capture time together, hence
the performance functional is:

min
(ψ1,ψ2)

max
φ

∫ t f
0 dt.

ANALYSIS OF THE GAME

Let us introduce the co-states as follows:

λ = (λxE ,λyE , λxR1
,λyR1

, λxR2
,λyR2

) ∈R6.
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Then the Hamiltonian of the differential game is:

H = 1+λxEcosφ +λyEsinφ +β1λxR1
cosψ1 +β1λyR1

sinψ1 +β2λxR2
cosψ2 +β2λyR2

sinψ2.

Then, the optimal control inputs are obtained by:

min
(ψ1,ψ2)

max
φ

H ≡ 0.

The optimal controls headings E, R1 and R2 are characterized as follows:

cosφ ∗ = λxE√
λx

2
E+λy

2
E
, sinφ ∗ = λyE√

λx
2
E+λy

2
E
,

cosψ∗
1 = −λxR1√

λxR
2
1+λyR

2
1

, sinψ∗
1 =

−λyR1√
λxR

2
1+λyR

2
1

,

cosψ∗
2 = −λxR2√

λxR
2
2+λyR

2
2

, sinψ∗
2 =

−λyR2√
λxR

2
2+λyR

2
2

.

In addition the co-state dynamic can be obtained using the following formula

λ̇= − ∂H
∂x .

Hence,

˙λxE = ˙λyE = ˙λxR1
= ˙λyR1

= ˙λxR2
= ˙λyR2

= 0.

This implies, all co-states and optimal control inputs are constants, which means the robots optimal trajectories must
be straight lines.

CONCLUSION

Multi robots hunting game was discussed using differential game approach. The evolution of robot collective be-
haviors represent the transition between different states of the robots. The two robots hunting game consist of two
pursuers and a single evader robot. The optimal trajectory of the robots is found to be a straight line, when the two
pursuers minimized the capture time and at the same time the evader maximized the time, this condition was stated
and proved.
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Abstract. Coronavirus disease 2019, also known as Covid-19, is an infectious disease that has infected more than nineteen
million people all around the world. This virus is a member of coronavirus family but it is the most mortal one. It has named
as 2019-nCoV by World Health Organization(WHO) after Chinese Center for Disease Control and Prevention(CDC) discovered
a new coronavirus from a swab sample of a patient. As we know this pandemic started December 2019 in China, and it is still
spreading and causing deaths all around the world. In this paper, we aimed to estimate the right size of epidemic. For that purpose,
we chose 10 countries, which are affected by, and still fighting with this disease, to forecast the upcoming death rates by using the
previous week deaths. These 10 countries are Argentina, Austria, Brazil, France, Iran, Italy, Sweden, Turkey, United Kingdom,
and United States of America. We used the death data of WHO with assumption that data is accurate. For this estimation, firstly,
we used the assumption that the reported death delay distributed according to a gamma distribution. Then, we used a binomial
distribution for assumption of deaths. This binomial formula led us to find a posterior distribution which is an extension of Bayes’
theorem for death ratio. Lastly, we compared our estimations with real data.

INTRODUCTION

Covid-19 is the infectious disease that has occurred by the most recently discovered coronavirus, SARS-CoV-2. In
December 2019, this disease began in Wuhan, China [1, 2]. The name Covid-19 was given by WHO, when CDC
discovered a new coronavirus from the throat swab sample of a patient [3, 4]. Now, it is a pandemic, affecting countries
worldwide. People can catch this disease from the ones who are already infected. Covid-19 can be transmitted through
small droplets when an infected person coughs, sneezes or speaks [1]. Symptoms of this disease are very similar with
the symptoms of influenza such as fever, headache, dry cough and tiredness. However, viruses are very different and
behave very differently [5]. In addition to being a very fatal disease, it has been observed that it affects individuals
with elderly and chronic diseases more [6].

The Covid-19 has spread and became an outbreak quickly in countries all around the world. As of 18th of August,
more than 22,070,411 coronavirus cases have been reported with approximately 777,766 deaths, worldwide [7]. In
many countries obligation to wear mask and rubber gloves are introduced by some governments [8]. Closure of
airports, lockdown, quarantine for the suspected individuals are some of the restrictions that has been taken by some
governments [9, 10].

In this paper, our main aim is to forecast the deaths for 10 countries which are Argentina, Austria, Brazil, France,
Iran, Italy, Sweden, Turkey, United Kingdom, and United States of America. For that purpose, we tried to estimate
the death rates of these 10 countries by using many distributions which are gamma distribution, binomial distribution
and posterior distribution as an extension of Bayes’ theorem.

For a continuous random variable X , gamma distribution with positive parameters α and λ , shown by X ∼ Γ(α,λ ).
In order to use gamma distribution for X , its probability density function should be given by

fX (x) =

{
λ α xα−1e−λx

Γ(α) , x > 0,

0, otherwise.
(1)

Binomial distribution has two parameters that are generally represented by n and p. Here, in an experiment, number
of independent trials is shown by n and probability of success is shown by p. In other words, binomial distribution is
used when an event has two possible outcomes, success or failure. For a random variable X , binomial distribution is
presented by X ∼ Bin(n, p) [11, 12].

Bayes’ theorem, for events A1,A2, ...,An and B, is given by the following equation:
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P(Ai|B) = P(B|Ai)P(Ai)

∑n
j=1 P(B|A j)P(A j)

, (2)

where i = 1, ...,n. Here P(Ai) and P(B) are the probabilities of occurrence of events Ai and B, respectively. Also,
P(Ai|B) is a conditional probability; when B is true, the occurring likelihood of event Ai. Similarly, P(B|Ai) is a
conditional probability; the occurring likelihood of event B, when Ai is true. In our work, we used posterior distribution
which is an extension of Bayes’ theorem that is used when an evidence about the event is taken into the consideration
[13, 14].

In our work, the higher quality of data for the countries means more accurate results for death rates [15]. This
will give us a chance to see how the control measures are effective for these countries. Here, we shouldn’t forget the
rapidly changing data for death rates as a result of Covid-19 infection [2].

The results presented in this paper do not explicitly model the various interventions and control efforts put in place
by countries. Our predictions of transmissibility reflect the epidemiological situation during the infection of Covid-19
fatalities. For this reason, the impact of controls on predictive transmissibility will have a significant effect with a
delay between transmission and death.

In the continuation of this paper, at first we mentioned about our objectives. Then, we introduced our statistical
model and the table that consists of expected and occurred death rates in the countries which we chose. Lastly, we
give our results with discussion part.

OBJECTIVES

Our main objective in this study is to estimate the right size of epidemic. For the forecasting what we did is using
the previous week death numbers to estimate the coming week numbers. Our assumptions are very important for this
work in order to get accurate results. During this work, we assumed that the statistics of deaths due to Covid-19 , for
the countries that we have studied, are purely reported. For the death delay cases gamma distribution used for mean
as 10 and standard deviations as 2.5. After, we used binomial distribution for the number of deaths. By using the
formula obtained from binomial distribution, we found posterior distribution for the ratio of deaths to reported cases
in each country.

STATISTICAL MODEL

Let Di,t be the number of deaths in any country i at time t. Let Ir
i,t be the reported number of cases in the country

i at time t and Ir
i,t be the appropriate number of cases. We assume that the reporting to death delay δ is distributed

according to a gamma distribution with mean μ and standard deviation σ . That is,

δ ∼ Γ(μ,σ). (3)

Let ri,t be the ratio of deaths to reported cases in the country i at time t. We assume that deaths are distributed
according to a Binomial Distribution. Thus,

Di,t ∼ Binom
(∫ ∞

0
Γ(x|μ,σ)Ir

i,t−xdx,ri,μ

)
. (4)

The above binomial formula will allow us to find a posterior distribution for ri,t . Case error value is defined as:

ρi,t =
FR
ri,t

. (5)
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Hence, a posterior distribution for ρi,t could be obtained by using the posterior distribution for ri,t and the posterior
distribution for FR(2).

For the time period over which we have data on deaths, up to time t −μ , we use the posterior distribution of FR to

obtain Iappropriate
i,t . The appropriate number of cases in a location l at time t is the sum cases that did not die and the

number of deaths is

Iappropriate
i,t ∼ Di,t−μ +NBin(Di,t−μ ,FR). (6)

In this formulation, the negative binomial is parameterised as NBin(n, p) where n is the number of failure(that is,
death), and p is the probability of observing a failure.

For the time period which we do not have information about deaths, that is after time t − μ , we use the posterior
distribution of case ascertainment to obtain

Iappropriate
i,t ∼ Ir

i,t +NBin(Ir
i,t ,ρi,t). (7)

In order to calculate the estimated number of deaths, we believe in the reported cases and we use

∫ ∞

0
Γ(x|μ,σ)Ir

i,t−xdx. (8)

Since the recorded cases in the following week might die within the same week, that is, for x ∈ {0,7}, Γ(x|μ,σ)> 0,
we predicted new registered cases in the following week by using a sample from a gamma distribution with mean
and standard deviation by predicting from the number of observed cases in the last week. Because this assumes
no increase or decrease in the following week, this is controlled by the assumption which is appropriately a null-
hypothesis scenario as it does not affect our results completely given the contribution to deaths due to those being
very small (that is, less than 1.5%).

We attain the estimated number of deaths as:

Di,t ∼ Binom
(∫ ∞

0
Γ(x|μ,σ)Ir

i,t−xdx,ri,μ

)
, (9)

where ri,μ is the estimated ratio of deaths to reported cases for the last week of data, and

∫ ∞

0
Γ(x|μ,σ)Ir

i,t−xdx,ri,μ dx (10)

relies on observed reported cases up to the last day with available and estimated reported cases as described above.

TABLE OF EXPECTED AND OCCURRED DEATH RATES

As we mentioned before, we tried to estimate death rates of 10 countries which are; Argentina, Austria, Brazil, France,
Iran, Italy, Sweden, Turkey, United Kingdom and United States of America. We can see the actual death rates and
estimated death rates in Table 1, detailed.
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TABLE 1. In the following table, O.C. denotes the number of occurred cases, D(25%) denotes death rates with 25 percent,
D(50%) denotes death rates with 50 percent, D(75%) denotes death rates with 75 percent. E.D(25%), E.D.(50%), E.D.(75%)
denote expected death rates with 25, 50 and 75 percent, respectively. These expected rates are found by using the distributions
explained that are explained in below section

No. Country O.C. D(25%) D(50%) D(75%) E.D.(25%) E.D.(50%) E.D.(75%)

1 Argentina 3548 0.041 0.051 0.1 0.214 0.269 0.344
2 Austria 267 0.019 0.035 0.1 0.231 0.395 0.742
3 Brazil 114256 0.094 0.096 0.1 0.127 0.143 0.159
4 France 2515 0.127 0.136 0.1 0.089 0.101 0.115
5 Iran 15129 0.034 0.035 0 0.315 0.364 0.419
6 Italy 4567 0.121 0.129 0.1 0.094 0.107 0.122
7 Sweden 3511 0.072 0.081 0.1 0.147 0.171 0.199
8 Turkey 7619 0.016 0.018 0 0.631 0.749 0.889
9 United Kingdom 15084 0.074 0.077 0.1 0.159 0.179 0.201
10 United States of America 154786 0.05 0.051 0.1 0.242 0.27 0.301

RESULTS AND DISCUSSION

When we look at the table, we can easily see the difference between expected death rates and actual death rates which
are taken from World Health Organization. In infectious diseases, binomial distribution is a very effective model to
determine the size of the pandemic and unrecorded patients. So, governments can use this statistical model to identify
the real patient number and take precautions. If we make decisions for the future of the countries by using these
expected rates, then this means more restrictions should be taken, which may affect public psychologically and also
economy of the countries.

In infectious diseases, pure data is very important in order to take right and quick decisions for public health. By
using pure data many statistics or modelling can be prepared to see the infectiousness or effects of the pandemic. So,
we can conclude that inaccurate or doctored data may change progression of disease, negatively.
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Abstract. In this study, the solutions of a radial Schrödinger equation which has got the potential V (r) = 0 are found by using
symmetries. These solutions are compared with the classical solution of the equation.

INTRODUCTION

Time independent Schrödinger equation has a number of important physical applications in quantum mechanics.
Using separation of variables in spherical coordinates to this equation, we obtain the radial Schrödinger equation as

d
dr

(r2 dR(r)
dr

)+
2mr2

h̄2
[E −V (r)− l(l +1)h̄2

2mr2
]R(r) = 0 l = 0,1,2, ..., (1)

where E and V are the total and potential energies, respectively, m is the mass of particle, h̄ is the reduced planck
constant [1, 2].

For a confining potential

V (r) =

{
0, r ≤ a,
∞, r > a

(2)

at the GaAs/AlAs quantum dot of confining particle with infinite sphere potential with radius a and 2mE
h̄2 = k2, k �= 0,

in the special case l = 0, the equation (1) becomes

d2R
dr2

+
2

r
dR
dr

+ k2R = 0. (3)

The normalized radial solution of the equation (3) is

R =

{√
2
a

sinkr
r , r < a,

0, r ≥ a
(4)

[1, 2].
In this study , the solutions of the equation (3) found with symmetry are compared with the series solution (4) of

the equation (3).

GENERAL THEORY OF LIE SYMMETRIES

In the Lie group theory which was developed by Sophus Lie , the order of differential equations can be reduced with
the help of symmetry groups and by using these symmetries their analytical solutions can be obtained. The Lie point
symmetry of the differential equation

y(n) = w(x,y,y′,y′′, . . . ,y(n−1)) (5)

is found by determining the functions ξ (x,y) and η(x,y) from symmetry condition

Xw = ηn (mody(n) = w), (6)
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where the symmetry generator is

X = ξ (x,y)
∂
∂x

+η(x,y)
∂
∂y

+η ′ ∂
∂y′

+ · · ·+η(n) ∂
∂y(n)

(7)

and

η(n) =
dη(n−1)

dx
− y(n)

dξ
dx

(8)

[3, 4, 5].
In fact , the symmetry condition (6) is a differential equation for the functions ξ (x,y) and η(x,y), that is linear for

both functions. Moreover, since ξ (x,y) and η(x,y) are functions of x and y, it will split into many partial differential
equations whose solutions can be found. We have to determine functions of ξ (x,y) and η(x,y) from these partial dif-
ferential equations. The differential equation (5) can be solved with normal form of the generator which is constructed
with the functions s(x,y) and t(x,y)

If a second order differential equation admits two-parameter group (G2), then there exist two generators X1 and X2
and their commutator is a linear combination of these two generators

[X1,X2] = a1X1 +a2X2, (9)

where a1 and a2 are structure constants. If both of the structure constants are zero, then the group is abelian, if at least
one of them is not zero, then group is not abelian. In a second order differential equation there are two generators, the
suitable coordinates s(x,y) and t(x,y) which reduce the equation to a first order differential equation can be obtained
[3, 4, 5].

THE SOLUTION WITH SYMMETRY OF RADIAL SCHRÖDINGER EQUATION FOR
A PARTICLE CONFINING QUANTUM DOT WITH RADIUS a

Let apply theory of Lie symmetry to the radial Schrödinger equation. If we take R = y, r = x, b =−k2 in the equation
(3), then the equation (3) is

y′′ =−2

x
y′+by (10)

and the symmetry condition of the equation (10) from (6) is

−ξ,yyy′3 +(
4

x
ξ,y +η,yy −2ξ,xy)y′2 +(

2

x
ξ,x −3byξ,y − 2

x2
ξ

+2η,xy −ξ,xx)y′+(bη,y −2bξ,x)y−bη +
2

x
η,x +η,xx = 0. (11)

In order to hold the condition (11), we get

ξ,yy = 0, (12)

4

x
ξ,y +η,yy −2ξ,xy = 0, (13)

2

x
ξ,x −3byξ,y − 2

x2
ξ +2η,xy −ξ,xx = 0, (14)

(bη,y −2bξ,x)y−bη +
2

x
η,x +η,xx = 0. (15)

The functions ξ (x,y) and η(x,y) from these equations are determined as follows

ξ (x,y) = α +βe2
√

bx + γe−2
√

bx, (16)

η(x,y) = [β (
√

b− 1

x
)e2

√
bx − γ(

√
b+

1

x
)e−2

√
bx,− α

x
+ν ]y (17)
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where α,β ,γ and ν are arbitrary constants. In that case, infinitesimal generator of the equation (10) is

X =
[
α +βe2

√
bx + γe−2

√
bx] ∂

∂x

+
[
β (

√
b− 1

x
)e2

√
bx − γ(

√
b+

1

x
)e−2

√
bx − α

x
+ν

]
y

∂
∂y

. (18)

By making arbitrary choices for arbitrary constants α , β , γ , ν in the generator (18), basis generators of the equation
(10) are found as

X1 =
∂
∂x

− y
x

∂
∂y

, (19)

X2 = y
∂
∂y

, (20)

X3 = e2
√

bx ∂
∂x

+(
√

b− 1

x
)e2

√
bxy

∂
∂y

, (21)

X4 = e−2
√

bx ∂
∂x

− (
√

b+
1

x
)e−2

√
bxy

∂
∂y

. (22)

They satisfy the commutator relations for i, j = 1,2,3,4, [Xi,X j] = −[X j,Xi] ,[Xi,Xi] = 0, [Xi,X2] = 0 and
[Xi,X j] �= 0, for i, j �= 2 , i �= j [6].

By taking the generators X1 and X2, let determine coordinates s(x,y) and t(x,y) which reduce the equation (10) to
first order differential equation. The commutator of the generators X1 and X2 is [X1,X2] = 0 (the group is abelian).
Therefore normal forms of generators are

X1 =
∂
∂x

− y
x

∂
∂y

=
∂
∂ s

, (23)

X2 = y
∂
∂y

=
∂
∂ t

. (24)

If the normal forms (23),(24) are applied to t(x,y)and s(x,y), respectively, then we have

t = t(x,y) = lnxy, (25)

s = s(x,y) = x. (26)

By using of the coordinates (25) and (26), the equation (10) is written as

s′′ = s′ −bs′3 s = s(t). (27)

The solution of the differential equation (27) is

s =
1√
b

ln[
√

1+bc1e2t +
√

bc1e2t ]+ c2, (28)

where c1 and c2 are integration constants. In that case, for c2 = 0, the solution of equation (10) is

y =
1

k
√

c1

sinkx
x

. (29)

When this solution is normalized, the normalization constant is c1 =
a3

2π2 and it is equivalent to the series solution (4)

of the radial Schrödinger equation for V (r) = 0 [6].
Let study for the non-abelian situation, for example we consider the generators X1 and X4, commutator of these

generators is [X1,X4] �= 0. From (9), the structure constants are a1 = 2
√

b, a2 = 0 for [X4,X1] = 2
√

bX4. If these
transformations

X̃1 = a1X1, (30)

X̃2 =
1

a1
X4 (31)
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are applied with the generators X1 and X4, we have [X̃1, X̃2] = X̃1. In that case, the normal forms of the generators
(30) and (31) are

X̃1 = 2
√

be−2
√

bx ∂
∂x

−2
√

b(
√

b+
1

x
)e−2

√
bxy

∂
∂y

=
∂
∂ s

, (32)

X̃2 =
1

2
√

b
∂
∂x

− 1

2
√

bx
y

∂
∂y

= t
∂
∂ t

+ s
∂
∂ s

. (33)

If the normal forms (32), (33) are applied to t(x,y) and s(x,y), respectively, then we have

t = t(x,y) = x2y2e2
√

bx, (34)

s = s(x,y) =
e2

√
bx

4b
+ x2y2e2

√
bx. (35)

By using of the coordinates (34) and (35), the equation (10) is written as

s′′+
s′

2t
=

1

2t
(36)

and the solution of the differential equation (36) is

s = 2c3t1/2 + t + c4, (37)

where c3 and c4 are integration constants. For c4 =− 1
4k2 , in the coordinate (x,y), the solution of equation (10) is

y =
−i

2k2c3

sinkx
x

, (38)

when this solution is normalized, the normalization constant is c3 =
a

5
2

2
√

2π2 and it is equivalent to the series solution

(4) of the Radial Schrödinger equation for V (r) = 0 [6].

CONCLUSION

Finally, for abelian and non-abelian situations, the solution of the radial Schrödinger equation for V (r) = 0 by using
Lie symmetry has been obtained analytically, without making any approximation. This solution is compatible with
the series solution of the equation.
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Abstract. The generators of the quasi-regular representation of the group SO(3,2) are obtained for parabolic coordinates. By
the generators, the expression of the quadratic Casimir operator is presented. From the relation between the Casimir operator and
Hamiltonian, the corresponding physical system is expressed, and its exact solution is given.

INTRODUCTION

The concept of symmetry plays an important role in science, and especially in physics, it appears as group theory
in terms of mathematics. Since the paper of Sophus Lie who introduced Lie groups to the scientific world [1],
applications of the theory have attracted a great deal of attention [2, 3, 4, 5, 6]. Among Lie group theory applications
to physics, Casimir operator has significant importance [7]. In addition to expressing quantities such as angular
momentum, elementary particle mass, spin, etc., Casimir operator also offers a physical system corresponding to the
group owing to its relation with Hamiltonian [8, 9].

In this paper, we are interested in studying the Casimir operator of the group SO(3,2), so-called 3+2 de Sitter
group [10, 11, 12, 13]. In literature, there are several works on the quadratic Casimir operator (or Laplace-Beltrami
operator) of the group for certain cases. For instance, Hannabuss used the group theoretical method to construct a
plausible wave equation for particles of spin in the de Sitter spaces [14], and Wickramasekara studied Casimir operator
of the group as a spectrum generating algebra to obtain the mass-spin spectra of hadrons [15]. In Elçin and Dane’s
work [16], the authors discussed the quantum integrable systems related to the group via Laplace-Beltrami operator
for different coordinates. On the other hand, in the recent paper [17], the author considered the Casimir operator in
the spherical coordinates of the homogeneous space on which the group SO(3,2) acts. Using the Casimir operator,
the author constructed the eigenvalue problem leading us to the required Hamiltonian system and thus gave the exact
solution of the Schrödinger equation by virtue of the group approach. For this study, however, we aim to give the
expression of the Casimir operator of the group SO(3,2) for parabolic coordinates by following the same process in
[17].

The paper is organized as follows. In the second section, all required notations and results for the group SO(3,2)
are listed. The generators of the quasi-regular representation and the Casimir operator of the group in Cartesian
coordinates are obtained. In the third section, the generators and then the Casimir operator are expressed for parabolic
coordinates. Finally, the eigenvalue problem of the Casimir operator is reduced to the corresponding Hamiltonian
system and its exact solution is given.

SO(3,2) GROUP STRUCTURE

The real five-dimensional vector space equipped with the bilinear form

[x,y] =−x1y1 − x2y2 − x3y3 + x4y4 + x5y5, x,y ∈ R
5

is called the pseudo-Euclidean space R
5
3,2. The set of linear transformations of the space preserving distances between

points forms the group SO(3,2). The equality [x,y] = −x2
1 − x2

2 − x2
3 + x2

4 + x2
5 = 1 defines the hyperboloid H+ in

R5
3,2 . H+ is the homogeneous space on which SO(3,2) group acts.

We shall denote the one-parameter subgroups of the group SO(3,2) consisting of rotations and hyperbolic rotations
in the plane by {gi j(t)},1 ≤ i < j ≤ 3 or 4 ≤ i < j ≤ 5 and {gi j(t)},1 ≤ i ≤ 3 < j ≤ 5, respectively. Therefore, we
have the rotations g12(θ),g13(ϕ),g23(ψ),g45(φ) and hyperbolic rotations g14(α),g15(β ),g24(τ),g25(μ),g34(ν),
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g35(t), θ ,ϕ,ψ,φ ∈ [0,2π), α,β ,τ,μ,ν , t ∈ (−∞,∞) [18]. The tangent matrices to these one-parameter subgroups at
the identity element form a basis of the Lie algebra so(3,2) of the group SO(3,2).

In this paper, we shall consider the quasi-regular representation T of the group

T (g) f (x) = f (xg), g ∈ SO(3,2), x ∈ H+,

where f (x) is a square-integrable function on the hyperboloid with the invariant measure dx = dx1dx2dx3dx4/|x5| .
The generators Ji j of the representation T of the one-parameter subgroups gi j are defined by

Ji j =
d
dt

T (gi j(t))|t=0 .

In this case, the generators corresponding to the rotations are

J12 =−x2
∂

∂x1
+ x1

∂
∂x2

,

J13 =−x3
∂

∂x1
+ x1

∂
∂x3

,

J23 =−x3
∂

∂x2
+ x2

∂
∂x3

,

J45 =−x5
∂

∂x4
(1)

and, the generators corresponding to the hyperbolic rotations are

J14 = x4
∂

∂x1
+ x1

∂
∂x4

,

J24 = x4
∂

∂x2
+ x2

∂
∂x4

,

J34 = x4
∂

∂x3
+ x3

∂
∂x4

,

J15 = x5
∂

∂x1
, J25 = x5

∂
∂x2

, J35 = x5
∂

∂x3
. (2)

Identifying Ii ≡ εi jkJ jk, Si ≡ Ji4, i = 1,2,3 and Jj5 ≡ Kj, j = 1,2,3,4, these generators satisfy the following set of
commutation relations:

[Ii, I j] = εi jkIk, [Ii,S j] = εi jkSk, [Si,S j] =−εi jkIk,

[Ii,Kj] = εi jkKk, [Si,Kj] =−δi jK0, [Si,K4] =−Ki,

[Ii,K4] = [Ki,Kj] = [Ki,K4] = 0,

where εi jk , δi j denote Levi-Civita symbol and Kronecker delta symbol, respectively. SO(3,2) group is of rank
two, and therefore it possesses two Casimir operators constructed by these generators: second-order and fourth-order
Casimir operators [15]. However, we are interested only in the quadratic (second-order) Casimir operator for the
group here. The general form of the quadratic Casimir operator for SO(3,2) is the element

C = [ J2
12 + J2

13 + J2
23 + J2

45 ] − [ J2
14 + J2

15 + J2
24 + J2

25 + J2
34 + J2

35 ] (3)

of the universal enveloping algebra U(so(3,2)) such that [C,Ji j] = 0 [18].

HAMILTONIAN SYSTEM RELATED TO THE CASIMIR OPERATOR

Choosing different parameterizations of the homogeneous space of the group leads one to different Casimir operator
realizations and thus different Hamiltonian systems with various potentials. For this study, we shall consider parabolic
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coordinates on the hyperboloid H+ which can be expressed by

x1 = sinh(α)+
1

2
t2eα ,

x2 = t1eα ,

x3 = t2eα ,

x4 = cosh(α)− 1

2
t2eα ,

x5 = t3eα , (4)

where −∞ < α, t1, t2, t3 < ∞, t2 = −t2
1 − t2

2 + t2
3 [18, 19]. In this case, the generators (1) - (2) from the previous

section become

J12 = t1
(
− ∂

∂α
+ t2

∂
∂ t2

+ t3
∂

∂ t3

)
+
[
sinhα e−α +

1

2
(t2

1 − t2
2 + t2

3 )
] ∂

∂ t1
,

J13 = t2
(
− ∂

∂α
+ t1

∂
∂ t1

+ t3
∂

∂ t3

)
+
[
sinhα e−α +

1

2
(−t2

1 + t2
2 + t2

3 )
] ∂

∂ t2
,

J23 =−t2
∂

∂ t1
+ t1

∂
∂ t2

,

J45 = t3
(
− ∂

∂α
+ t1

∂
∂ t1

+ t2
∂

∂ t2

)
+
[
coshα e−α +

1

2
(t2

1 + t2
2 + t2

3 )
] ∂

∂ t3
,

J14 =
∂

∂α
− t1

∂
∂ t1

− t2
∂

∂ t2
− t3

∂
∂ t3

,

J15 = t3
( ∂

∂α
− t1

∂
∂ t1

− t2
∂

∂ t2

)
+
[
sinhα e−α − 1

2
(t2

1 + t2
2 + t2

3 )
] ∂

∂ t3
,

J24 = t1
( ∂

∂α
− t2

∂
∂ t2

− t3
∂

∂ t3

)
+
[
coshα e−α − 1

2
(t2

1 − t2
2 + t2

3 )
] ∂

∂ t1
,

J25 = t3
∂

∂ t1
+ t1

∂
∂ t3

,

J34 = t2
( ∂

∂α
− t1

∂
∂ t1

− t3
∂

∂ t3

)
+
[
coshα e−α − 1

2
(−t2

1 + t2
2 + t2

3 )
] ∂

∂ t2
,

J35 = t3
∂

∂ t2
+ t2

∂
∂ t3

.

Therefore, the Casimir operator (3) can be written as follows

C =− ∂ 2

∂α2
−3

∂
∂α

− e−2α
(

∂ 2

∂ t2
1

+
∂ 2

∂ t2
2

− ∂ 2

∂ t2
3

)
. (5)

The expression (5) is in agreement with the general expression of the Casimir operator for the parabolic coordinates
described in [20]. Now let us give the eigenvalue equation

C f (x) =−σ(σ +3) f (x),

or [
− ∂ 2

∂α2
−3

∂
∂α

− e−2α
(

∂ 2

∂ t2
1

+
∂ 2

∂ t2
2

− ∂ 2

∂ t2
3

)]
f (x) =−σ(σ +3) f (x), (6)

where σ(σ + 3), σ ∈ C is the eigenvalue of the Casimir operator for the group SO(3,2) [18]. In order to solve the
eigenvalue problem (6), the separation of variables method can be used. Setting the solution as

f (α, t1, t2, t3) = A(α) e−iκt1 e−iλ t2 e−iηt3 , (7)

where κ, λ , η are integers or half-integers, leads us to the differential equation

d2A
dα2

+ 3
dA
dα

− (κ2 +λ 2 −η2) e−2α A = σ(σ +3)A . (8)
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As a general quantum problem, physicists deal with the Schrödinger equation

HΨ = EΨ

for a given Hamiltonian H. Starting from a Lie group, however, the group theory approach allows one to end up with
a corresponding physical system with certain potential and energy spectrum [21, 22]. In order to illustrate this fact,
we put

A(α) = e−3α/2 Ψ(α) (9)

into Eq. (8) . Then we get the time-independent Schrödinger equation

H Ψ =

[
− d2

dα2
+ (κ2 +λ 2 −η2) e−2α

]
Ψ = −

(
σ +

3

2

)2

Ψ (10)

with the exponential potential

V (α) = (κ2 +λ 2 −η2) e−2α (11)

and the energy spectrum E =−(
σ +3/2

)2
. Making the substitution

z = e−α (12)

into Eq.(10) , we arrive at the equation

z2 d2Ψ
dz2

+ z
dΨ
dz

+

[
(η2 −κ2 −λ 2) z2 −

(
σ +

3

2

)2 ]
Ψ = 0 . (13)

For η2 −κ2 −λ 2 > 0 , Eq.(13) is called Bessel equation, one of whose particular solutions is in the form

Ψ(z) = J(σ+3/2)

(√
η2 −κ2 −λ 2 z

)
,

where
(
σ + 3/2

)
is not an integer [23]. Considering the substitution (12), the wave function of the Schrödinger

equation can be given as follows

Ψ(α) = N J(σ+3/2)

(√
η2 −κ2 −λ 2 e−α

)
, (14)

where N is the normalization constant. From the transformation (9), the solution of Eq. (8) becomes

A(α) = e−3α/2 J(σ+3/2)

(√
η2 −κ2 −λ 2 e−α

)
.

Finally, the solution of the eigenvalue problem of (6) is in the form

f (α, t1, t2, t3) = e−3α/2 e−i(κt1+λ t2+ηt3) J(σ+3/2)

(√
η2 −κ2 −λ 2 e−α

)
.

CONCLUSION

In this paper, we illustrate an application regarding the group SO(3,2) of group theoretical approach to physics. From
the well-known fact that choosing different parameterizations one can obtain various Hamiltonian systems with the
same energy spectrum, we consider the parabolic coordinates for the group. Thus, we arrive at the Hamiltonian
system with exponential-type potential and given the energy spectrum of the system. In a future publication, we aim
to discuss the Eq.(10) in detail for the potential (11).
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Abstract. Let Γ(x) denotes the gamma function of a real number x /∈ {0,−1,−2, . . .}. Then the backward difference matrix ΔBq

of fractional order q is defined as

(ΔBqv)i =
∫ ∞

l=0
(−1)l Γ(q+1)

l!Γ(q− l +1)
vi−l .

In this paper we introduce paranormed Riesz difference sequence space rt(ΔBq) of fractional order q obtained by the domain
of generalized difference operator RtΔBq in Maddox’s space �(p). We investigate certain topological properties and obtain the
Schauder basis of the space rt(ΔBq). We also obtain the α−, β− and γ−duals and characterize certain matrix classes related to the
space rt(ΔBq).

INTRODUCTION

Throughout the article Γ(x) will denote the gamma function of a real number x /∈ {0,−1,−2, . . .}. It is defined as
Γ(x) =

∫ ∞
0 tx−1e−tdt. Clearly Γ(x+1) = x! for x ∈N0. Also Γ(x+1) = xΓ(x) for any real number x /∈ {0,−1,−2, . . .}.

Here and in the rest of the paper, the notation N0 = {0,1,2, . . .} and w denotes the space of all real valued sequences.
Any linear subspace of w is called sequence space. Let �p, �∞, c and c0 denote the spaces of all absolutely p-summable,
bounded, convergent and null sequences, respectively. Moreover, bs and cs will denote the spaces of all bounded and
convergent series, respectively. Throughout the paper, we shall use the notation that the summation symbol without
limit runs from 0 to ∞.

Definition 1 A linear topological space V over the real field R is said to be a paranormed space if there exists a
subadditive function g : V → R such that g(θ) = 0, g(v) = g(−v) and the scalar multiplication is continuous, i.e.
|ξi −ξ | → 0 and g(vi − v)→ 0 for all ξ ∈ R and v ∈V, where θ ∈V is the zero vector.

Let p = (pi) be a bounded sequence of strictly positive real numbers with M = max{1,H} where H = sup
i

pi. Then,

Maddox [21] defined the sequence space �(p) = {v = (vi) ∈ w : ∑i |vi|pi < ∞} , which is a complete space paranormed

by g(v) = (∑i |vi|pi)
1
M .

Let λ = (λi j) be an infinite matrix of real entries. By λi, we denote the sequence in the ith row of the matrix λ . The
matrix λ is called a matrix mapping from sequence space V to sequence space W if λ−transforms of the sequence
v = (vi) i.e. λv = {(λv)i} exists and belongs to W for all v ∈V where

(λv)i = ∑
j

λi jv j, (i ∈ N0). (1)

Let (V : W ) denotes the class of all such matrices that map from V to W. In other words, λ ∈ (V : W ) if and only if
the series on the R.H.S. of the equation (1) converges for each i ∈ N0 and v ∈V such that λv ∈W for all v ∈V.

Define the sequence space Vλ by

Vλ = {v ∈ w : λv ∈V}. (2)

Then Vλ is called the matrix domain of λ in the space V.
The α−, β− and γ−duals of the subset V ⊂ w are defined by V α = {t = (ti) ∈ w : tv = (tivi) ∈ �1 for all v ∈ V},

V β = {t = (ti) ∈ w : tv = (tivi) ∈ cs for all v ∈V} and V γ = {t = (ti) ∈ w : tv = (tivi) ∈ bs for all v ∈V}, respectively.
The domains c0(ΔF), c(ΔF) and �∞(ΔF) of the forward difference matrix ΔF are introduced by Kızmaz [17]. Since

then several other authors [13, 14, 15, 18] generalized the notion of forward and backward difference operator ΔF

and ΔB and studied difference spaces of integer order. The difference sequence spaces of integer order were further
generalized by Baliarsingh [8]. Aftermore, several authors [7, 9, 10, 12, 16] studied difference spaces of fractional
order.
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Definition 2 [7] Let q > 0 be a proper fraction. Then backward difference operator ΔBq of fractional order q is
defined as (ΔBqv)i = ∑l(−1)l Γ(q+1)

l!(q−l+1)vi−l .

The difference operator ΔBq can also be expressed in the form of triangle as follows:

(ΔBq)i j =

{
(−1)i− j Γ(q+1)

(i− j)!Γ(q−i+ j+1) (0 ≤ j ≤ i),

0 ( j > i).

Now we give the definition and notation regarding the Riesz mean matrix.

Definition 3 Let (tk) be a sequence of positive numbers and define Ti = ∑i
l=0 tl , i ∈ N0. Then the Riesz mean matrix

Rt = (rt
i j) is defined as

rt
i j =

{
t j
Ti

(0 ≤ j ≤ i),
0 ( j > i).

Malkowsky [3] introduced the sequence spaces rt
∞, rt

c and rt
0 as the set of all sequences whose Rt− transforms

are in the spaces �∞, c and c0, respectively. Altay and Başar [1] studied the sequence space rt(p) defined by

rt(p) =
{

v = (v j) ∈ w : ∑i∈N0

∣∣∣ 1
Ti

∑i
j=0 t jv j

∣∣∣pi
< ∞

}
, where p = (p j) is a bounded sequence of positive real num-

bers. Afterthen, several authors studied and generalized Riesz spaces [2, 4, 5, 6]. Recently Yaying [11] introduced the
paranormed Riesz difference sequence spaces rt

∞(p,ΔBq), rt
c(p,ΔBq) and rt

0(p,ΔBq) as the set of all sequences whose

RtΔBq−transforms are in the spaces �∞(p), c(p) and c0(p), respectively.

PARANORMED RIESZ DIFFERENCE SEQUENCE SPACE rt(p,ΔBq) OF
FRACTIONAL ORDER

Before constructing the sequence space rt(p,ΔBq), we recall certain notions and definitions which can be found in
[11]:

Definition 4 [11] Let q > 0 be a proper fraction. Then the product matrix RtΔBq of Riesz mean Rt and the difference
operator ΔBq is defined as follows:

(
RtΔBq)

i j =

⎧⎨
⎩

i
∑

l= j
(−1)l− j Γ(q+1)

(l− j)!Γ(q−l+ j+1)
tl
Ti

(0 ≤ j ≤ i),

0 ( j > i).

In the rest of the paper, for brevity, we shall denote RtΔBq by R.

Definition 5 [11] (Lemma 2.1) The inverse of the product matrix R = RtΔBq is given by:

(
RtΔBq)−1

i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(−1)i− j

j+1

∑
l= j

Γ(−q+1)
(i−l)!Γ(−α−i+l+1)

Tj
tl

(0 ≤ j < i),

Ti
ti

( j = i),
0 ( j > i).

Let us define the RtΔBq = R−transforms of a sequence v = (v j) as follows:

ui = (Rv)i =
i−1

∑
j=0

[
i

∑
l= j

(−1)l− j Γ(q+1)

(l − j)!Γ(q− l + j+1)

tl
Ti

]
v j +

ti
Qi

vi, (i ∈ N0). (3)

Now we introduce paranormed Riesz difference sequence space rt(p,ΔBq) of fractional order q as follows:

rt(p,ΔBq) = {v = (vi) ∈ w : Rv ∈ �(p)}=
{

v = (vi) ∈ w : ∑
i
|(Rv)i|pi < ∞

}
.

The above sequence space can be expressed in the notation of (2) by rt(p,ΔBq) = (�(p))Rt ΔBq = (�(p))R . The
sequence space rt(p,Δq) may be reduced to the following classes of sequence spaces in the special case of q:
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1. If q = 0 then the sequence space rt(p,ΔBq) reduces to rt(p) as defined by Altay and Başar [1].

2. If q = 1 then the sequence space rt(p,ΔBq) reduces to rt(p,ΔB) where (ΔBv) j = v j − v j−1.

3. If q = m ∈ N then the sequence space rt(p,ΔBq) reduces to rt(p,ΔBm) where (ΔBmv) j =
m
∑

l=0
(−1)l

(m
l

)
v j−l (see

[18]).

Theorem 1 The sequence space rt(p,ΔBq) is a complete linear metric space paranormed by Pq defined by

Pqv = ‖Rv‖�(p) =

(
∑

i

∣∣∣∣∣
i−1

∑
j=0

[
i

∑
l= j

(−1)l− j Γ(q+1)

(l − j)!Γ(q− l + j+1)

tl
Ti

]
v j +

ti
Ti

vi

∣∣∣∣∣
pi
) 1

M

with 0 < pi ≤ H < ∞. (4)

Theorem 2 The Riesz difference sequence space rt(p,ΔBq) is linearly isomorphic to �(p) where 0 < pi ≤ H < ∞.

We now construct sequence of points in the space rt(p,ΔBq) which will form the Schauder basis for that space.
First we recall the definition of Schauder basis for a normed space (V,‖·‖).

Definition 6 A sequence v = (v j) of a normed space (V,‖·‖) is called a Schauder basis of the space V if for every

ν ∈V there exists a unique sequence of scalars (a j) such that lim
i→∞

∥∥∥ν −∑i
j=0 a jv j

∥∥∥= 0.

Theorem 3 Let R j(t) = (Rv) j for all j ∈ N0 where R = RtΔBq and 0 < p j ≤ H < ∞. Define the sequence b( j)(t) =
(b( j)

i (t)) of the elements of the space rt(p,ΔBq) for every fixed j ∈ N0 by

b( j)
i (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j+1

∑
l= j

(−1)i− j Γ(−q+1)
(i−l)!Γ(−q−i+l+1)

Tj
tl

( j < i),

Tj
t j

( j = i),

0 ( j > i).

Then, the sequence {b( j)(t)} is basis for the space rt(p,ΔBq) and every v ∈ rt(p,ΔBq) has a unique representation of
the form v = ∑ j R j(t)b( j)(t).

α−, β− AND γ−DUALS

In this section we obtain the α−, β− and γ−duals of rt(p,ΔBq). Throughout F will denote the collection of all finite
subsets of N0 and s j =

p j
p j−1 for all j ∈ N0.

Theorem 4 Let 1 < p j ≤ H < ∞ for every j ∈ N0. Define the set

D1(p) =
⋃

B>1

{
a = (a j) ∈ w : sup

I∈F
∑

j

∣∣∣∣∣∑i∈I

[
j+1

∑
l= j

(−1)i− j Γ(−q+1)

(i− l)!Γ(−q− i+ l +1)

Tj

tl
a j +

Ti

ti
ai

]
B−1

∣∣∣∣∣
s j

< ∞

}
and

D2(p) =
⋃

B>1

{
a = (ak) ∈ w : ∑

j

∣∣∣∣ΔBq
(

a j

t j

)
TjB−1

∣∣∣∣s j

< ∞ and
{(

a j

t j
TjB−1

)s j
}
∈ �∞

}
,

where ΔBq
(

a j
t j

)
=

a j
t j
+∑i

l= j+1(−1)l− jal ∑ j+1
m= j

Γ(−q+1)
(l−m)!Γ(−α−l+m+1)tm

.

Then
[
rt(p,ΔBq)

]α
= D1(p),

[
rt(p,ΔBq)

]β
= D2(p) and

[
rt(p,ΔBq)

]γ
= D2(p).
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Theorem 5 Let 0 < p j ≤ 1 for every j ∈ N0. Define the sets D3(p) and D4(p) as follows:

D3(p) =

{
a = (a j) ∈ w : sup

I∈F
sup
j∈N0

∣∣∣∣∣∑i∈I

[
j+1

∑
l= j

(−1)i− j Γ(−q+1)

(i− l)!Γ(−q− i+ l +1)

Tj

tl
a j +

Ti

ti
ai

]
B−1

∣∣∣∣∣
p j

< ∞

}
and

D4(p) =

{
a = (a j) ∈ w : sup

j∈N0

∣∣∣∣ΔBq
(

a j

t j

)
Tj

∣∣∣∣p j

< ∞ and sup
j∈N0

∣∣∣∣a j

t j
Tj

∣∣∣∣p j

< ∞

}
.

Then
[
rt(p,ΔBq)

]α
= D3(p),

[
rt(p,ΔBq)

]β
=
[
rt(p,ΔBq)

]γ
= D4(p).

MATRIX TRANSFORMATIONS

In this section, we characterize certain matrix transformations from the space rt(p,ΔBq) to space W. ∈ {�∞,c,c0}.
Before we proceed, we note down the following results:

Lemma 1 [19] (Theorem 5.1.0)

(a) Let 1 < p j ≤ H < ∞ for every j ∈ N0. Then λ ∈ (�(p), �1) if and only if there exists an integer B > 1 such that

sup
I∈F

∑
j

∣∣∣∣∣∑i∈I
λi jB−1

∣∣∣∣∣
s j

< ∞. (5)

(b) Let 0 < p j ≤ 1 for every j ∈ N0. Then λ ∈ (�(p), �1) if and only if

sup
I∈F

sup
j∈N0

∣∣∣∣∣∑i∈I
λi j

∣∣∣∣∣
p j

< ∞. (6)

Lemma 2 [20] (Theorem 1)

(a) Let 1 < p j ≤ H < ∞ for every j ∈ N0. Then λ ∈ (�(p), �∞) if and only if there exists an integer B > 1 such that

sup
i∈N0

∑
j

∣∣λi jB−1
∣∣s j < ∞. (7)

(b) Let 0 < p j ≤ 1 for every j ∈ N0. Then λ ∈ (�(p), �∞) if and only if

sup
i, j∈N0

∣∣λi j
∣∣p j < ∞. (8)

Lemma 3 [20] (Theorem 1) Let 0 < p j ≤ H < ∞ for every j ∈N0. Then λ ∈ (�(p),c) if and only if (7), (8) hold, and

lim
i→∞

λi j = α j for j ∈ N0 (9)

also holds.

Theorem 6 Let W be any given FK-space. Then λ ∈ (rt(p,ΔBq),W ) if and only if λi ∈
[
rt(p,ΔBq)

]β for all i ∈ N0

and λ̃ ∈ (�(p),W ), where λ̃i j =
(

λi j
t j
+∑∞

l= j+1(−1)l− jλil ∑ j+1
m= j

Γ(−q+1)
(l−m)!Γ(−q−l+m+1)qm

)
Tj for all i, j ∈ N0.

Corollary 1 Let λ = (λi j) be an infinite matrix. Then we have the following results:

(a) λ ∈ (rt(p,ΔBq) : �∞) if and only if λi ∈
[
rt(p,ΔBq)

]β for all i ∈ N0 and (7) and (8) hold with λ̃i j instead of λi j.

(b) λ ∈ (rt(p,ΔBq) : c) if and only if λi ∈
[
rt(p,ΔBq)

]β for all i ∈ N0, and (7), (8) and (9) hold with λ̃i j instead of
λi j.

(c) λ ∈ (rt(p,ΔBq) : c0) if and only if λi ∈
[
rt(p,ΔBq)

]β for all i ∈ N0, and (7), (8) and (9) hold with λ̃i j instead of
λi j and β j = 0 for all j ∈ N0.
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Abstract. A uniform estimation of order O(h4), for the convergence of the finite difference solution for the general second order
elliptic equation with nonlocal integral boundary condition is obtained where h is the mesh step.

INTRODUCTION

A highly accurate method is one of the powerful tools for reducing the number of unknowns, which is the main
problem in the numerical solution of differential equations to get reasonable results. In [1, 2, 3] the fourth order
difference schemes were constructed and justified by solving several local test problems.

In this paper, a convergence of order O(h4), h is the step mesh, in the uniform metric for the solution of the
finite difference problem constructed for the local Dirichlet problem by schemes [1, 2] for h ≤ h0, (h0 is a fixed real
number), is proved. Then, for the second-order linear elliptic equations with nonlocal integral boundary condition the
finite difference problem which is related to the scheme given in [1, 2] are proposed and justified It is verified that the
uniform estimate of the error of the approximate solution is order of O(h4), when the boundary functions have a sixth
derivative satisfying a Holder condition.

NONLOCAL BOUNDARY VALUE PROBLEM

Let R = {(x,y) : 0 < x < β1,0 < y < β2}be an open rectangle, γm, m = 1,2,3,4, be its sides including the endpoints,
numbered in the clockwise direction, beginning with the side lying on the y-axis and let γ = ∪4

m=1γm be the boundary

of R and R = R∪ γ . Let C0 denote the linear space of continuous functions of one variable x on the interval [0,β1] of
x-axis, and vanish at the points x = 0 and x = β1. For the function f ∈C0 we define the norm

‖ f‖C0 = max
0≤x≤β1

| f (x)| .

Consider the nonlocal boundary value problem on R

Lu = 0 on R, u = 0 on γ1 ∪ γ3, u = τ on γ2, (1)

u(x,0) = α
∫ β2

ξ
u(x,y)dy+μ(x), 0 < x < β1,0 < ξ < β2, (2)

where

Lu =
∂ 2u
∂x2

+
∂ 2u
∂y2

+a(x,y)
∂u
∂x

+b(x,y)
∂u
∂y

+ c(x,y)u,

a, b and c are given functions with b(x,y)≥ 0 and c(x,y)≤ 0; τ = τ(x) and μ = μ(x) are given functions from C0 and
α is a given constant with |α|< 1

β2−ξ .

Let U be a solution of the following multilevel nonlocal boundary value problem

LU = 0 on R, U = τ on γ2, U = 0 on γ1 ∪ γ3 ,

U(x,0) = α
M

∑
k=1

ρk.U(x,ηk)+μ(x), 0 ≤ x ≤ β1,
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where ρ1 = ρM = h
3 , ρ j =

h
3

(
3+(−1) j

)
for j = 2,3, ...,M−1, η j = ξ +( j−1)h, j = 1,2, ...,M, h = β1

N ,

(M−1)h+ξ = β2 and
ξ
h is an integer.

We represent U as

U(x,y) =V (x,y)+W (x,y),

where V is the solution of the problem

LV = 0 on R, V = τ on γ2, V = 0 on γ/γ2,

and W is the solution of the problem

LW = 0 on R, W = 0 on γ/γ4, W = f on γ4,

with an unknown function f from C0.
We define the operator Bi from C0 to C0 as follows

Bi f (x) =W (x,ηi), i = 1,2, ...,M. (3)

It is verified that

‖Bi f‖C0 <

(
1− ξ +(i−1)h

β2

)
‖ f‖C0 , i = 1,2, ...,M,

and

0 < |BM|< |BM−1|< ... < |B1|< 1.

We set

ϕk(x) =V (x,ηk) for k = 1,2, ...,M,

and

ϕ = α
M

∑
k=1

ρkϕk.

Consider the sequence in C0

ψ0
i = 0, ψn

i = Bi

(
ϕ +μ +α

M

∑
k=1

ρkψn−1
k

)
,

i = 1,2, ...,M; n = 1,2, ....

The limit of the sequence is found as a solution of the following nonlinear equations

ψi = Bi

(
ϕ +μ +α

M

∑
k=1

ρkψk

)
, i = 1,2, ...,M.

Therefore, the function f in (3) is defined by

f = ϕ +μ +α
M

∑
k=1

ρkψk,
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FINITE-DIFFERENCE EQUATIONS

We define a square mesh with the mesh size h = β1
N = β2

M∗ , N,M∗ > 2 are integers, constructed with the lines

x,y = h,2h, .... Let Dh be the set of nodes of this square grid, Rh = R∩Dh, Rh = R∩Dh and γm
h = γm ∩Dh,

m = 1,2,3,4. It is assumed that h ≤ h0, where

h0 =
1

2
max

{
max(|a|+ |b|) ,max

(√
1

2

∂a
∂x

+a2 +

√
1

2

(
∂b
∂y

)
+b2

)
,max

(
1
2

∂b
∂y +b2 − c

b

)}
.

Let

[0,β1]h =

{
x = xi, xi = ih, i = 0,1, ...,N, h =

β1

N

}

be the set of points divided by the step size h on [0,β1] .
We represent the difference operator obtained by [1], [2] in the form

Lhu ≡ e f1

[
5

6
− 1

12
h2

(
1

2

(
∂a
∂x

)
1

+
1

4
a2

1 − c1

)]
u(x+h,y)

+eg2

[
5

6
− 1

12
h2

(
1

2

(
∂b
∂y

)
2

+
1

4
b2

2 − c2

)]
u(x,y+h)

+e f3

[
5

6
− 1

12
h2

(
1

2

(
∂a
∂x

)
3

+
1

4
a2

3 − c3

)]
u(x−h,y)

+eg4

[
5

6
− 1

12
h2

(
1

2

(
∂b
∂y

)
4

+
1

4
b2

4 − c4

)]
u(x,y−h)

+
1

12

[
e f1

(
1− hb1

2

)
+ eg4

(
1+

ha4

2

)]
u(x+h,y−h)

+
1

12

[
e f3

(
1+

hb3

2

)
+ eg2

(
1− ha2

2

)]
u(x−h,y+h)

+
1

12

[
e f3

(
1− hb3

2

)
+ eg4

(
1− ha4

2

)]
u(x−h,y−h)

+
1

12

[
e f1

(
1+

hb1

2

)
+ eg2

(
1+

ha2

2

)]
u(x+h,y+h)

−
[

e
ah
2

(
1− 1

12
h2

(
1

2

(
∂a
∂x

)
1

+
1

4
a2

1

))
+ e

bh
2

(
1− 1

12
h2

(
1

2

(
∂b
∂y

)
2

+
1

4
b2

2

))

+ e
−ah

2

(
1− 1

12
h2

(
1

2

(
∂a
∂x

)
3

+
1

4
a2

3

))
+ e

−bh
2

(
1− 1

12
h2

(
1

2

(
∂b
∂y

)
4

+
1

4
b2

4

))
− 5

6
h2c0

]
u(x,y). (4)

APPROXIMATION OF THE NONLOCAL BOUNDARY VALUE PROBLEM BY
FINITE-DIFFERENCE METHOD

We say that F ∈Ck,λ (E), if F has k-th derivatives on E satisfying the Hölder condition with exponent λ .
We assume that τ(x) ∈ C6,λ (γ2

)
, μ(x) ∈ C6,λ (γ4

)
in (1) and (2), respectively. Denote by C0

h the linear space of

grid functions defined on [0,β1]h that vanish at x = 0 and x = β1. The norm of a function fh ∈ C0
h is defined as

‖ fh‖C0
h
= max

x∈[0,β1]h

| fh| .

Let Lh be operator defined in (4). and let vh be a solution of following the system of grid equations

Lhvh = 0 on Rh, vh = τh on γ2
h , vh = 0 on γh/γ2

h ,
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where τh is the trace of τ on γ2
h and we define

ϕ̃i,h(x) = vh(x,ηi), i = 1,2, ...,M.

Let wh be a solution of the finite difference problem

Lhwh = 0 on Rh, wh = 0 on γh/γ4
h , wh = f̃h on γ4

h , (5)

where fh ∈C0
h , is an arbitrary function.

Let Bh
i be a linear operator from C0

h to C0
h defined as

Bh
i fh(x) = wh (x,ηi) , i = 1,2, ...,M,

where wh is the solution of the problem (5).
Everywhere, for all estimations, the all constants c1,c2, ..., are independent of h.
The following all statements are proved whenever the one of the following conditions satisfy:
(i) a,b,c are arbitrary constants.
(ii) a and b are single variable functions depends on x and y, respectively.

Lemma 1 The following estimate remains true∥∥∥Bh
i fh(x)

∥∥∥
C0

h

≤ ‖ fh‖C0
h

(
1− ξ+(i−1)h

β2

)
, i = 1,2, ...,M.

By [2], we have,

max
Rh

|Lh (vh −Vh)| ≤ c1h4. (6)

By virtue of maximum principle and (6), it follows that

max
(x,y)∈Rh

|vh −Vh| ≤ c2h4.

We define the function

f̃h = ϕ̃h +μh +α
M

∑
k=1

ρkψ̃k,h,

where μh is the trace of μ defined in (2) on [0,β1]h and ψ̃k,h ∈ C0
h ,k = 1,2, ...,M, are the solution of the system of

equations

ψ̃i,h = Bh
i

(
ϕ̃h +μh +α

M

∑
k=1

ρkψ̃k,h

)
, i = 1,2, ...,M. (7)

The solution of the system (7) are sought by using the fixed point iteration:

ψ̃0
i,h = 0, ψ̃n

i,h = Bh
i

(
ϕ̃h +μh +α

M

∑
k=1

ρkψ̃n−1
k,h

)
,

i = 1,2, ...,M; n = 1,2, ... . (8)

By using the n− th iteration ψ̃n
i,h, n ≥ 1 of (8), we define the function

f̃ n
h = ϕ̃h +μh +α

M

∑
k=1

ρkψ̃n
k,h.

Hence, we define (see [4], [5], [6]), for the approximate solution of the nonlocal problem (1), (2), the following
difference problem

ũn
h = Bhũn

h on Rh, ũn
h = τh on γ2

h , ũn
h = 0 on γ1

h ∪ γ3
h , (9)

ũn
h = f̃ n

h on γ4
h . (10)
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Theorem 2 The estimation holds

max
(x,y)∈Rh

|ũn
h −u| ≤ c3h4 +q0

q
n+1

1

1−q1
c4, (11)

where ũn
h is a solution of problem (9), (10), u is the exact solution of nonlocal boundary value problem (1) ,(2),

q0 = |α|
M
∑

k=1
ρk < 1 and q1 = 1− ξ

β2
.

Remark 3 In (11) the right-hand side is O
(
h4
)
, when

n = max

{[
lnh4(1−q1)

lnq1

]
,1

}
,

where [a] is the integer part of a.

CONCLUSION

The proposed method can be used for getting numerical solution for different types of nonlocal problem for general
elliptic equations. Also, it can be developed to obtain higher order as O(hp), p > 4, uniform estimate of the error of
the approximate solution.
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Abstract. As we know the Lindelöfness play an important role in the General Topology. Therefore, the finding of uniform
analogues of Lindelöfness is an important and interesting problem in the theory of Uniform Topology. For example, uniform B-
Lindelöfness in the sense of A. A. Borubaev [1], uniform A-Lindelöfness in the sense of L.V. Aparina [2], uniform I- Lindelöfness
in the sense of D. R. Isbell [3].
In this article we show a new approach to the definition of a uniform analog of Lindelöfness. We introduce and study uniform
R-Lindelöf and uniform Lindelöf spaces.

INTRODUCTION

Throughout this work all uniform spaces are assumed to be Hausdorff and mappings are uniformly continuous.
For coverings α and β of the set X , the symbol α � β means that the covering α is a refinement of the covering

β , i.e. for any A ∈ α there exists B ∈ β such that A ⊂ B and, for coverings α and β of a set X , we have: α ∧β =
{A

⋂
B : A ∈ α,B ∈ β}. The covering α finitely additive if α∠ = α , α∠ = {⋃α0 : α0 ⊂ α is finite}. α(x) =

⋃
St(α,x),

St(α,x) = {A ∈ α : A � x}, x ∈ X , α(H) =
⋃

St(α,H), St(α,H) = {A ∈ α : A
⋂

H �=∅}, H ⊂ X .
A uniform space (X ,U) is called ℵ0-bounded if the uniformity U has a base consisting of countable coverings; a

uniform space (X ,U) is called τ-bounded if the uniformity U has a base consisting of coverings of cardinality ≤ τ [1],
if τ ≤ℵ0, then the uniform space (X ,U) is called uniformly I-Lindelöf [3]; a uniform space (X ,U) is called uniformly
B-Lindelöf, if it is both uniformly B-paracompact and ℵ0-bounded [1]; a uniform space (X ,U) is called uniformly
A-Lindelöf, if for each open covering α exist a countable uniformly covering β = {Bn : n ∈ N} and γ ∈ U such that
β � α∠ and γ(B̄n) ⊂ Bn+1 for any n ∈ N [2]; a uniformly continuous mapping f : (X ,U)→ (Y,V ) of uniform space
(X ,U) onto a uniform space (Y,V ) is called a precompact, if for each α ∈U there exist a uniform covering β ∈V and
finite uniform covering γ ∈ U , such that f−1β ∧ γ � α[1]; a uniformly continuous mapping f : (X ,U) → (Y,V ) of
uniform space (X ,U) onto a uniform space (Y,V ) is called a uniformly perfect, if it is both precompact and perfect [1];
a uniformly continuous mapping f : (X ,U)→ (Y,V ) of uniform space (X ,U) onto a uniform space (Y,V ) is called a
uniformly open, if f maps each open uniform covering α ∈U to an open uniform covering f α ∈V [1]; a continuous
mapping f : X → Y of topological space to a topological space called ω-mapping, if for each point y ∈ Y there exist
such neighborhood Oy and W ∈ ω , that f−1Oy ⊂ W [1]; a uniform space (X ,U) called uniformly R-paracompact,
if every open covering has an open uniformly locally finite refinement [4]; a uniform space (X ,U) called uniformly
B-paracompact, if for each finitely additive open covering γ of (X ,U) there exists such sequence uniform covering
{αi : i ∈ N} ⊂ U , that following condition is realized: for each point x ∈ X there exist such number i ∈ N and Γ ∈ γ
that αi(x) ⊂ Γ (*) [1]; a uniform space (X ,U) called uniformly P-paracompact, if for each open cover γ of (X ,U)
there exists such sequence uniform covering {αi : i ∈ N} ⊂U , that the condition (*) is realized [5]; a uniform space
(X ,U) is called uniformly P-Lindelöf, if for each open cover γ of (X ,U) there exists such sequence countable uniform
covering {αi : i ∈ N} ⊂ U , that the condition (*) is realized [6]; a uniform space (X ,U) is called uniformly locally
compact, if there exists a uniform covering α ∈ U consisting of compact subsets; a uniform space (X ,U) is called
uniformly locally Lindelöf [1], if there exists such uniform covering α ∈ U that the closures of all its elements are
Lindelöf [5]; a uniform space (X ,U) is called strongly uniformly R-paracompact if every open covering has an open
uniformly star finite refinement. For the uniformity U by τU we denote the topology generated by the uniformity.

UNIFORMLY R-LINDELÖF SPACES AND THEIR GENERALIZATIONS

Let (X ,U) be a uniform space.

Definition 1 A uniform space (X ,U) is said to be uniformly R-Lindelöf, if it is both uniformly R-paracompact and
ℵ0-bounded.
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Proposition 1 If (X ,U) is a uniformly R-Lindelöf space then the topological space (X ,τU ) is uniformly R-Lindelöf.
Conversely, if (X ,τ) is Lindelöf then the uniform space (X ,UX ) is uniformly R-Lindelöf.

Proof. Let α be an arbitrary open cover of the space (X ,τU ) . Then for the open covering α exists a uniformly locally
finite open covering β which is a refinement of it. Since the space (X ,U) is ℵ0-bounded, there exists a countable

cover λ such that for any i ∈ N we have that Li ⊂
k⋃

j=1
A j. Then system {Li

⋂
A j}, i = 1,2, ...,n, j = 1,2, ...,k forms a

countable open covering which is refinement in covering α . Consequently, the space (X ,τU ) is Lindelöf.
Conversely, if (X ,τ) is Lindelöf, then the system of all open coverings forms a base of universal uniformity UX of

the space (X ,τ). It follows from this that (X ,UX ) is uniformly R-Lindelöf.

Proposition 2 Any compact space is uniformly R-Lindelöf.

Proof. Since any compact uniform space is precompact, it is all the more ℵ0-bounded. It is clear that every compact
space is uniform R-paracompact. Concequently, the uniform space (X ,U) is uniformly R-Lindelöf.

Proposition 3 Each closed subspace of a uniformly R-Lindelöf space is uniformly R-Lindelöf.

Proposition 4 Any uniformly R-Lindelöf space is uniformly locally Lindelöf.

Proposition 5 Any uniformly locally compact and ℵ0-bounded space is uniformly R-Lindelöf.

Proposition 6 Any uniformly R-Lindelöf space is uniformly B-Lindelöf.

Proof. Let (X ,U) be a uniformly R-Lindelöf space. As is known, every uniformly R-paracompact space is uniformly
B-paracompact [1]. Hence, the uniform space is uniformly B-Lindelöf.

Theorem 1 Any uniformly R-Lindelöf space is strongly uniformly R-paracompact.

Proof. Let (X ,U) be a uniformly R-Lindelöf space. Then from the fact that a space (X ,U) is strongly uniformly
R-paracompact if and only if it is uniformly R-paracompact and the space (X ,τU ) is strongly paracompact it follows
that is strongly uniformly R-paracompact.

Proposition 7 Any uniformly R-Lindelöf space is complete.

Theorem 2 Let f : (X ,U)→ (Y,V ) be a uniformly perfect mapping of a uniform space (X ,U) onto a uniform space
(Y,V ). Then uniformly R-Lindelöf space converse both to direction of image and to one of preimage.

Proof. If a space (X ,U) is ℵ0-bounded, then its uniformly continuous image (Y,V ) is also ℵ0-bounded. Let a
uniform space (X ,U) is uniformly R-paracompact. Then by Theorem 2.3.9 [1, p. 155] we have the space (Y,V ) is
uniformly R-paracompact. Thus the uniform space (Y,V ) is uniformly R-Lindelöf. Conversely, let the space (Y,V ) is
ℵ0-bounded. Let α ∈U be an arbitrary uniformly covering. Then by virtue of the perfectness of the mappings f there
exist such a countable covering β ∈V and finite covering γ ∈U that f−1β ∧ γ � f−1α . But the covering f−1β ∧ γ is
countable. Therefore the space (X ,U) is ℵ0-bounded. The uniformly R-paracompactness of the space (X ,U) follows
from Theorem 2.3.9. [1, p. 155] Thus, (X ,U) is uniformly R-Lindelöf.

Theorem 3 Let f : (X ,U) → (Y,V ) be a uniformly open mapping of a uniform space (X ,U) onto a uniform space
(Y,V ). If (X ,U) is uniformly R-Lindelöf space then the uniform space (Y,V ) is also uniformly R-Lindelöf.

Proof. Let f be a uniformly open mapping of a uniform space (X ,U) onto a uniform space (Y,V ) and α be an arbitrary
finite additive open covering. Then f−1α is a finite additive open covering of the space (X ,U) and by the criterion
of uniformly R-paracompactness we have f−1α ∈U . By virtue of the uniformly openness of the mapping f we have
α ∈V . Hence, (Y,V ) is uniformly R-paracompact. If a space (X ,U) is ℵ0-bounded, then (Y,V ) is also ℵ0-bounded.
Consequently, the space (Y,V ) is uniformly R-Lindelöf.

Definition 2 A uniformly continuous mapping f : (X ,U) → (Y,V ) of a uniform space (X ,U) onto a uniform space
(Y,V ) is said to be uniformly R-Lindelöf, if the following conditions is realized:
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1. For each open covering α of the space (X ,U) there exist such open covering β of the space (Y,V ) and uniformly
locally finite open covering γ of the space (X ,U), that the covering f−1β ∧ γ is refined in a covering α;

2. For each λ ∈U there exist such η ∈V and countable covering μ ∈U, that the covering f−1η ∧μ is refined in
a covering λ .

Proposition 8 Let f : (X ,U)→ (Y,V ) be a uniformly continuous mapping of a uniform space (X ,U) onto a uniform
space (Y,V ). If (X ,U) is uniformly R-Lindelöf space then the uniformly continuous mapping f is uniformly R-Lindelöf.

Proof. Let (X ,U) be a uniformly R-Lindelöf space and α be an arbitrary open covering. Then exist such uniformly
locally finite open covering γ of the space (X ,U), that the covering γ is refined in a covering α . For open covering
β of the space (Y,V ) we have the covering f−1β ∧ γ is refined in a covering α . Let λ ∈ U be an arbitrary uniform
covering. By virtue of the ℵ0-boundedness of the uniform space (X ,U) exist such countable uniform covering μ ∈U ,
that the covering μ is refined in a covering λ . Then for uniform covering η ∈ V we have that the uniform covering
f−1η ∧μ is refined in a uniform covering λ . Consequently, the mapping f is uniformly R-Lindelöf.

Proposition 9 If uniformly continuous mapping f : (X ,U)→ (Y,V ) of a uniform space (X ,U) onto a uniform space
(Y,V ) , Y = {y} is uniformly R-Lindelöf, then the uniform space (X ,U) is uniformly R-Lindelöf.

Proof. Let f be a uniformly R-Lindelöf mapping and α be an arbitrary open covering of the space (X ,U). Then
the uniformly R-Lindelöfness of the mapping f implies there exists such open covering β of the space (Y,V ) and
uniformly locally finite open covering γ of the space (X ,U), that the covering f−1β ∧ γ is refined in a covering α .
Since Y = {y}, then f−1β ∧ γ = γ . Let λ ∈U be an arbitrary uniform covering. Then exist such η ∈V and countable
covering μ ∈U , that the covering f−1η ∧μ is refined in a covering λ . It’s clear that f−1η ∧μ = μ . Hence, the space
(X ,U) is uniformly R-Lindelöf.

Lemma 1 If α and β is uniformly locally finite covering of the space (X ,U), then covering α ∧β is uniformly locally
finite covering of the space (X ,U).

Proof. Let α and β be a uniformly locally finite covering of the space (X ,U).
We show the covering α ∧β is also uniformly locally finite covering of the space (X ,U). Since the coverings α

and β is uniformly locally finite, there exists such uniform coverings μ ∈U and η ∈U , that M ⊂
n⋃

i=1
Ai, N ⊂

m⋃
j=1

B j,

M ∈ μ , N ∈ η . Note that M
⋂

N ⊂
n⋃

i=1

m⋃
j=1

(Ai
⋂

B j), M
⋂

N ∈ μ ∧η . Obviously, μ ∧η is uniformly covering. Thus,

the covering α ∧β is uniformly locally finite.

Lemma 2 Let f : (X ,U)→ (Y,V ) be a uniformly continuous mapping of a uniform space (X ,U) onto a uniform space
(Y,V ). If β is uniformly locally finite open covering of the space (Y,V ), then f−1β is uniformly locally finite open
covering of the space (X ,U).

Proof. Let f be a uniformly continuous mapping of a uniform space (X ,U) onto a uniform space (Y,V ) and β be a
uniformly locally finite open covering of the space (Y,V ). Then exist such uniform covering α ∈V , that |St(A,β )| is

finite for all B ∈ β i.e. for any A ∈ α exist such elements Bi ∈ β , i = 1,2, ...,n, that A ⊂
n⋃

i=1
Bi. Consequently, f−1A ⊂

n⋃
i=1

f−1Bi, f−1A ∈ f−1α , f−1Bi ∈ f−1β . Note, f−1α ∈ U and f−1β is open covering of the uniform space (X ,U).

Thus, the covering f−1β is uniformly locally finite open covering of the space (X ,U).

Theorem 4 If f and (Y,V ) is uniformly R-Lindelöf, then the uniform space (X ,U) is uniformly R-Lindelöf.

Proof. Let f and (Y,V ) be a uniformly R-Lindelöf and α be an arbitrary open covering of the space (X ,U). Then
exist such open covering β of the space (Y,V ) and uniformly locally finite open covering γ of the space (X ,U),
that the covering f−1β ∧ γ is refined in a covering α . By virtue of the uniformly R-Lindelöfness of the uniform
space (Y,V ) exist such uniformly locally finite open covering β0, that the covering β0 is refined in a covering β .
Then f−1β0 ∧ γ � f−1β ∧ γ . By virtue of Lemma 2 the open covering f−1β0 is uniformly locally finite. Denote
f−1β0 ∧ γ = δ . By virtue of Lemma 1 the open covering δ is uniformly locally finite. Let λ ∈ U be an arbitrary
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uniform covering. Then exist such η ∈ V and countable covering μ ∈ U , that the covering f−1η ∧ μ is refined in
a covering λ . By virtue of the uniformly R-Lindelöfness of the uniform space (Y,V ) exist such countable covering
η0 ∈ V , that the covering η0 is refined in a covering η . Therefore f−1η0 ∧ μ � f−1η ∧ μ . Denote f−1η0 ∧ μ = ω .
Obviously, the covering f−1η0 and ω is countable. Hence, the space (X ,U) is uniformly R-Lindelöf.

Definition 3 A uniform space (X ,U) is said to be uniformly Lindelöf, if for each finitely additive open covering γ of
(X ,U) there exists such a sequence of countable uniform coverings {αi : i ∈ N} ⊂U, with property (*).

Proposition 10 Any uniformly R-Lindelöf space is uniformly Lindelöf.

Proposition 11 Any separable metrizable uniform apace (X ,U) is uniformly Lindelöf.

Proposition 12 If (X ,U) is uniformly Lindelöf space then the topological space (X ,τU ) is Lindelöf. Conversely, if
(X ,τ) is Lindelöf then the uniform space (X ,UX ) is uniformly Lindelöf, where UX is a universally uniformities of the
space (X ,τ).

Proposition 13 Each closed subspace of a uniformly Lindelöf space (X ,U) is uniformly Lindelöf.

Proposition 14 Any uniformly Lindelöf space is uniformly locally Lindelöf.

Proposition 15 Any uniformly P -Lindelöf space is uniformly Lindelöf.

Proposition 16 Any compact uniform space is uniformly Lindelöf.

Theorem 5 Let (X ,U) be a uniform space and bX be a certain compact Hausdorff extension of the space (X ,τU ).
Then the following conditions are equivalent:

1. A uniform space (X ,U) is uniformly Lindelöf.

2. For each compact K ⊂ bX\X there exist a sequence of countable uniformly coverings {αi} ⊂U, realizing the
condition: for each point x ∈ X there exists such number n ∈ N, that [αi(x)]bX

⋂
K =∅.

Proof. 1 ⇒ 2. Let (X ,U) be a uniformly Lindelöf space, bX be a certain compact Hausdorff extension of the space
(X ,τU ) and K ⊂ bX\X be an arbitrary compact. Denote as λ the set of all such open subsets L of compact bX , that
[L]bX

⋂
K =∅. Then it is easy to check that μ = {L

⋂
X : L ∈ λ} is finitely additive open covering of the space (X ,U).

By the condition 1, for the covering μ exists sequence of countable uniformly coverings {αi}, such that for each point
x ∈ X exist such number i ∈ N, that αi(x)⊂ L

⋂
X for each L ∈ λ . Consequently, [αi(x)]bX

⋂
K =∅.

2 ⇒ 1. Let μ be an arbitrary finitely additive open covering of the space (X ,U). There exists such family λ of
open subsets of the bX , that μ = {L

⋂
X : L ∈ λ}. Denote K = bX\⋃{L : L ∈ λ}. Consequently, for the compact

K ⊂ bX\X there exist such sequence of countable uniformly coverings {αi}, that for each point x ∈ X there exists

such number i ∈ N, that [αi(x)]bX
⋂

K =∅. Then there exist such {L1,L2, ...,Lk} ⊂ λ , that [αi(x)]bX ⊂
k⋃

j=1
L j. Hence,

αi(x) ⊂ (
k⋃

j=1
L j)

⋂
X . By virtue of finitely additiveness of coverings μ we have (

k⋃
j=1

L j)
⋂

X ∈ μ . Thus, the uniform

space (X ,U) is uniformly Lindelöf.

Theorem 6 The uniform space (X ,U) is uniformly Lindelöf if and only if for each finitely additive open covering ω
of the space (X ,U) there exists a uniformly continuous ω -mapping f of the uniform space (X ,U) onto a separable
metrizable uniform space (Y,V ) .

Proof. Necessity. Let (X ,U) be a uniformly Lindelöf space and ω be a finitely additive open covering of the space
(X ,U). Then for a covering ω there exists a normal sequence of the countable coverings {αi} ⊂ U , realizing the
property (*). For sequence {αi} ⊂U , there exists separable pseudometric d on X , such that αi+1(x) ⊂ {y : d(x,y) <

1
2i+1 } ⊂ αi(x), for all x ∈ X , i ∈ N. Introduce the relation of equivalence: x ∼ y if d(x,y) = 0, for any x,y ∈ X .
Let Yω be the factor set of the set X relative to the equivalence relation ” ∼ ” and f : X → Yω is natural projection.
Denote ρ(y1,y2) = d( f−1y1, f−1y2) for all y1,y2 ∈ Y . It is easy to check that ρ is a separable metric. Let Vω be a
uniformity on Yω induced by the separable metric ρ . The mapping f : (X ,U)→ (Yω ,Vω) is a uniformly continuous.
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Let y ∈ Y be an arbitrary point and x ∈ f−1y. Then there exist such number i ∈ N and L ∈ ω , that αi(x)⊂ L. Denote
Oy = {y∗ ∈ Y : ρ(y,y∗)< 1

2i+1 }. Then f−1Oy ⊂ {x ∈ X : ρ(x,y)≤ 1
2i+1 } ⊂ αi(x)⊂ L. Hence, f is a ω-mapping.

Sufficiency. Let ω be an arbitrary finitely additive open covering of the space (X ,U) and f : (X ,U)→ (Yω ,Vω) be
a uniformly continuous ω -mapping of the uniform space (X ,U) onto a separable metrizable uniform space (Yω ,Vω).
Then exists a base consisting of countable coverings {γi} ⊂ Vω . Then { f−1γi} ⊂ U . It is easy to check that the
sequence countable uniformly coverings { f−1γi} realizes the condition (*). Thus, the space (X ,U) is uniformly
Lindelöf.
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Abstract. In this study, it was aimed to determine the course of COVID-19 infection in Libya with a new modified mathematical
modeling and to show the possible number of cases and deaths in the upcoming period. We performed detailed analyzes with the
help of the analytical solution of the time-dependent logistics model that we obtained. The results obtained separately on a total
and daily basis were shown graphically. In the last part, it is emphasized how important individual and public precautions in order
to decrease the spread rate of the disease and to be better controlled.

INTRODUCTION

There are many studies modeling the spread of the COVID-19 pandemic in different countries (see, e.g., [1, 2, 3, 4] and
the references given therein). The disease known as COVID-19, caused by a new type of coronavirus, first appeared
in China at the end of 2019. Due to COVID-19, which spread all over the world in a very short time, the World
Health Organization declared a pandemic. It caused over 21 million cases and nearly 769 thousand deaths before the
completion of a year. The most important factor in determining the number of cases is the efficient laboratory tests.
In the diagnosis of the disease, antibody and PCR tests in the laboratory, direct radiography and MRI in imaging,
acute respiratory tract infection findings in the clinic can be considered. In radiological imaging, involvement in the
lung and ground glass appearance are typical. In addition, typical viral infection findings are seen in blood analysis
such as hemogram, routine biochemistry. If patients can be diagnosed and isolated, then the spread of the disease can
be partially prevented. Individuals who are elderly, have chronic diseases, have a weak immune system, have poor
nutrition, are under severe stress, and do not pay attention to hygiene are at more severe risk.

The first COVID-19 case in Libya was seen in the middle of February 2020, and 7738 cases have been reached to
date. The number of deaths caused by COVID-19 in Libya has been 145 until today [5]. In this study, it was aimed to
determine the course of COVID-19 infection in Libya with a new modified mathematical modeling and to show the
possible number of cases and deaths in the upcoming period.

DESCRIPTION OF MATHEMATICAL MODEL

The population distribution, socioeconomic situation, social reflexes, individual sensitivities, public health service
delivery quality and individuals’ level of access to health services vary. Therefore, in creating a model for the course
of the disease, in addition to the initial conditions, it requires improvements to accommodate these situations. In
this study, the logistic model was revised specifically for the “corona pandemic” to include the time-variable and
considered in the form of “the spreading rate of the disease; is directly proportional with the multiplication of the
numbers of those who have caught the disease and those who have not”.

Meanings corresponding to used variables and parameters similar to our previous studies [1, 2]. Let the initial
(t = 0) number of patients be M(0) = M0, the number of patients at a time t = t1 be M(t1) = M1 and the number of
individuals who are open to the disease be P. The purpose of the study is, based on real case and death data from
August 1 to August 15, 2020; to determine the course of COVID-19 pandemic in Libya in August, September, October,
November, December. In the model given in [6], to take the right-hand side as a function of the time variable t, and
with the help of a modified mathematical model to be more compatible with actual data, to obtain more reliable data
regarding the course of the disease in the progression of time. For this, by using the expression δ = δ (t) = 0.9k 10

√
t

dependent on the t-time variable, we are proposing the following initial value problem (IVP):

dM
dt

= δM(P−M), (t > 0), M(0) = M0, M(t1) = M1. (1)
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Solving problem (1) we get,

M(t) =
Pc

c+ e−β t0.9 , (2)

where c =
M0

P−M0
and β = t−0.9

1 ln

(
M1

c(P−M1)

)
.

APPLICATION OF MATHEMATICAL MODELING

Here using solution (2), we give a detailed analysis the course of COVID-19 pandemic for next 4.5 months in Libya.
For this aim, we take the potential number of individuals open to getting the disease is P = 50000. We chose the date
01 August 2020 as t = 0, M(0) = M0 = 3691 patients; t1 = 14 as 15 August 2020 with M(t1) = M(14) = M1 = 7738
patients, let us assess the figure below where we may observe the behavior of the spread (approximate number of
cases) in a 150-day future time interval ahead of us.

FIGURE 1. Total cases from August 01 to December 30 2020

The red curve in Figure 1 shows that if the current course continues, the total number of cases will increase rapidly,
increasing more slowly from mid-October and has the potential to exceed 50000 at the end of December 2020. The
black curve says that if the measures are slightly increased, the number of cases can decrease to around 44000 by the
end of 2020. We understand from the solution expressed with the blue curve that the number of positive cases could
be between 30000-40000 by the end of the year, if the measures are strictly implemented both in individual and public
spheres.

Figure 2 shows the number of cases on a daily basis. Accordingly, from the item a) corresponding to the current
situation, it can be said that the highest numbers on a daily basis will occur in September and the daily number of
cases will reach a peak value of around 600 in mid-September. If the measures are increased a little, it is possible to
reduce the peak value in mid-September to 500 figures from item b). From item c), which corresponds to the excessive
increase in measures, it is understood that the number of daily cases may decrease to 400. In this case, it is clear that
hospital health services can be provided more comfortably without exceeding the capacity.

From the red graph in Figure 3, it is predicted that together with the number of cases, the total deaths have also
increased and may reach 2500 at the end of 2020 according to the normal course. It is understood from the black
and blue charts that the total number of deaths may remain below 2000, depending on the increasing in measures,
the quality and capacity of health services, accessibility of health services, personal hygiene-social distance practices,
and the intensity of travel within the country.
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FIGURE 2. Changing in the daily number of cases according to the prevention levels

FIGURE 3. The total number of deaths in the 5-month period

In the light of the data in item a in Figure 4, if the current situation continues, it is expected that the daily deaths
will reach the highest number and be around 30 at the end of September. From the points b) and c), it is seen that there
will be a decrease in the number of daily deaths depending on the seriousness of the implementation of individual and
public measures. According to the data obtained from the solution of the problem (if there is no nonlinear case), daily
deaths are expected to occur below 10 by the end of 2020.

CONCLUSION

According to our research results, the most important factor that will determine the course of the COVID19 pandemic
in Libya is compliance with the measures. Taking the measures effectively and applying them adequately individually
and publicly will significantly reduce the number of cases and deaths. Significant measures should be taken against
COVID19 by the end of September. In the diagnosis, relatively inexpensive and practical direct radiography, Com-
puted Tomography, hemogram, routine biochemical tests should also be used. Individual hygiene, natural and healthy
nutrition, a life suitable for exercise and mobility, avoiding stress, social isolation, using masks are very important
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FIGURE 4. Daily deaths

and will reduce the number of cases. Regular intake of antioxidant or immune-enhancing items such as vitamin C,
probiotics, zinc, selenium with diet will reduce the frequency of infection. It is very important to take measures that
cover the entire population, and the efficiency and capacity of health services in public, the correct application of PCR
tests (see, e.g., [7, 8, 9, 10]).
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Abstract. In the present paper, source identification problem for the elliptic-telegraph equation is investigated. The second order
of accuracy absolute stable difference scheme for the numerical solution of the one-dimensional identification problem for the
elliptic-telegraph equation with the Dirichlet condition is presented. Some numerical results are provided.

INTRODUCTION

Identification problems take an important place in applied sciences and engineering applications, and have been stud-
ied by many authors (see, e.g., [1-5] and the references given therein).

Direct and inverse boundary value problems for elliptic-telegraph differential equations have been a major research
area in many branches of science and engineering particularly in applied mathematics. The solvability of the inverse
problems in various formulations with various overdetermination conditions for telegraph and hyperbolic equations
were studied in many works (see, e.g., [7-15] and the references given therein).
In particular, it is well-known that several identification problems for elliptic-telegraph equations can be reduced to
the space source identification problem for the elliptic-telegraph equation⎧⎨

⎩
utt(t)+αut(t)+Au(t) = p+ f (t),0 < t < 1,
−utt(t)+Au(t) = p+g(t),−1 < t < 0,
u(−1) = ψ,u(1) = ξ ,u(0) = ϕ ,ut(0

+) = ut(0
−)

(1)

in a Hilbert space H with the self-adjoint positive definite operator A ≥ δ I (δ > 0). Here, p is the unknown parameter.
They established stability estimates for the solution of this problem. In the paper [6], the stability of the identification
problem (1) was studied.

The present paper is devoted to study the second order of accuracy absolute stable difference scheme for the numer-
ical solution of the one-dimensional identification problem for the elliptic-telegraph equation with Dirichlet condition.
Numerical results are obtained.

THE NUMERICAL ALGORITHM

Source identification problem with the Dirichlet condition⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ 2u(t,x)
∂ t2 +2

∂u(t,x)
∂ t − ∂ 2u(t,x)

∂x2 = p(x)− sinx,x ∈ (0,π) , t ∈ (0,1) ,

− ∂ 2u(t,x)
∂ t2 − ∂ 2u(t,x)

∂x2 +u(t,x) = p(x)− sinx,x ∈ (0,π) , t ∈ (−1,0) ,

u(0,x) = sinx,u(−1,x) = esinx, u(1,x) = e−1 sinx,x ∈ [0,π] ,
u(t,0) = 0,u(t,π) = 0, t ∈ [−1,1]

(2)

for the elliptic-telegraph equation is considered. The exact solution pair of this problem is

(u(t,x) , p(x)) =
(
e−t sinx,sinx

)
,0 ≤ x ≤ π,−1 ≤ t ≤ 1.
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Here, we denote the set [−1,1]τ × [0,π]h of all grid points

[−1,1]τ × [0,π]h = {(tk,xn) : tk = kτ,−N ≤ k ≤ N, Nτ = 1,xn = nh,0 ≤ n ≤ M,Mh = π} .
The solution of source identification problem (2) can be written as

u(t,x) = ω(t,x)+q(x), (3)

where q(x) is the solution of the problem

−q′′(x) = p(x),0 < x < π,q(0) = q(π) = 0, (4)

and the function ω(t,x) is the solution of the nonlocal boundary value problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ 2ω(t,x)
∂ t2 +2

∂ω(t,x)
∂ t − ∂ 2ω(t,x)

∂x2 =−sinx,x ∈ (0,π) , t ∈ (0,1) ,

− ∂ 2ω(t,x)
∂ t2 − ∂ 2ω(t,x)

∂x2 =−sinx,x ∈ (0,π) , t ∈ (−1,0) ,

ω (0,x)−ω (−1,x) = (1− e)sinx,ω (0,x)−ω (−1,x) =
(
1− e−1

)
sinx,x ∈ [0,π] ,

ω (t,0) = 0,ω (t,π) = 0, t ∈ [−1,1] .

(5)

Taking into account all of the above, the following numerical algorithm can be used for the approximate solutions of
the identification problem (2):
1. Search the approximate solution of the nonlocal boundary value problem (5).
2. Find approximate the source p(x) by using formula

p(x) = e−1 sinx+ωxx(1,x). (6)

3. Obtain the approximate value of q(x) by formula (4).
4. Find the approximate solutions of source identification problem (2) by formula (3).

Moreover, for approximate solution of identification problem (2), we construct the second order of accuracy differ-
ence scheme in t ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
n −2uk

n+uk−1
n

τ2 +2
uk+1

n −uk−1
n

2τ − 1
2

(
uk+1

n+1−2uk+1
n +uk+1

n−1

h2 +
uk−1

n+1−2uk−1
n +uk−1

n−1

h2

)
= pn − sinxn,1 ≤ k ≤ N −1,1 ≤ n ≤ M−1,

− uk+1
n −2uk

n+uk−1
n

τ2 − uk
n+1−2uk

n+uk
n−1

h2

= pn − sinxn,−N +1 ≤ k ≤−1,1 ≤ n ≤ M−1,
−3u0

n +4u1
n −u2

n = 3u0
n −4u−1

n +u−2
n ,0 � n � M,

u0
n = 0,u−N

n = (e−1)sinxn,uN
n =

(
e−1 −1

)
sinxn,0 � n � M,

uk
0 = uk

M = 0,−N ≤ k ≤ N.

(7)

In the first step, we will obtain
{{

ωk
n
}N

k=−N

}M

n=0
as solution of nonlocal boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωk+1
n −2ωk

n+ωk−1
n

τ2 +2
ωk+1

n −ωk−1
n

2τ − 1
2

(
ωk+1

n+1−2ωk+1
n +ωk+1

n−1

h2 +
ωk−1

n+1−2ωk−1
n +ωk−1

n−1

h2

)
= pn − sinxn,1 ≤ k ≤ N −1,1 ≤ n ≤ M−1,

−ωk+1
n −2ωk

n+ωk−1
n

τ2 − ωk
n+1−2ωk

n+ωk
n−1

h2

= pn − sinxn,−N +1 ≤ k ≤−1,1 ≤ n ≤ M−1,
−3ω0

n +4ω1
n −ω2

n = 3ω0
n −4ω−1

n +ω−2
n ,0 � n � M,

ω0
n = 0,ω−N

n = (e−1)sinxn,ωN
n =

(
e−1 −1

)
sinxn,0 � n � M,

ωk
0 = ωk

M = 0,−N ≤ k ≤ N.

(8)

Here, ωn
k denotes the numerical approximation of ω(t,x) at (tk,xn). For obtaining the solution of DS (8), we can write

it in the matrix form as {
Aωn+1 +Bωn +Cωn−1 = Fn,1 ≤ n ≤ M−1,
ω0 = ωM = 0,

(9)
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where A,B,C are (2N +1)× (2N +1) square, and Fn,ωs,s = n,n±1 are (2N +1)×1 column matrices

A =C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 0 0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 t 0 t 0 · · · 0 0 0
0 0 0 · · · 0 0 0 t 0 t · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 0 0 0 0 · · · t 0 0
0 0 0 · · · 0 0 0 0 0 0 · · · 0 t 0
0 0 0 · · · 0 0 0 0 0 0 · · · t 0 t
0 0 0 · · · 0 0 0 0 0 0 · · · 0 0 0
0 b 0 · · · 0 0 0 0 0 0 · · · 0 0 0
0 0 b · · · 0 0 0 0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · b 0 0 0 0 0 · · · 0 0 0
0 0 0 · · · 0 b 0 0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0 0 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2N+1)×(2N+1)

with AN+i,i = b and Ai,N+i−1 = Ai,N+i+1 = t for i = 2, ...,N.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 · · · 0 0 1 0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 d c a 0 · · · 0 0 0
0 0 0 · · · 0 0 0 d c a · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · 0 0 0 0 0 0 · · · a 0 0
0 0 0 · · · 0 0 0 0 0 0 · · · c a 0
0 0 0 · · · 0 0 0 0 0 0 · · · d c a
0 0 0 · · · −1 4 −6 4 −1 0 · · · 0 0 0
g j g · · · 0 0 0 0 0 0 · · · 0 0 0
0 g j · · · 0 0 0 0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · j g 0 0 0 0 · · · 0 0 0
0 0 0 · · · g j g 0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 1 0 0 0 · · · 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2N+1)×(2N+1)

,

with BN+i,i = j,BN+i,i−1 = BN+i,i+1 = g, and Bi,N+i−1 = d,Bi,N+i = c,Bi,N+i+1 = a for i = 2, ...,N.

Fn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− e1)sinxn
−sinxn

...
−sinxn

0
−sinxn

...
−sinxn

(1− e−1)sinxn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2N+1)×1

,ωs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1
s

ω2
s
...

ωN−1
s
ωN

s
ωN+1

s
...

ω2N
s

ω2N+1
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2N+1)×1

.

Here,

a = 1
τ2 +

1
τ +

1
h2 ,b =− 1

h2 ,c =− 2
τ2 , t =− 1

2h2 ,

d = 1
τ2 − 1

τ +
1
h2 ,g =− 1

τ2 ,z =
2
τ2 +

2
h2 .

For the solution of the matrix equation (9), we use the modified Gauss elimination method. We seek a solution of the
matrix equation (9) by the following form

ωn = αn+1ωn+1 +βn+1, n = M−1, ...,1,0, (10)
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TABLE 1. Error analysis

N = M = 20 N = M = 40 N = M = 80 N = M = 160

‖Eω‖∞ 0.0054 0.0014 3.4447e−04 8.6605e−05
‖Ep‖∞ 0.0028 7.2547e−04 1.8454e−04 4.6572e−05
‖Eu‖∞ 7.5025e−04 1.9041e−04 4.7966e−05 1.2041e−05

where αn (1 ≤ n ≤ M−1) are (2N +1)× (2N +1) square matrices and βn (1 ≤ n ≤ M−1) are (2N +1)×1 column
vectors, calculated as ⎧⎨

⎩
αn+1 =−QnA, βn+1 = Qn(DFn −Cβn),

Qn = (B+Cαn)
−1, n = 1,2, ...,M−1.

Here, D and α1 are identity (2N + 1)× (2N + 1) square matrix, and β1 is (2N + 1)× 1 column vector with zero
elements.

In the second step, using (6), we get

pn =
ω2N+1

n+1 −2ω2N+1
n +ω2N+1

n−1

h2
− e−1 sinxn+1 −2sinxn + sinxn−1

h2
,1 ≤ n ≤ M−1.

In the third step, using (4), we get

−qn+1 −2qn +qn−1

h2
= pn,1 ≤ n ≤ M−1,q0 = qM = 0. (11)

In the fourth step, using (3), we obtain

uk
n = ωk

n +qn,n = 0,1, ...,M,k =−N, ...,N. (12)

Finally, we compute the error between the exact solution and numerical solution by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖Eω‖∞ = max
−N≤k≤N,0≤n≤M

∣∣ω (tk,xn)−ωk
n
∣∣ ,

‖Eu‖∞ = max
−N≤k≤N,0≤n≤M

∣∣u(tk,xn)−uk
n
∣∣ ,

‖Ep‖∞ = max
−N≤k≤N,0≤n≤M

|p(xn)− pn| ,

where ω (t,x) ,u(t,x) , p(x) represent the exact solutions, ωk
n and uk

n represent the numerical solutions at (tk,xn), and
pn represent the numerical solutions at xn. The numerical results are given in the Table 1. As it is seen in Table 1, if N
and M are doubled, the values of errors decrease by a factor of approximately 1/4.
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Abstract. In this study, we developed a mathematical model to study the transmission dynamics of HIV infection and analyzed
the effect of horizontal and vertical transmission in Turkey. We fit the model by using confirmed HIV cases of both vertical and
horizontal transmission between 2011 and 2018. By using the next generation operator, we obtained the basic reproduction number
of the model which shows whether the disease persists or dies out in time. Further, the most sensitive parameters, that are efficient
for the control of the infection, obtained by using forward normalized sensitivity index. The results obtained with the aid of mesh
and contour plots.

INTRODUCTION

Human Immuno-deficiency Virus(HIV) intends to reduce or destroy the human defense mechanisms to prevent fight-
ing with infections or any other diseases and the progression of this virus occurred as a result of infecting the CD4+
T-cells of the organism [1, 2]. CD4+ T-cells shows how active and functioning the immune system is [3, 4]. HIV is
the virus that causes Acquired Immune Deficiency Syndrome(AIDS), which is the most advanced phase of the HIV
infection [5].

HIV can be transmitted through direct contact with contaminated blood products, such as syringes or needles,
contaminated transfusion, unprotected sexual intercourse, and breastfeeding or as a vertical transmission during birth
[6]. It was discovered in United States of America in the early 1980s. In 2014, it was reported that the number of
people that are living with HIV was 35 million [5]. In 2015, with 150000 newly infected children, 1.8 million children
were living with HIV according to the UNAIDS and 110000 children died because of AIDS-related diseases [7]. This
data shows that AIDS has become one of the major death causes. In each day about 1500 children get newly infected
[8].

Several mathematical models have been developed and used to gain insight into the transmission dynamics of HIV
in human population (see, for instance, [2, 5, 7, 9, 10] and some of the references therein). However, none of these
studies the dynamics of HIV transmission with effect of both vertical and horizontal transmission. The purpose of the
current study is to design, and analyse, a new realistic model (which extends some of the aforementioned studies in
the literature) for HIV transmission dynamics.

In this paper, first the epidemic model is developed and analyzed. Then, model fitting is presented. After that we
showed the sensitivity analysis. Lastly, we presented the concluding remarks.

MODEL FORMULATION

We proposed a mathematical model to monitor the dynamics of both vertical and horizontal transmissions of HIV
infections at a time t. The total population N(t) is divided into four different classes as susceptible adults S(t),
infected adults I(t), new born child with no HIV infection C(t), and new born child with HIV infection Ic(t).

We constructed the following system.
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FIGURE 1. Flow diagram of the model
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dS
dt = Π−λS− (δ1 +μ)S,

dI
dt = λS− (μ +α1 +δ2 +δ3)I,

dC
dt = δ1S+δ2I −μC,

dIc
dt = δ3I − (μ +α2)Ic,

(1)

where λ = β I
N is the force of infection.

TABLE 1. Variables of the model
Variables Descriptions

N Total human population
S(t) Susceptible Adults(Both female and male)
I(t) Infected Adults with HIV(Both female and male)
C(t) New born child
Ic New born child with HIV infection

TABLE 2. Parameters of the model
Parameters Descriptions

φ Recruitment rate of both adults and new born children
β Transmission or successful contact rate
α1 HIV induced mortality rate of an adult
α2 HIV induced mortality rate of a new born child
μ Natural death for adults
k Natural death for new born children
δ j( j = 1,2,3) Progression rates

FUNDAMENTAL PROPERTIES OF THE MODEL

In this section, we will state the theorems that we used.

Theorem 1 Suppose that, initially the data S(0) > 0,I(0) > 0,C(0) > 0,Ic(0) > 0. Then the solutions of the model
(S, I,C, Ic) are positive for all time t > 0, moreover,
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lim
t→∞

supN(t)≤ Π
μ
,where,N = S+ I +C+ Ic.

Theorem 2 The solutions of the system (1) are said to be feasible for all 0 ≤ t whenever they enter the invariant
region Ω.

Disease-free Equilibrium(DFE) and Local Stability

The disease-free equilibrium of model (1) exists and can be obtained by setting the R.H.S of the system (1) to zero as

χ0 = (S, I,C, Ic) =

(
Π
μ
,0,0,0

)
.

By using the next generation method [12], we calculated the basic reproduction as

R0 =
β

α1 +δ2 +δ3 +μ
. (2)

Endemic Equilibrium

The endemic equilibrium (EE) of the model exist only when I �= 0, C �= 0, and Ic �= 0. This means that there exists a
persistence of the HIV infection in the populace, and it is denoted by χ∗ = (S∗, I∗,C∗, I∗c ). In our model, EE calculated

as χ∗ = (S∗, I∗,C∗, I∗c ) =
(

π
λ+μ−α1

, λπ
(μ−δ3−δ2+α1)(λ+μ−α1)

, π(λδ2+μδ1+α1δ1−δ1δ2−δ1δ3)
μ (μ−δ3−δ2+α1)(λ+μ−α1)

, δ3λ π
(μ−δ3−δ2+α1)(μ+α2)(λ+μ−α1)

)
.

MODEL FITTING

This section explains the fitting of parameters involved in (1) based upon the real cases of HIV(CD4+) in Turkey
for both vertical and horizontal cases between 2011 and 2018. The objective function yields to relatively small error
having the value 0.000009. The Figure 2 shows the real HIV(CD+4) cases by black cycles whereas the best fitted
curve of the model is shown by the black solid line. The biological parameters included in the model are listed in
Table 3 along with their best estimated values obtained via least-squares technique. These parameters have finally
produced the value of the basic reproduction number equivalent to R0 = 1.23.

TABLE 3. Values of the parameters of the proposed HIV model

Parameters Values Source

Π 35 Estimated
β 0.0071 Estimated

α1 0.000129 Fitted
α2 0.000234 Fitted
μ 0.0052 [2]
k 0.0092 [7]

δ1 0.00011 Fitted
δ2 0.00000011 Fitted
δ3 0.00044 Fitted
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FIGURE 2. Data fitting for the real cases of TB(CD4+) in Turkey for both vertical and horizontal cases from 2011 to 2018

SENSITIVITY ANALYSIS

In this section we used the local sensitivity analysis method to outline the sensitivity of the R0 to certain key associated
parameters of the proposed HIV model. R0 was obtained and described as a parameter-dependent output of the model
and the severity indicator of the HIV infection, the main way of curtailing and spreading the HIV infection in the
population is to lower this reproduction number below unity. Therefore, it became crucially important to investigate
the relationship between the parameters of the model and R0. Our main concern here is to explain the sensitivity
of R0 with respect to the significant parameters used in the model (1). The set of input parameters relative to R0 is
σ = {β ,μ,δ1,δ2,δ3,α1,}.

Typically, if a model has different parameters, variations in parameters might not always affect the outcome due to
variance in the sensitivity of the parameters. So, those with positive sign are considered as highly and proportionally
sensitive for increasing the value of R0 while those with negative sign are sensitive for the decrease of R0 value and
the other category are neutrally sensitive (with zero relative sensitivity) [11, 13]. We denote the normalized local

sensitivity index of the output R0 with respect to a parameter (γ) by ΩR0
γ , where γ ∈ σ . Using the above definition, we

compute the following indices for the output R0 with respect to every parameter presented in Table 3.

TABLE 4. Forward Normalized Sensitivity Indices

Parameters Elasticity Indices Values of the Elasticity Index

β ˙ΩR0

β 1.000

μ ˙ΩR0
μ -0.002

δ2
˙ΩR0

δ2
-0.285

δ3
˙ΩR0

δ3
-0.585

α1
˙ΩR0
α1

-0.109

CONCLUSION

In this study, we developed a mathematical model to study the transmission dynamics of HIV infection and analyzed
the effect of horizontal and vertical transmission in Turkey. We fit the model with the use of confirmed HIV cases of
both vertical and horizontal transmission from 2011 to 2018. Using the next generation operator, we obtained the R0

of the model which shows whether the disease persist or dies out in time. Further analysis shows that, the model is
locally asymptotically stable when R0 < 1 and unstable when R0 > 1. The most sensitive parameters that are efficient
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FIGURE 3. Plot diagram for elasticity index values

for the control of the infection obtained by using forward normalized sensitivity index. The results obtained with the
aid of mesh and contour plots, which shows that decreasing the values of transmission rate, disease induced mortality
rates and progression rate play a significant role in controlling the spread of HIV transmission.
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Abstract. In this paper, difference schemes of the high-order finite element method for the Sobolev type equation are constructed
and investigated. In particular, boundary value problems for the two-temperature plasma equation are considered. A high order
of accuracy of the scheme is achieved by special sampling of time and space variables. The stability and convergence of the
constructed algorithms are proved. A priori estimates are obtained in various norms, which are used later to obtain estimates of the
accuracy of the scheme under weak assumptions about the smoothness of solutions to differential problems.

INTRODUCTION

The solution of complex applied problems requires the creation of more accurate numerical algorithms or improving
existing ones. It manifests itself especially in the study of complex non-stationary processes, for example, as boundary
value problems for linear partial differential equations that are unsolvable with respect to the highest time derivative,
which are called Sobolev type equations. These are problems of geophysics, oceanology, atmospheric physics, physics
of magnetically ordered structures, related to wave propagation in media with strong dispersion, and many others [1,
2, 3, 4, 5, 6].

This paper deals with the construction and research of difference schemes of increased accuracy of boundary value
problems for the non-stationary equation of two-temperature plasma.

PROBLEM STATEMENT

The equation describing low-frequency electronic magneto-sound waves has the form [3]:

∂ 2

∂ t2
Δ2Φe +

u2
Ae

c2

∂ 2

∂ t2

(
Δ3Φe − 1

r2
De

Φe

)
+ω2

Be

∂ 2Φe

∂x2
3

=
u2

Ae

c2
divF(x, t). (1)

The equation describing low-frequency ion magneto-sound waves has the form

∂ 2

∂ t2
Δ2Φi +

u2
Ai

c2

∂ 2

∂ t2

(
Δ3Φi − 1

r2
Di

Φi

)
+ω2

Bi

∂ 2Φi

∂x2
3

=
u2

Ai

c2
divF(x, t). (2)

Here Φe(x, t) are electric fields of electrons, Φi(x, t) are electric fields of ions, Δpu = div
(|∇u|p−2∇u

)
is pseu-

dolaplacian, r2
De

= T 2
e /(4πe2n0) is square of the electronic Debye radius, r2

Di
= T 2

i /(4πe2n0) is square ionic ra-

dius of debye,uAe = B0/(4πn0M) is alfven speed for electrons, uAi = B0/(4πn0M) is alfven speed for ions, ωBe =
eB0/(mc), ωBi = ZeB0/(Mc) are the Larmor frequencies of electrons and ions ( m and M their mass, respectively), c
is the speed of light in a vacuum, Z is the ratio of the charges of an ion and an electron, B0 is an external constant mag-
netic field, n0 is the unperturbed particle density, e is absolute value of the electron charge, Te is electron temperature,
Ti is the temperature of the ions.

Initial conditions for (1) and (2) are, respectively,

∂ k

∂ tk Φe(x, t)
∣∣∣∣
t=0

= 0, k = 0,1,
∂ k

∂ tk Φi(x, t)
∣∣∣∣
t=0

= 0, k = 0,1. (3)

In addition, some boundary conditions are added to the above equations.
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The existence and uniqueness of solutions to such problems were considered in [1, 2, 3].
Equations (1), (2) are written in the following general form:

∂ 2

∂ t2

(
Δ3u−ρ2u

)
+ω2 ∂ 2

∂ t2
(Δ2u)+θ 2Δ1u = f (x, t), (x, t) ∈ QT , (4)

where ρ2,ω2,θ 2 are const > 0, depending on debye’s radius or from the alfven-speed, ω2 is Langmuir’s frequency,
Ω = {0 < xk < lk,k = 1,2,3}, QT = {(x, t) : x ∈ Ω, t ∈ (0,T ]}, Δ3 = ∂ 2/∂x2

1 + ∂ 2/∂x2
2 + ∂ 2/∂x2

3,Δ2 = ∂ 2/∂x2
1 +

∂ 2/∂x2
2,Δ1 = ∂ 2/∂x2

3, f (x, t) are the right-hand parts (1), (2), correspondingly.
Equation (4) is supplemented with the following initial and boundary conditions:

u(x, t)
∣∣∣∣
∂Ω

= 0,∀t ∈ [0, t], u(x,0) = u0(x),
∂u(x,0)

∂x
= u1(x). (5)

We formulate a generalized statement of the problem (4), (5). Let us call the function a generalized solution of
the problem u(x, t), which at each t ∈ (0,T ] belongs to H = {u ∈ W 1

2 (Ω),u = 0,x ∈ G = ∂Ω}, has a derivative
∂ 2u
∂ t2 ∈W 1

2 (Ω) and almost everywhere for everyone t ∈ (0,T ] fulfil the relations:

a3

(
d2u(t)

dt2
,v
)
+a2

(
d2u(t)

dt2
,v
)
+a1 (u(t),v) = ( f (t),v) , (6)

(u(0)−u0,v) = 0,

(
du
dt

(0)−u1,v
)
= 0, ∀v(x) ∈ H. (7)

Here

a3(u,v) =
∫

Ω

3

∑
k=1

(
uxk vxk −ρ2uv

)
dx, a2(u,v) = ω2

∫
Ω

2

∑
k=1

uxk vxk dx, a1(u,v) = θ 2
∫

Ω
ux3

vx3
dx;

u = u(t) is the function of abstract argument t ∈ [0,T ] with the meaning in H.

We denote ‖u‖1 =

√∫
Ω

(
∑3

k=1

(
uxk

)2
+u2

)
dx norm in H. It is obvious that 0 ≤ a1(u,u)≤C1‖u‖2

1,0 ≤ a2(u,u)≤
C2‖u‖2

1,c3‖u‖2
1 ≤ a3(u,u)≤C3‖u‖2

1, where C1,C2,C3,c3 are positive constants that depend on θ ,ρ,ω .

DISCRETIZATION BY SPACE AND TIME

We discretize the problem by spatial variables using the finite element method. Let Hh ⊂ H multiple view elements
vh = ∑M

m=1 amΦm(x). Here {Φm = Φm(x)}M
m=1 is a basis of piecewise polynomial functions that are a polynomial of

degree p on each finite element [7, 8].
We give an example of a basis based on polynomials of the third degree. Let us introduce a partition of the area Ω

on M = N1 ∗N2 ∗N3 parallelepipeds:

Ωi jk = {(i−1)h1 ≤ x1 ≤ ih1,( j−1)h2 ≤ x2 ≤ jh2,(k−1)h3 ≤ x3 ≤ kh3},
i = 1,N1, j = 1,N2,k = 1,N3,hs = ls/Ns,s = 1,2,3.

Let us choose a system of basic functions:

Φi jk(x1,x2,x3) = φi(x1)φ j(x2)φk(x3), i = 1,N1, j = 1,N2,k = 1,N3,

where φl(x) is a basic function based on B3 - spline [7]. In this case p = 3.
Let us set for (6), (7) a semi-discrete problem for t ∈ [0,T ]:

a3

(
d2uh(t)

dt2
,vh

)
+a2

(
d2uh(t)

dt2
,vh

)
+a1 (uh(t),vh) = ( f (t),vh) , (8)

(uh(0)−u0,vh) = 0,

(
duh

dt
(0)−u1,vh

)
= 0, ∀vh(x) ∈ Hh. (9)
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The problem (8), (9) corresponds to the Cauchy problem:

D
d2uh(t)

dt2
+Auh(t) = fh(t), uh(0) = u0,h,

duh

dt
(0) = u1,h. (10)

Operators D,A operate from Hh to Hh. They correspond to the stiffness matrix D = (a3(φl ,φm)+(a2(φl ,φm))
M
l,m=1

and A = (a1(φl ,φm))
M
l,m=1. Besides that, uk,h = Phuk(x),k = 0,1, where Ph is an operator of the form PhH = Hh.

We approximate the problem (10) in time with the difference scheme [9]:

Dγ ẏt +Ay(0.5) = φ1, Dα yt −Dβ ẏ(0.5) = φ2, y0 = u0, ẏ0 = u1. (11)

Here y = yn = y(tn), ẏ = ẏn = dy
dt (tn), Dγ = D− γτ2A, Dβ = D−βτ2A, yt =

(
yn+1 − yn

)
/τ, ẏt =

(
ẏn+1 − ẏn

)
/τ ,

y(0.5) =
(
yn+1 + yn

)
/2, ẏ(0.5) =

(
ẏn+1 + ẏn

)
/2, yn, ẏn ∈ Hh, n = 0,1, .... Further Φk =

∫ 1
0 f (tn + τξ )vk(ξ )dξ , k =

1,2, ξ = (t − tn)/τ, v1(ξ ) = 1, v2(ξ ) = s1v(1)2 (ξ ) + s2v(2)2 (ξ ), v(1)2 (ξ ) = τ(ξ − 1/2), v(2)2 (ξ ) = τ(ξ 3 − 3ξ 2/2+
ξ/2), s1 = 180β −40α , s2 = 1680β −280α .

Parameters α,β ,γ subject to the condition of the fourth order of approximation

α +β = γ +1/6. (12)

ACCURACY RESEARCH OF DISCRETIZATION IN SPACE-BASED SAMPLING

Theorem 1. Let u(x, t), ∂u
∂ t (x, t) ∈C

(
[0,T ];W p+1

2 (Ω)∩H
)
. If space is narrowed Hh on a separate finite element is a

polynomial of degree p, then for solving the problem (6), (7) there is an accuracy estimation

‖u(x, t)−uh(x, t)‖1 ≤ Mhk

⎛
⎝max

t ′
‖∂u

∂ t
(x, t ′)‖k+1 +

√∫ t

0
‖∂u

∂ t
(x, t ′)‖2

k+1dt ′+
√∫ t

0
‖u(x, t ′)‖2

k+1dt ′

⎞
⎠ ,

∀t ∈ [0,T ],M = M(T,ρ,θ ,ω)> 0.

Proof. Integrate identities (6), (7) and (8), (9) by t from tn till tn+1 = tn + τ . Applying the integration formula in parts
and subtracting both obtained identities, we get:∫ tn+1

tn
[−a3(u̇− u̇h, v̇h)+a2(u̇− u̇h, v̇h)+a1(u−uh,vh)]dt

+a3(u̇− u̇h,vh)
∣∣tn+1

tn
+a2(u̇− u̇h,vh)

∣∣tn+1

tn
= 0,∀vh(x) ∈ Hh. (13)

Denote eh = u−uI ,ξh = uI −uh,zh = u−uh = eh +ξh, where uI = Phu(x, t). Choose vh(t) =−∫ s
t ξh(t ′)dt ′ ∈ Hh, t <

s;vh(t) = 0, t ≥ s. It is clear that v̇h(t) = ξh(t).
Enter the function wh(t) =

∫ t
0 ξh(t ′)dt ′ ∈ Hh, t < s;wh(t) = 0, t ≥ s, which is related to other functions in this

way:ẇh(t)= ξh(t),vh(t)=wh(t)−wh(s). Taking into consideration (ξ̇h,ξh)= 0.5 d
dt (ξh,ξh),ak(v̇h,vh)= 0.5 d

dt ak(vh,vh),

k = 1,2,3 and ξh(0) = 0,vh(s) = 0,vh(0) =wh(s), with summation (13) by n= 0,m−1, where number m corresponds
to a point in time s = mτ, we get the following energy identity:

0.5a3(ξh,ξh)(s)+0.5a2(ξh,ξh)(s)+0.5a1(wh,wh)(s) =−a3(ėh(0),wh(s))

−a2(ėh(0),wh(s))−
∫ s

0
[a3(ėh,ξh)+a2(ėh,ξh)−a1(eh,wh(t)−wh(s))]dt.

Evaluating the terms on the right-hand side using ε - inequality and taking into account Grönwall’s lemma, we estimate

a3(ξh,ξh)(s)+a2(ξh,ξh)(s)+a1(wh,wh)(s)≤ M(a3(ėh(0), ėh(0))+a2(ėh(0), ėh(0))

+
∫ s

0
a3(ėh, ėh)dt +

∫ s

0
a2(ėh, ėh)dt +

∫ s

0
a1(eh,eh)dt),

where M is permanent. From here, since 0 ≤ a1(u,u)≤C1‖u‖2
1, we have:

‖ξh(s)‖2
1 ≤ M

(
‖ėh(0)‖2

1 +
∫ s

0
‖ėh(t)‖2

1dt +
∫ s

0
‖eh(t)‖2

1

)
. (14)
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For the solution u(x, t), u̇(x, t) ∈W k+1
2 (Ω),∀t ∈ [0,T ] there are assessments [8]: ‖eh(t)‖1 ≤ Mhk‖u(t)‖k+1,‖ėh(t)‖1 ≤

Mhk‖u̇(t)‖k+1. Therefore, based on (14) and the triangle inequality ‖zh‖ ≤ ‖eh‖+ ‖ξh‖ there is a statement of the
theorem. �

ACCURACY RESEARCH OF DISCRETIZATION IN TIME

Theorem 2. Let D∗ = D > 0,A∗ = A > 0. Apart from that, let the approximation (12) and stability conditions be met

D−μτ2A ≥ εD, ∀ε ∈ (0,1), μ = max{α,βγ,0}. (15)

Then for the solution of the scheme (11) approximating the solution of the problem (10) such that d4uh
dt4 (t) ∈ C[0,T ],

the accuracy score is correct

‖uh(t)− y(t)‖1 ≤ Mτ3

√∫ t

0
‖d4uh

dt4
(t ′)‖2

1dt ′.

Proof. Let y = y(x, t) ∈ Hτ
h = Hh ⊗Hτ . As usual we denote eτ = y−uτ ,ξτ = uτ −uh,ζτ = y−uh = eτ +ξτ , where

uτ(t) = un
hφ n

00(t)+ u̇n
hφ n

10(t)+un+1
h φ n

01(t)+ u̇n+1
h φ n

11(t).

Being that ζτ(t) = ξτ(t)+ eτ(t), then for vτ(t) =−∫ s
t ξτ(t)dt ′, t < s;vτ(t) = 0, t ≥ s we get the energy identity:

0.5a3(ξτ ,ξτ)(s)+0.5a2(ξτ ,ξτ)(0)+0.5a1(vτ ,vτ)(0)

= a3(ėτ ,vτ)(0)+a2(ėτ ,vτ)(0)+
∫ s

0
[a3(ėτ ,ξτ)+a2(ėτ ,ξτ)−a1(eτ ,vτ)]dt.

Denote wτ(t) =
∫ t

0 ξτ(t ′)dt ′, t < s,wτ(t) = 0, t ≥ s and note, that ėτ(0) = u̇h(0)− u̇τ(0) = u1,h−u1,h = 0. Then from
the last identity we get the main energy identity for the error ξτ(t):

0.5a3(ξτ ,ξτ)(s)+0.5a2(ξτ ,ξτ)(s)+0.5a1(wτ ,wτ)(s)

=
∫ s

0
[a3(ėτ ,ξτ)+a2(ėτ ,ξτ)−a1(eτ ,wτ(t)−wτ(s))]dt.

From this identity we get an estimate

‖ξτ(s)‖2
1 ≤ M

(∫ s

0
‖ėτ(t)‖2

1dt +
∫ s

0
‖eτ(t)‖2

1dt
)
.

The linear and bounded functions ėτ(t),eτ(t) vanish on polynomials up to the third degree including the variable t.
Then, based on the Bramble-Hilbert lemma [10], for example, we have

∫ s

0
‖eτ(t ′)‖2

1dt ′ ≤ M2τ8
∫ s

0
‖d4uh

dt4
(t)‖2

1dt.

However

∫ s

0
‖ėτ(t ′)‖2

1dt ′ ≤ M2τ6
∫ s

0
‖d4uh

dt4
(t)‖2

1dt.

From here, given ‖y−uh‖ ≤ ‖eτ‖+‖ξτ‖, we get a statement of the theorem. �
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ON THE CONVERGENCE OF THE SCHEME

Note that in the evaluation of Theorem 2, the error depends on the solution uh(t) of semi-discrete problem (10),whereas
it is desirable to have smoothness requirements for solving the original problem (4). To do this, use the estimate [8]:

‖uh‖k = ‖u−u+uh‖k ≤ ‖u‖k +‖u−uh‖k ≤ ‖u‖k +Ch|u|k+1 ≤C‖u‖k+1,k = 0,1.

Constant C does not depend on h.
Therefore, the estimate in Theorem 2 will take the form

‖uh(t)− y(t)‖1 ≤ Mτ3

√∫ t

0
‖∂ 4u

∂ t4
(x, t ′)‖2

2dt ′.

Based on Theorems 1 and 2, a statement takes place.

Theorem 3. Let the conditions of Theorem 2 will be fulfilled. Then for the solution of the scheme (11) approxi-
mating the solution of the problem (4) such that u(x, t), ∂u

∂ t (x, t) ∈C{[0,T ];W 2
2 (Ω)}, ∂ 4u

∂ t4 (x, t) ∈C{[0,T ];W 2
2 (Ω)}, the

accuracy estimation is correct:

‖u(x, t)− y(x, t)‖1 ≤ M
{

hk

(
max

t
‖∂u

∂ t
(x, t)‖k+1 +

√∫ t

0
‖u(x, t ′)‖2

k+1dt ′
)

+τ3

√∫ t

0
‖∂ 4u

∂ t4
(x, t ′)‖2

2dt ′
}
,∀t ∈ [0,T ],M = M(T,ρ,θ ,ω0)> 0.

When selecting on each finite element of the space of a polynomial of degree k = 3 we obtain the third order of
accuracy for both steps h,τ .

Make sure that the stability condition (15) holds. Let us represent the operators of the scheme (11) as

D = (1+ω2)(A1 +A2)+A3 +ρ2E,A = θ 2A3,

where operators Ak ≥ 0 correspond to the stiffness matrix Ak = (bk(φl ,φm))
M
l,m=1 with the bilinear form bk(u,v) =∫

Ω
(
uxk ,vxk

)
dx. Condition (15) takes the form

(1− ε)[(1+ω2)(A1 +A2)+A3 +ρ2E]−μτ2θ 2A3 ≥ 0.

To fulfill it, it is sufficient that

τ2 ≤ 1− ε
μθ 2

, where 0 < ε < 1.

The last condition is interesting because the time step is not related to the space step and is determined by the
parameters of the problem. For scheme parameters (11), for instance, at α = 1/8,β = 1/24 we have μ = 1/8. So

finally τ ≤ 2
√

2(1−ε)
θ .

ALGORITHM FOR IMPLEMENTING THE SCHEME

To implement the scheme (11), it is necessary to solve a system of two equations with respect to unknowns ŷ, ˆ̇y:

m11 ˆ̇y+m12ŷ = Φ1, m21 ˆ̇y+m22ŷ = Φ2, (16)

m11 = D− τ2γA,m12 = 0.5τA,m21 =−0.5τ(D−βτ2A),m22 = D−ατ2A,

Φ1 = τφ1 −0.5τAy+(D− τ2γA)ẏ,Φ2 = τφ2 +(D−ατ2A)y+0.5τ(D−βτ2A)ẏ.
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The parameters α,β ,γ are subject to the fourth-order approximation condition of the scheme (11). Further, for
definiteness, α = 1/8,β = 1/24,γ = 1/12.

With the exception of (11) ˆ̇y, we get the equation for finding ŷ:

Cŷ = F, (17)

where C = m22m11 −m12m21 = D2 − (α + γ −1/4)τ2AD+(αγ −β/4)τ4A2,F = m12Φ2 −m22Φ1.
The first algorithm for implementing the scheme (16) consists of directly solving the equation (17), and then

calculating ˆ̇y from the first equation in (16):

(D− τ2γA) ˆ̇y = Φ1 −0.5τAŷ.

The second algorithm for implementing the scheme (16) is reduced to solving two equations at each step in time:

Cyn+1 = F1,Cẏn+1 = F2,

where C = D2 − (α −1/6)τ2AD+(α/12−β/4)τ4A2, and the right-hand parts F1,F2 calculated by known yn, ẏn and
φ1,φ2.

The matrix C is factorized C =C1C2 = (D−σ1A)(D−σ2A), where σ1,σ2 are the roots of the equation σ2 +(α +
γ −1/4)σ +(αγ −β/4) = 0.

For α = 1/8,β = 1/24, for example, we have σ1 =−1/24,σ2 = 0. Then there will be this

yn+1 =C−1F1 =C−1
2 C−1

1 F1, ẏn+1 =C−1
2 C−1

1 F2.

For matrix inversion C1,C2 the direct square root method is applied once at the initial point in time. On the other
layers, the solution is found by multiplying the matrix C−1 =C−1

2 C−1
1 on the vector F1,F2.

REMARK

The scheme (11) has certain advantages over other schemes: a) a scheme of high order of accuracy (above two); b)
in addition to the solution itself, at the same time its derivative (speed) is found with the same accuracy; c) using the
interpolation representation

y(t) = ynφ n
00(t)+ ẏnφ n

10(t)+ yn+1φ n
01(t)+ ẏn+1φ n

11(t),φ
n
00(t) = 2ξ 3 −3ξ 2 +1,φ n

01(t) = 3ξ 2 +2ξ 3,

φ n
10(t) = τ(ξ 3 −2ξ 2 +ξ ),φ n

11(t) = τ(ξ 3 −ξ 2),

if necessary, we can obtain a solution and its derivative at any time; d) since the schemes are two-layer, it is possible
to use a variable pitch without loss of accuracy; e) the scheme is conditionally stable and requires 4 times more
arithmetic operations than usual, but this scheme for achieving a certain accuracy allows you to choose large steps in
time.
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Abstract. In this paper, we shall establish the existence and uniqueness of fixed point of a Chatterjea - type contraction in Cone
rectangular metric spaces over Banach algebras. We shall further give an example to illustrate our main results. Our results extend
and generalize some results in the literature.

INTRODUCTION AND PRELIMINARIES

In 1972, Chatterjea [1] proved the following fixed point theorem:

Theorem 1 ( [1]) Let (K,η) be a complete metric space. Suppose that the mapping J : K → K satisfies the following
contractive condition

η(Jy,Jz)� γ[η(Jy,z)+η(Jz,y)], for all y,z ∈ K, (1)

where 0 ≤ γ < 1/2 is a constant. Then J has a unique fixed point in K.

The following definitions and Lemmas will be needed in the sequel.

Definition 1 ( [2]) A Banach algebra B is a real Banach space in which an operation of multiplication is defined
subject to the following properties, for all x,y,z ∈ B, λ ∈ R :
(1) (xy)z = x(yz); (2) x(y+ z) = xy+ xz and (x+ y)z = xz+ yz;
(3) λ (xy) = (λx)y = x(λy); (4) ‖xy‖ ≤ ‖x‖ ‖y‖.

Definition 2 ( [4]) A subset C of Banach algebra B is called a cone if:
(1)C is nonempty, closed and {θ ,e} ⊂C;
(2) k1C+ k2C ⊂C for all nonnegative real numbers k1,k2;
(3) C2 = CC ⊂ C; (4) C∩ (−C) = {θ}, where θ and e denote the zero and unit elements of the Banach algebra B,
respectively.
For a given cone C ⊂ B, we write y � z if and only if z− y ∈ C, where � is a partial order relation defined on C.
We shall write y ≺ z to indicate that y � z but y 	= z, while y 
 z will stand for z− y ∈ intC, where intC denotes the
interior of C. If intC 	=∅ then C is called a solid cone.

The cone C is called normal if there is a number N such that, for all y,z ∈ B,

θ � y � z =⇒‖y‖ ≤ N‖z‖.
Definition 3 ( [5]) Let S be a solid cone in a Banach algebra B. A sequence {yi} ⊂ S is said to be a c-sequence if for
each θ 
 c there exists n0 ∈ N such that yi 
 c for all i > n0.

Lemma 1 ( [5]) Let S be a solid cone in a Banach algebra B and {yi} ⊂ S be a sequence with ‖yi‖→ 0 (i → ∞), then
for each θ 
 c, there exists n0 ∈ N such that for all i > n0, we have yi 
 c.

Lemma 2 ( [2]) Let B be a Banach algebra with a unit element e and γ ∈ B. If the spectral radius δ (γ) of γ is less
than one, i.e. δ (γ) = limn→∞ ‖γn‖ 1

n = in fn∈N‖γn‖ 1
n < 1, then (e−γ) is invertible in B. Moreover, (e−γ)−1 =∑∞

j=0 γ j.

Lemma 3 ( [5]) If the spectral radius δ (γ)< 1, then
(1) ‖γ i‖→ 0 (i → ∞)
(2) δ [(e− γ)−1]≤ [1−δ (γ)]−1.
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Lemma 4 ( [7]) Let B be a real Banach algebra with a solid cone S. For a,b,c,γ ∈ S, if
(1) a � b 
 c, then a 
 c. (2) θ � a 
 c, for each θ 
 c, then a = θ . (3) a � γa and δ (γ)< 1, then a = θ .

Definition 4 ( [4]) Let Z be a nonempty set and B be a Banach algebra. Suppose that the mapping ρ : Z ×Z → B
satisfies, ∀x,y,z ∈ Z , the following conditions:
(C1) θ � ρ(x,y) and ρ(x,y) = θ ⇔ x = y;
(C2) ρ(x,y) = ρ(y,x);
(C3) ρ(x,y)� ρ(x,z)+ρ(z,y) (Triangle inequality).
Then ρ is called a cone metric on Z , and (Z ,ρ) is a cone metric space over Banach algebra B.

Remark 1 A metric space is a cone metric space over Banach algebra B where by B = R and C = [0,+∞). The
converse is not true (e.g. see [3, 4, 6]).

Definition 5 ( [7]) Let K be a nonempty set and B be a Banach algebra. Suppose that η : K ×K → B is a mapping
satisfying, ∀x,y,u,v ∈ K, x 	= u,u 	= v,v 	= y, the following conditions:
(R1) θ � η(x,y) and η(x,y) = θ ⇔ x = y;
(R2) η(x,y) = η(y,x);
(R3) η(x,y)� η(x,u)+η(u,v)+η(v,y) (Rectangular inequality).
Then η is called a cone rectangular metric on K, and (K,η) is called a cone rectangular metric space over Banach
algebra B.

Remark 2 A cone metric space over Banach algebra B is a cone rectangular metric space over Banach algebra B.
The converse is not true ( see [7]).

Definition 6 ( [7]) Let (K,η) be a cone rectangular metric space over Banach algebra B, y ∈ K and {yi} be a se-
quence in (K,η). Then we say
(1) {yi} converges to y if, for each c ∈ B with θ 
 c, there is a natural number n0 such that η(yi,y)
 c for all i ≥ n0.
We denote this by yi → y (i → ∞).
(2) {yi} is a Cauchy sequence if, for each c ∈ B with θ 
 c, there is a natural number n0 which is independent of j
such that η(yi,yi+ j)
 c for all i ≥ n0.
(3) (K,η) is said to be complete if every Cauchy sequence is convergent.

Lemma 5 ( [8]) Let (K,η) be a complete cone rectangular metric space over Banach algebra B, S be the underlying
solid cone and {yi} be a sequence in (K,η). If {yi} converges to y ∈ K, then
(1) {ρ(yi,y)} is a c-sequence. (2) for any j ∈ N, {ρ(yi,yi+ j)} is a c-sequence.

Lemma 6 ( [5]) Let B be a Banach algebra with a solid cone S and let {αn} and {βn} be sequences in S. If {αn} and
{βn} are c-sequences and k1,k2 ∈ S then {k1αn + k2βn} is also a c-sequence.

Lemma 7 ( [7]) Let {yi} be a Cauchy sequence in a cone rectangular metric space (K,η) over Banach algebra B
such that yi 	= y j whenever i 	= j. If y,z /∈ {yi : i ∈ N} and {yi} converges to both y and z, then y = z.

MAIN RESULTS

Theorem 2 Let (K,η) be a complete cone rectangular metric space over Banach algebra B with a unit element e and
S be a solid cone in B. Suppose that the mapping J : K → K satisfies the Chatterjea - type contraction (1), where γ ∈ S
such that the spectral radius δ (γ)< 1/2. Then
(I) J has a unique fixed point in K.
(II) For any point y0 ∈ K, the iterative sequence {Jiy0} (i ∈ N) converges to the fixed point.

Proof. To show part (I); we firstly show that the mapping J has at most one fixed point, say y∗ ∈ K. Now, suppose
that y∗ and y∗ are both fixed point of the mapping J. That is; y∗ = Jy∗ and y∗ = Jy∗. From (1) it follows that

η(y∗,y∗) = η(Jy∗,Jy∗)
� γ

[
η(Jy∗,y∗)+η(Jy∗,y∗)

]
= γ

[
η(y∗,y∗)+η(y∗,y∗)

]
.

∴ η(y∗,y∗)� 2γη(y∗,y∗).
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Since δ (γ) < 1/2, it follows that δ (2γ) < 1, and using Lemma 4(3), we have that η(y∗,y∗) = θ . Hence y∗ = y∗ i.e.
the fixed point of J, if it exists, is unique.
Next, we prove the existence of the fixed point y∗ in K and show part (II). By choosing an arbitrary point y0 ∈ K, we
define a sequence {yi} in (K,η) as follows: Jy0 = y1,Jy1 = J2y0 = y2, · · · ,Jyi = Ji+1y0 = yi+1, · · · . That is,

Jyi = yi+1, for all i ∈ N. (2)

Suppose y j = y j+1 for some j ∈N, then y∗ := y j = Jy j is a fixed point of J and the result is proved. Hence, we assume
that yi 	= yi+1 for all i ∈N. We shall show that {Jyi} is a Cauchy sequence in (K,η). By using (1), (2) and Rectangular
inequality, we have that

η(yi,yi+1) = η(Jyi−1,Jyi)

� γ
[
η(Jyi−1,yi)+η(Jyi,yi−1)

]
= γη(Jyi−1,yi)+ γη(yi+1,yi−1)

� γη(Jyi−1,yi)+ γ
[
η(yi+1,yi)+η(yi,Jyi−1)+η(Jyi−1,yi−1)

]
= 2γη(Jyi−1,yi)+ γ

[
η(yi+1,yi)+η(Jyi−1,yi−1)

]
� 2γη(yi,yi)+ γ

[
η(yi+1,yi)+η(yi,yi−1)

]
(e− γ)η(yi,yi+1)� γη(yi−1,yi).

∴ η(yi,yi+1)� (e− γ)−1γη(yi−1,yi) = λη(yi−1,yi), (3)

where λ = (e− γ)−1γ ∈ B. Hence, from (2) and (3), we obtain that

η(yi,yi+1)� λη(yi−1,yi) = λη(Jyi−2,Jyi−1)

� λ 2η(yi−2,yi−1) = λ 2η(Jyi−3,Jyi−2)

� λ 3η(yi−3,yi−2)

...

� λ iη(y0,y1) for all i ∈ N. (4)

Similarly, by using (1), (2) and (4), we have that

η(yi,yi+2) = η(Jyi−1,Jyi+1)

� γ
[
η(Jyi−1,yi+1)+η(Jyi+1,yi−1)

]
� γη(yi,yi+1)+ γ

[
η(yi+2,yi+1)+η(yi+1,yi)+η(yi,yi−1)

]
� γ

[
λ iη(y0,y1)+λ i+1η(y0,y1)+ · · ·+λ i+4η(y0,y1)

]
� γλ i

( ∞

∑
n=0

λ n
)

η(y0,y1)

� γλ i(e−λ
)−1η(y0,y1), for all i ∈ N. (5)

Now, for the sequence {Jyi}, we consider η(Jyi,Jyi+ j) in two cases:
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Case 1. If j is odd, say j = 2n+1 (n ∈ N), then it follows that

η(yi,yi+2n+1)� η(yi+2n,yi+2n+1)+η(yi+2n−1,yi+2n)+η(yi,yi+2n−1)

� η(yi+2n,yi+2n+1)+η(yi+2n−1,yi+2n)+η(yi+2n−2,yi+2n−1)

+η(yi+2n−3,yi+2n−2)+η(yi,yi+2n−3)

� η(yi+2n,yi+2n+1)+η(yi+2n−1,yi+2n)+η(yi+2n−2,yi+2n−1)

+ · · ·+η(yi+1,yi+2)+η(yi,yi+1)

� λ i+2nη(y0,y1)+λ i+2n−1η(y0,y1)+λ i+2n−2η(y0,y1)

+ · · ·+λ i+1η(y0,y1)+λ iη(y0,y1)

� λ i
( ∞

∑
n=0

λ n
)

η(y0,y1)

� λ i(e−λ )−1η(y0,y1).

By Lemma 3 and the fact that δ (γ)< 1/2, it follows that

δ [(e−λ )−1γ]� δ [(e−λ )−1]δ (γ)

� [1−δ (λ )]−1δ (γ)
� 1.

Then ‖λ i(e−λ )−1η(y0,y1)‖ ≤ ‖λ i‖ ‖(e−λ )−1η(y0,y1)‖ → 0 (i → ∞) and by Lemma 1 for any c ∈ B with θ 
 c,
there exists n1 ∈ N such that

η(yi,yi+2n+1)� λ i(e−λ )−1η(y0,y1)
 c, for all i > n1.

Therefore, by using Lemma 4(1), we have that

η(yi,yi+2n+1)
 c, for all i > n1. (6)

Case 2. If j is even, say j = 2n (n ∈ N), then it follows that

η(yi,yi+2n)� η(yi+2n−1,yi+2n)+η(yi+2n−1,yi+2n−2)+η(yi,yi+2n−2)

� η(yi+2n−1,yi+2n)+η(yi+2n−2,yi+2n−1)+η(yi+2n−3,yi+2n−2)

+η(yi+2 j−3,yi+2n−4)+η(yi,yi+2n−4)

� η(yi+2n−1,yi+2n)+η(yi+2n−2,yi+2n−1)+η(yi+2n−3,yi+2n−2)

+ · · ·+η(yi+3,yi+2)+η(yi,yi+2)

� λ i+2n−1η(y0,y1)+λ i+2n−2η(y0,y1)+λ i+2n−3η(y0,y1)

+ · · ·+λ i+2η(y0,y1)+ γλ i(e−λ )−1η(y0,y1)

� λ i+2

( ∞

∑
n=0

λ n
)

η(y0,y1)+ γλ i(e−λ )−1η(y0,y1)

∴ η(yi,yi+2n+1)� λ i(e−λ )−1
(
γ +λ 2

)
η(y0,y1).

In similar fashion, we have that ‖λ i(e−λ )−1
(
γ +λ 2

)
η(y0,y1)‖ → 0 (i → ∞), and for any c ∈ B with θ 
 c, there

exists n2 ∈ N such that

η(yi,yi+2n)� λ i(e−λ )−1
(
γ +λ 2

)
η(y0,y1)
 c, for all i > n2.

Therefore, by using Lemma 4(1), we have that

η(yi,yi+2n)
 c, for all i > n2. (7)

Let n0 := max{n1,n2}, hence, from (6) and (7), we have that

η(yi,yi+n)
 c, for all i ≥ n0,
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which implies, by Definition 6(2), that {yi} is a Cauchy sequence in (K,η) and since (K,η) is complete, the sequence
{yi} converges i.e. there exists y∗ in K such that yi → y∗ (i → ∞). Now, using (1) and (2), we have

η(y∗,Jy∗)� η(y∗,yi)+η(yi,Jyi)+η(Jyi,Jy∗)
� η(y∗,yi)+η(yi,yi+1)+ γ

[
η(Jyi,y∗)+η(Jy∗,yi)

]
� η(y∗,yi)+η(yi,yi+1)+ γη(yi+1,y∗)+ γη(Jy∗,yi).

Using Lemma 5 and Lemma 6; {η(y∗,yi)}, {η(yi,yi+1)}, η(yi+1,y∗), η(Jy∗,yi) and {η(y∗,yi) + η(yi,yi+1) +
γη(yi+1,y∗)+ γη(Jy∗,yi)} are c-sequences. Therefore, for any c ∈ B with θ 
 c, there exists n0 ∈ N such that

η(y∗,Jy∗)� η(y∗,yi)+η(yi,yi+1)+ γη(yi+1,y∗)+ γη(Jy∗,yi)
 c, for all i > n0, (8)

which implies, by part (1) and (2) of Lemma 4, that η(y∗,Jy∗) = θ . Hence, y∗ = Jy∗. Thus, y∗ is a fixed point of J.

Example 1 Let B =C1
R
[0,1] and define a norm on B by

‖y‖= ‖y‖∞ +‖y′‖∞ for y ∈ B.

Define multiplication in B as just pointwise multiplication. Then B is a real Banach algebra with unit element e = 1.
The set S = {y ∈ B : y(t)≥ 0, t ∈ [0,1]} is a non-normal cone in B.
Let K = {1,2,3,4}. Define η : K ×K → B by

η(y,z) =

⎧⎨
⎩

0, if y = z;
3et , if y,z ∈ {1,2} and y 	= z;
et , otherwise.

Then (K,η) is a cone rectangular metric space over Banach algebra B but not cone metric space because it lacks the
triangular property.
Now, let J : K → K be a mapping define by

Jy =
{

1/4, if 0 ≤ y < 1;
1/8, if y = 1.

Then the mapping K is a Chatterjea - type contraction (1) with γ = 1
7 . Moreover, J satisfies all the conditions of

Theorem 2 and y∗ = 1/4 is the unique fixed point of J.

Corollary 1 ( [5]) Let (K,η) be a complete cone metric space over a Banach algebra B and S be a solid cone in B.
Suppose that the mapping J : K → K satisfies the contractive condition (1), where γ ∈ S such that the spectral radius
δ (γ)< 1/2. Then J has a unique fixed point in K. And for any y ∈ K, iterative sequence {Jiy} converges to the fixed
point.

Proof. The result follows from Remark 2 and Theorem 2.

Corollary 2 ( [4]) Let (K,η) be a complete cone metric space over a Banach algebra B and S be a normal cone.
Suppose that the mapping J : K → K satisfies the contractive condition (1), where γ ∈ S such that δ (γ) < 1/2. Then
J has a unique fixed point in K. And for any y ∈ K, iterative sequence {Jiy} converges to the fixed point.

Proof. The result follows from Remark 2 and Corollary 1.

Corollary 3 ( [3]) Let (K,η) be a complete cone metric space, S be a normal cone in B. Suppose that the mapping
J : K → K satisfies the contractive condition (1), where γ ∈ S such that 0 ≤ γ < 1/2 is a constant. Then J has a unique
fixed point in K. And for any y ∈ K, iterative sequence {Jiy} converges to the fixed point.

Proof. The result follows from Remark 2 and Corollary 2.

Corollary 4 ( [1]) Let (K,η) be a complete metric. Suppose that the mapping J : K → K satisfies the contractive
condition (1), where 0 ≤ γ < 1/2 is a constant. Then J has a unique fixed point in K.

Proof. The result follows from Remark 1 and Corollary 3.
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CONCLUSION

The aim of this paper is to introduce a new Chatterjea- type contraction mappings on cone rectangular metric spaces
over Banach algebras and establish the existence and uniqueness of fixed point for such mappings. Our results extend
and generalize some results in [1, 3, 4, 5, 6] and others in the literature. Moreover, an example to illustrate the main
results is also presented.
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5. S. Xu, S. Radenović, Fixed Point Theory Appl. 102, 1 - 12 (2014).

6. A. Auwalu, AIP Conf. Proc. 1997, 020004 (2018).

7. S. Shukla, S. Balasubramanian, and M. Pavlovic, Bull. Mal. Math. Sci. Soc. 39, 1529 - 1539 (2016).

8. A. Auwalu and A. Denker, Cone rectangular metric spaces over Banach algebras and fixed point results of T-contraction mappings, Fourth

International Conference on Analysis and Applied Mathematics (ICAAM), Nicosia - Cyprus, 6 - 9 September, 2018.

020060-6



Interpolation of Data in R
3 using Quartic Triangular Bézier
Surfaces

Krassimira Vlachkovaa) and Krum Radevb)

Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
a)Corresponding author: krassivl@fmi.uni-sofia.bg

b)Electronic mail: kvradev@uni-sofia.bg

Abstract. We consider the problem of interpolation of scattered data in R
3 and propose a solution based on Nielson’s minimum

norm network and triangular Bézier patches. Our algorithm applies splitting to all triangles of an associated triangulation and
constructs G1-continuous bivariate interpolant consisting of quartic triangular Bézier patches. The algorithm is computationally
simple and produces visually pleasant smooth surfaces. We have created a software package for implementation, 3D visualization
and comparison of our algorithm and the known Shirman and Séquin’s method which is also based on splitting and quartic triangular
Bézier patches. The results of our numerical experiments are presented and analysed.

INTRODUCTION

Interpolation of data points in R
3 by smooth surface is an important problem in applied mathematics which finds

applications in various areas such as medicine, architecture, archeology, computer graphics, bioinformatics, scientific
visualization, etc. In general the problem can be formulated as follows: Given a set of points di = (xi,yi,zi) ∈ R

3,
i = 1, . . . ,n, find a bivariate function F(x,y) defined in a certain domain D containing points vi = (xi,yi), such that F
possesses continuous partial derivatives up to a given order and F(xi,yi) = zi.

Various methods for solving this problem were proposed and applied, see [1, 2, 3, 4]. A standard approach to solve
the problem consists of two steps, see [1]:

1. Construct a triangulation T = T (v1, . . . ,vn);

2. For every triangle in T construct a surface (patch) which interpolates the data at the three vertices of T .

The interpolation surface constructed in Step 2 is usually polynomial or piecewise polynomial. Typically, the
patches are computed with a priori prescribed normal vectors at the data points. G1 or G2 smoothness of the resulting
surface is achieved either by increasing the degree of the patches, or by the so called splitting. Splitting was originally
proposed by Clough and Tocher [5] and further developed by Percell [6] and Farin [7] for solving different problems.
In practice using patches of least degree and splitting is preferable since it is computationally simple and efficient.

Shirman and Séquin [8, 9] construct a G1 smooth surface consisting of quartic triangular Bézier surfaces (TBS).
Their method assumes that the normal vectors at points di, i = 1, . . . ,n, are given as part of the input. Shirman
and Séquin construct a smooth cubic curve network defined on the edges of T , first, and then degree elevate it to
quartic. This increases the degrees of freedom and allows them to connect smoothly the adjacent Bézier patches.
Next, they apply splitting where for each triangle in T a macro-patch consisting of three quartic Bézier sub-patches
is constructed. To compute the inner Bézier control points closest to the boundary of the macro-patch, Shirman and
Séquin use a method proposed by Chiyokura and Kimura [10, 11]. The interpolation surfaces constructed by Shirman
and Séquin’s algorithm often suffer from unwanted bulges, tilts, and shears as pointed out by the authors in [12] and
more recently by Hettinga and Kosinka in [13].

Nielson [14] proposes a method which computes a smooth interpolation curve network defined on the edges of T so
as to satisfy an extremal property and then extends it to a smooth interpolation surface using an appropriate blending
method based on convex combination schemes. The interpolation curve network is called minimum norm network
(MNN) and is cubic. Nielson’s interpolant is a rational function on every triangle in T . A significant advantage of
Nielson’s method is that the normal vectors at the data points are obtained through the computation of the MNN.

In this paper we propose an algorithm for interpolation of data in R
3 which improves on Shirman and Séquin’s

approach in two ways. First, we use Nielson’s MNN and second, we apply different strategy for computation of the
control points. During the computation of control points closest to the boundary of a macro-patch we adopt additional
criteria so that to avoid unwanted distortions and twists which appear in surfaces constructed by Shirman and Séquin’s
method. As a result, the quality of the resulting surfaces is improved. Furthermore, Shirman and Séquin impose an
additional condition that the three quartic curves defined on the common edges of the three sub-patches are degree

International Conference on Analysis and Applied Mathematics (ICAAM 2020)
AIP Conf. Proc. 2325, 020061-1–020061-6; https://doi.org/10.1063/5.0040457

Published by AIP Publishing. 978-0-7354-4069-2/$30.00

020061-1



elevated cubic curves. This condition is not necessary to obtain G1-continuity across the common edges of the sub-
patches. We apply different criterion for choosing the inner points of the sub-patches and believe that our choice
would facilitate the construction of macro-patches that are convex in addition.

We implemented a software package for construction and 3D visualization of interpolation surfaces obtained by
both Shirman and Séquin’s algorithm and our algorithm. We tested the two algorithms extensively using data of
increasing complexity and analysed the results with respect to different criteria.

RELATED WORK

Let n ≥ 3 be an integer and di := (xi,yi,zi), i = 1, . . . ,n be different points in R
3. We call this set of points data and

assume that the projections vi := (xi,yi) onto the plane Oxy are different and non-collinear.

A triangulation T of points vi is a collection of non-overlapping, non-degenerate closed triangles in Oxy such that
the set of the vertices of the triangles coincides with the set of points vi. Hereafter we assume that a triangulation T
of the points vi, i = 1, . . . ,n, is given and fixed.

Nielson’s MNN

Furthermore, for the sake of simplicity, we assume that the domain D formed by the union of the triangles in T is
connected. In general D is a collection of polygons with holes.

The set of the edges in T is denoted by E. If there is an edge between vi and v j in E, it will be referred to by ei j or
simply by e if no ambiguity arises.

A curve network is a collection of real-valued univariate functions { fe}e∈E defined on the edges in E. With any
real-valued bivariate function F defined on D we naturally associate the curve network defined as the restriction of F
on the edges in E, i.e. for e = ei j ∈ E,

fe(t) :=F
((

1− t
‖e‖

)
xi+

t
‖e‖ x j,

(
1− t

‖e‖
)
yi+

t
‖e‖ y j

)
, where 0≤ t ≤‖e‖ and ‖e‖=

√
(xi − x j)2 +(yi − y j)2. (1)

Furthermore, according to the context F will denote either a real-valued bivariate function or a curve network defined
by (1). We introduce the following class of smooth interpolants defined on D

F :=
{

F(x,y) ∈C(D) |F(xi,yi) = zi, i = 1, . . . ,n, ∂F/∂x,∂F/∂y ∈C(D), f ′e ∈ AC, f ′′e ∈ L2, e ∈ E
}

and the corresponding class of so-called smooth interpolation curve networks

C (E) :=
{

F|E = { fe}e∈E | F(x,y) ∈ F
}
,

where C(D) is the class of bivariate continuous functions defined in D, AC is the class of univariate absolutely contin-
uous functions defined in [0,‖e‖], and L2 is the class of univariate functions defined in [0,‖e‖] whose second power is
Lebesgue integrable.

The smoothness of the interpolation curve network F ∈ C (E) geometrically means that at each point di there is a
tangent plane to F , where a plane is tangent to the curve network at a point di if it contains the tangent vectors at di
of the curves incident to di.

The L2-norm is defined in C (E) by ‖F‖L2(T ) := ‖F‖ =
(

∑e∈E
∫ ‖e‖

0 | fe(t)|2dt
)1/2

. We denote the networks of the

second derivative of F by F ′′ := { f ′′e }e∈E and consider the following extremal problem:

(P) Find F∗ ∈ C (E) such that ‖F∗′′‖= inf
F∈C (E)

‖F ′′‖.

Nielson [14] showed that (P) possesses a unique solution (MNN). The MNN is obtained by solving a linear system
of equations.
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Shirman and Séquin’s method

This method assumes that the normal vectors at the data points di, i = 1, . . . ,n, are given a priori. First, Shirman and
Séquin construct smooth interpolation cubic curve network defined on the edges of T which is compatible with the
normal vectors given and degree elevate it to quartic. Then, for each triangle in T they apply splitting procedure which
constructs three triangular Bézier patches (sub-patches) that possess a common vertex and form a G1-continuous
polynomial surface (macro-patch) defined in the triangle. The Bézier patches are computed through computation of
their control points as shown in Fig. 1a. We use the following notation.

� vertices of the sub-patches;
• inner control points on the boundary of the macro-patch;
� inner control points of the three inner boundary curves of the sub-patches;
◦ inner control points of the sub-patches.
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FIGURE 1. a. Construction of a G1-continuous Bézier macro-patch by splitting to three sub-patches; b. A sufficient condition for
G1 continuity between T and its neighbouring patch is that the four shaded quadrilaterals are planar

Shirman and Séquin’s Algorithm 1 below takes a triangle in T and the degree-elevated quartic boundary control
points of the corresponding macro-patch and computes 19 control points of the three G1-continuous quartic Bézier
sub-patches.

Algorithm 1
Step 1. Compute the control points closest to the boundary of the macro-patch :

1.1 Points qi
1, i = 1,2,3,are centers of the three small triangles with vertices •�•.

1.2 Then points zi, i = 1, . . . ,6,are computed using Chiyokura and Kimura’s method [10, 11].

Step 2. Compute points q1
2 =

1
3 (q

1
1 + z1 + z6), q2

2 =
1
3 (q

2
1 + z2 + z3), q3

2 =
1
3 (q

3
1 + z4 + z5).

Step 3. Compute points pi = 2qi
2 − 4

3 qi
1 +

1
3 qi

0, i = 1,2,3.

Step 4. Compute the splitting point z = 1
3 (p1 +p2 +p3).

Step 5. Compute points qi
3 =

3
4 pi +

1
4 z, i = 1,2,3.

Step 6. Compute points x1 =
3
2 (−q1

3 +q2
3 +q3

3)− 1
2 (−q1

2 +q2
2 +q3

2), x2 =
3
2 (q

1
3 −q2

3 +q3
3)− 1

2 (q
1
2 −q2

2 +q3
2),

x3 =
3
2 (q

1
3 +q2

3 −q3
3)− 1

2 (q
1
2 +q2

2 −q3
2).
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OUR ALGORITHM

In this section we propose our algorithm to construct G1-continuous interpolation surface consisting of quartic TBP.
First, we compute the MNN and then degree elevate it to quartic. Then for each triangle in T we apply splitting and
construct three triangular Bézier sub-patches with a common vertex which form a G1-continuous macro-patch defined
in the triangle.

Let τ be a triangle in T and T be the corresponding macro-patch. We compute the control points of the three
Bézier sub-patches of T consecutively in four layers as shown in Fig. 1a. The first layer consists of inner control
points closest to the boundary of T . The last fourth layer contains of single point z. This point z is the splitting point
and will be computed as a center of the triangle with vertices in the previous third layer.

Computing the control points in the first layer. There are three points of type � and six points of type ◦ in this
layer, see Fig. 1a. First, we compute points of type � as centers of the three small triangles with vertices •�• on the
boundary of the macro-patch. Then we compute the points zi, i = 1,2, of type ◦ as follows.

Let the corresponding edge of τ be inner for T and q̂i
1, ẑi, i = 1,2, be the corresponding control points of the

neighbouring patch, see Fig. 1b. A sufficient condition for G1 continuity between the two patches is that the four
shaded quadrilaterals in Fig. 1b. are planar. We compute the following points.

z′i = q1
1 + ci −m1, ẑ′i = q̂1

1 + ci −m1, z′′i = q2
1 + ci −m2, ẑ′′i = q̂2

1 + ci −m2,

ai = (1− i
3
)z′i +

i
3

z′′i , âi = (1− i
3
)ẑ′i +

i
3

ẑ′′i , i = 1,2, (2)

where ci, i = 1,2, are control points of the cubic curve defined on the common edge of τ and its neighbouring triangle,
and mi, i = 1,2, are the intersection points of the diagonals of the quadrilaterals q1

0q1
1•q̂1

1 and •q2
1q2

0q̂2
1, respectively,

as shown in Fig. 1b.
Let zi = (ξi,ηi,ζi) and ẑi = (ξ̂i, η̂i, ζ̂i). We choose ξi,ηi and ξ̂i, η̂i to be equal to the corresponding coordinates of

ai and âi, respectively, i = 1,2. In this way the projections of zi, i = 1,2, onto Oxy lie inside τ . Hence, we avoid

unwanted twisting and tilting of the patch. We compute the third coordinates ζi, ζ̂i so that ζi = ζ̂i and zi, ẑi, ci to be
collinear, i = 1,2. In this way we avoid unwanted oscillations between the adjacent patches.

In the case where the corresponding edge of τ is boundary for T , i.e. there is no neighbouring patch of T , we
compute zi, i = 1,2 as follows.

r′i = q1
1 −q1

0 + ci, r′′i = q2
1 −q2

0 + ci, zi = (1− i
3
)r′i +

i
3

r′′i , i = 1,2. (3)

The rest of the points zi, i = 3, . . . ,6, are computed analogously.
Computing the control points in the second and third layers. Now we already know the control points of type � and

type • on the boundary of the macro-patch and control points �,◦ in the first layer. Let us consider an inner boundary
curve, e.g. the curve with control points q1

i ,z, i = 0, . . . ,3, see Fig. 1a. We have to compute the remaining control
points so as to satisfy the G1-continuity conditions across that curve. Hence, q1

2 is a center of the triangle z1q1
1z6, and

q1
3 is a center of the triangle x3q1

2x2. Now suppose that we know points x1,x2,x3 in the second layer. Then points

q1
3,q2

3,q3
3 in the third layer are

q1
3 = (q1

2 +x2 +x3)/3, q2
3 = (q2

2 +x1 +x3)/3, q3
3 = (q3

2 +x1 +x2)/3.

Finally, the splitting point is z := 1
3 (q

1
3 +q2

3 +q3
3).

It remains to compute the three points x1,x2,x3. They provide three degrees of freedom which can be used for
example to control the shape of the surface. In [8, 9] Shirman and Séquin use the condition that the three quartic
curves defined on the inner edges are degree elevated cubic curves as it is for the boundary curves of the macro-patch.
This condition is not necessary for G1-continuity between two sub-patches and hence we do not need to impose it.
We compute points x1,x2,x3 as mid-points of the edges of the triangle q1

2q2
2q3

2 as follows.

x1 = (q2
2 +q3

2)/2, x2 = (q1
2 +q3

2)/2, x3 = (q1
2 +q2

2)/2.

Then the control points in second, third, and fourth layers become co-planar. We believe that this choice of x1,x2,x3

will be useful when we try to construct a simple macro-patch which is convex in addition.
Algorithm 2 below takes a triangle τ in T and the degree-elevated quartic boundary control points of the corre-

sponding patch T and computes 19 control points of the three G1-continuous quartic Bézier sub-patches.
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Algorithm 2
Step 1. Compute the control points in the first layer:

1.1 Points of type � are centers of the three small triangles with vertices •�•.
1.2 Then points of type ◦ are computed as described in (2) and (3).

Step 2. Compute the control points in the second layer:
2.1 Points of type � are centers of the three small triangles with vertices ◦�◦ in the first layer.
2.2 Then points of type ◦ are mid-points of the segments with vertices of type � in the second layer.

Step 3. Compute the control points in the third layer: The three points
of type � are centers of the small triangles with vertices ◦�◦ in the second layer.

Step 4. Compute the splitting point of type � as a center of the triangle with vertices � in the third layer.

EXAMPLE

We implemented our Algorithm 2 as a web application using HTML, JavaScript, and the open source library ������

[15]. The advantages of using ������ are the options to display the coordinate system and the coordinates of the
points when the cursor is placed on them, and to control the surfaces displayed. To demonstrate the results of our
work we present here a simple example that clearly shows the typical differences between the surfaces produced by
Shirman and Séquin’s and our algorithms. As input for both algorithms we use the MNN for the data given.

Example 1 We consider data obtained from a regular triangular pyramid. We have N = 4, v1 = (−1/2,−√
3/6),

v2 = (1/2,−√
3/6), v3 = (0,

√
3/3), v4 = (0,0), and zi = 0, i = 1,2,3, z4 = −1. The corresponding MNN is shown

in Fig. 3. The triangulation and the corresponding Shirman and Séquin’s surface are shown in Fig. 3a. The surface
generated by our Algorithm 2 and the triangulation are shown in Fig. 3b.

FIGURE 2. The MNN for the data in Example 1

CONCLUSION AND FUTURE WORK

In this paper we have proposed a method for constructing a G1-continuous interpolation surface that consists of
triangular quartic Bézier patches based on the MNN construction on the edges of the underlying triangulation. We
have tested our method extensively and have witnessed various advantages over the existing methods. A promising
approach for further improvement is to identify a smaller, possibly minimal, subset of T where splitting is to be done
so that a smooth interpolant can be constructed. It is known that splitting decreases the smoothness of the resulting
surface and hence, it would be advantageous to minimize the number of triangles where splitting is done.
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a. b.

FIGURE 3. Comparison of the two surfaces for the data in Example 1: a. The surface generated using Algorithm 1 (Shirman and
Séquin); b. The surface generated using our Algorithm 2
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Abstract. In this paper, we study an initial boundary value problem for a two-dimensional differential equation with a fractional
time derivative in the sense of Caputo. This equation is of great applied importance in modeling flow processes and anomalous
dispersion. The uniqueness and continuous dependence of the solution on the input data in differential form is proved. A com-
putationally effective implicit scheme with weights is proposed. A priori estimates are obtained for the solution of the problem
under the assumption that a solution exists in the class of sufficiently smooth functions. These estimates imply the uniqueness of
the solution and the stability of the scheme with respect to the initial data and the right-hand side of the equation. The convergence
of the approximate solution to the solution of the differential problem with the second order both in time and space variables is
proved. The results of computational experiments confirming the reliability of theoretical analysis are presented.

INTRODUCTION

Partial differential equations with a fractional derivative are of great importance in science and industry. One of the
recent and important practical applications of fractional differential equations is the modeling of physical diffusion
processes in media with fractal geometry and memory. This direction, in turn, prompted the interest of researchers of
underground flows of multiphase fluids in fractured porous media. Numerous studies have shown that these mathe-
matical models provide a more accurate and realistic description of the processes taking place in such complex media.
Therefore, the development of analytical and numerical methods in the theory of fractional differential equations is
an urgent and important problem.

In this paper, we study a two-dimensional convection-diffusion equation with a fractional time derivative in the
sense of Caputo. Determination of the saturation field in the multiphase flow problem in fractured porous media with
fractal fracture geometry is reduced to solving this type of equation. This direction appeared relatively recently in
the theory of multiphase flows and continues its development [1, 2, 3]. In [4], the classical equations describing the
motion of a fluid in a porous medium are rewritten taking into account the formalism of memory using a fractional
derivative in the sense of Caputo. In [5], fractional derivatives of various orders in the sense of Caputo with a variable
lower limit in fractured and matrix regions are used.

The study of the existence and uniqueness of solving problems for equations with a fractional derivative has been
the subject of many papers [6, 7, 8, 9, 10]. The papers [7, 9, 11, 12, 13, 14] are devoted to the development of
numerical methods for solving boundary value problems for equations with a fractional derivative.

In this paper, a priori estimate is obtained which implies the uniqueness of the solution. Then we propose an implicit
second-order approximation scheme with respect to time and spatial variables. The stability of the proposed scheme
as well as convergence with an order equal to the approximation order is proved. The results obtained are confirmed
by numerical calculations carried out for two test problems.

FORMULATION OF THE PROBLEM

The paper is devoted to the study of the following problem for the fractional partial differential equation:

∂ α u
∂ tα = Ku+Du+ f (x, t) , x = (x1,x2) ∈ Ω = (0,1)× (0,1) , 0 < t < 1, (1)
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u(x,0) = ρ (x) , u
∣∣∣
∂Ω

= 0, (2)

where 0 < α < 1, K = K1 +K2, D = D1 +D2, Kmu = qm
∂u

∂xm
, Dmu =

∂
∂xm

(
km

∂u
∂xm

)
.

The fractional derivative is defined as
∂ α u
∂ tα =

1

Γ(1−α)

t∫
0

uτ (x,τ)
(t − τ)α dτ .

Assume that the coefficients and the right-hand side of the equation (1) satisfy the conditions

km (x, t) ∈C1,0
(
QT

)
, qm (x, t) , f (x, t) ∈C

(
QT

)
, (3)

c1 ≤ km (x, t)≤ c2, |qm (x, t)| ≤ c2, c1 > 0, c2 > 0, 2c1 > c2
2. (4)

Suppose that there exists a solution to the problem (1)-(2) in the class of sufficiently smooth functions.

UNIQUENESS OF THE SOLUTION

Standard L2-norms and dot products as well as the following norms are used:

‖∇u‖2
L2(QT )

=

∥∥∥∥ ∂u
∂x1

∥∥∥∥2

L2(QT )
+

∥∥∥∥ ∂u
∂x2

∥∥∥∥2

L2(QT )
, ‖u‖2

∗ =
∫ 1

0

∫
Ω

D−α
0t ‖u‖2

L2(Ω) dxdt,

where u, υ are functions defined on QT ; D−α
0t is the fractional integration operator:

D−α
0t u =

1

Γ(α)

∫ t

0

u(x,τ)
(t − τ)1−α dτ, 0 < α < 1.

Lemma 1 The following estimate is valid for any absolute continuous function y(t) on [0,T ]:

y
∂ α y
∂ tα ≥ 1

2

∂ α y2

∂ tα , 0 < α < 1.

Lemma 2 [15]. Let a nonnegative absolutely continuous function y(t) satisfy the inequality

∂ α y(t)
∂ tα ≤ γ1y(t)+ γ2 (t) , 0 ≤ α ≤ 1

for almost every t ∈ [0,T ], where γ1 > 0, γ2 (t) is a summable non-negative function on [0,T ]. Then

y(t)≤ y(0)Eα (γ1tα)+Γ(α)Eα,α (γ1tα)D−α
0t γ2 (t) ,

where Eα (z), Eα,μ (z) are Mittag-Leffler functions.

Using the properties of a definite integral and the boundedness of the functions Eα (tα) and Eα,α (tα) at 0 ≤ t ≤ 1,
one can show that under the conditions of Lemma 2, the non-negative absolutely continuous function y(x, t) satisfies
the inequality

‖y‖2
L2(QT )

≤ M1 ‖y(x,0)‖2
L2(QT )

+M2 ‖γ2‖2
∗ . (5)

The following theorem is proved using Lemma 1 and Lemma 2.

Theorem 1 If u(x, t) ∈C2,0 (QT )∩C1,0
(
QT

)
,

∂ α u
∂ tα (x, t) ∈C

(
QT

)
and the conditions (3)-(4) hold, then the following

a priori estimate holds for the solution of the problem (1)-(2):

‖u(x, t)‖2
L2(QT )

≤ M1 ‖u(x,0)‖2
L2(QT )

+M2 ‖ f (x, t)‖2
∗ , M1,M2 > 0,

which implies uniqueness and continuous dependence of the solution of (1)-(2) on the input data.
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FORMULATION OF THE DIFFERENCE PROBLEM

Introduce a uniform mesh ωhτ in QT with the mesh size h in the spatial variables and τ in time. Associate the implicit
scheme of the approximation order O

(
h2 + τ2

)
with weights to the differential problem (1)-(2) on ωhτ :

Δα
0tn+σ yi j = Θyi j +Ψyi j +ϕn

i j, y0
i j = ρi j, y(σ)

∣∣∣
γh
= 0, n > 0, (6)

where Θ = Θ1 +Θ2, Ψ = Ψ1 +Ψ2,

Θmyi j = 0.5
(
ηm,i j −

∣∣ηm,i j
∣∣)ξm,i jy

(σ)
x̄m,i j +0.5

(
η+1m

m,i j +
∣∣∣η+1m

m,i j

∣∣∣)ξ+1m
m,i j y(σ)

xm,i j, Ψmyi j =
(

ξmy(σ)
x̄m

)
xm,i j

,

Δα
0tn+σ

y is the discrete analogue of a fractional Caputo derivative of order α , 0 < α < 1 [10]:

Δα
0tn+σ y =

τ1−α

Γ(2−α)

n

∑
s=0

gα,σ
n−sys

t ;

where γh is the set of boundary nodes of ωh; the coefficients gα,σ
s are determined as [9]

gα,σ
0 = Aα,σ

0 when n = 0; gα,σ
s =

⎧⎨
⎩

Aα,σ
0 +Bα,σ

1 , s = 0,
Aα,σ

s +Bα,σ
s+1 −Bα,σ

s , 1 ≤ s ≤ n−1,
Aα,σ

n −Bα,σ
n , s = n,

when n > 0,

Aα,σ
0 =

{
σ1−α , s = 0,

(s+σ)1−α − (s−1+σ)1−α , s ≥ 1,
, ξ n

1,i j = k
(

xi− 1
2 , j

, tn+σ
)
, ξ n

2,i j = k
(

xi, j− 1
2
, tn+σ

)
,

Bα,σ
s =

1

2−α

[
(s+σ)2−α − (s−1+σ)2−α

]
− 1

2

[
(s+σ)1−α +(s−1+σ)1−α

]
, s ≥ 1,

ηn
m,i j =

qm (xi j, tn+σ )

km (xi j, tn+σ )
, ϕn

i j = f
(
xi j, tn+σ) , σ = 1− α

2
, gα,σ

s > 0, y(σ) = σyn+1 +(1−σ)yn.

In addition, the notation from [16, 17, 18] is used.

STABILITY AND CONVERGENCE OF THE DIFFERENCE SCHEME

Lemma 3 [15]. The following inequality holds for any function y defined on ωhτ :

y(σ)Δα
0tn+σ y ≥ 1

2
Δα

0tn+σ y2.

Lemma 4 The following inequality holds for the solution of the problem (6) under the conditions (4):

Δα
0tn+σ ‖y‖2 + c1

∥∥∥∇y(σ)
∥∥∥2 ≤ μ1

∥∥∥y(σ)
∥∥∥2

+‖ϕ‖2 .

This lemma is proved using Lemma 3, the difference analogue of the Green’s theorem and conditions (4).

Lemma 5 [9]. Let non-negative sequences yn and ϕn, n = 0, 1, 2,... satisfy the inequality

Δα
0tn+σ yn ≤ λ1yn+1 +λ2yn +ϕn, n ≥ 1,

where λ1 ≥ 0, λ2 ≥ 0 are some constants. Then there exists a constant t0 such that the following inequality holds

under the condition τ ≤ t0: yn+1 ≤ 2

(
y0 +

(tn)α

Γ(1+α)
max

0≤m≤n
ϕm

)
Eα

(
2λ (tn)α) , λ = λ1 +

λ2

2+21−α .
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The following theorem is proved based on Lemmas 4 and 5.

Theorem 2 Under the conditions (4), there exists t0 such that the following estimate holds for the solution of the
problem (6) for τ ≤ t0:

∥∥yn+1
∥∥2 ≤ μ2

(∥∥y0
∥∥2

+
(tn)α

Γ(1+α)
max

0≤m≤n
‖ϕm‖2

)
,

which implies the uniqueness and stability of the difference scheme (6) according to the initial data and the right-hand
side.

Theorem 3 Under the conditions of Theorem 2, the solution of (6) converges to the solution of the differential problem
(1)-(2) with the second order both in spatial variable and time.

IMPLEMENTATION OF THE DIFFERENCE SCHEME

The following two-step alternating directions method is used to solve (6):

gα,σ
0

(
u

n+ 1
2

i, j −un
i, j

)
τα Γ(2−α)

+
1

τα Γ(2−α)

n−1

∑
s=0

gα,σ
n−s

(
us+1

i, j −us
i, j

)
= σ (Θ1 +Ψ1)u

n+ 1
2

i, j +(1−σ)(Θ2 +Ψ2)un
i, j, (7)

gα,σ
0

(
un+1

i, j −u
n+ 1

2
i, j

)
τα Γ(2−α)

+
1

τα Γ(2−α)

n−1

∑
s=0

gα,σ
n−s

(
us+1

i, j −us
i, j

)
= σ (Θ1 +Ψ1)u

n+ 1
2

i, j +(1−σ)(Θ2 +Ψ2)un+1
i, j . (8)

The solution process is reduced to the sequential solution of systems of equations with tridiagonal matrices at each
time layer that are solved with the Thomas algorithm. Direct check shows that the stability condition for the Thomas
algorithm is satisfied. The accuracy of the method (6) is verified on a number of computational experiments.
Problem 1. Consider the equation (1) with the right-hand side

f (x,y, t) =− 18x2y2
(
1− x2

)(
1− y2

)
t3−α

Γ(1−α)(α −3)(α −2)(α −1)
−6y2

(
1− y2

)
t3
(−2x3 −6x2 + x+1

)
−6x2

(
1− x2

)
t3
(−2y3 −6y2 + y+1

)
and initial condition u(x,y,0)≡ 0. The exact solution to this problem is u(x,y, t) = 3x2y2t3

(
1− x2

)(
1− y2

)
.

The value of the time step is chosen to be τ = 10−5 when analyzing the dependence of the error order on the spatial
step. The step value in the spatial variable h varies between h = 10−2 and h = 10−5. The value of the spatial step is
chosen equal to h = 10−4 when analyzing the dependence of the order of error on the time step. The time step value
varies between τ = 10−5 and τ = 10−8. The order of the fractional derivative is chosen to be α = 0.15, α = 0.5 and
α = 0.85.

Tables 1 and 2 show the error values for various values of the parameters σ , h and τ . Figure 1 (left) shows an
approximate solution to the problem on a layer n = 1000 at α = 0.85.
Problem 2. Consider the equation (1) with the right-hand side

f (x,y, t) =− 6x2y2
(
x2 −1

)(
1− y2

)
t3−α

Γ(1−α)(α −3)(α −2)(α −1)
− (x+ y) t36y2

(
1− y2

)(−2x3 −6x2 + x+1
)

−6x2
(
1− x2

)
t3
(−2y3 −6y2 + y+1

)
and the initial condition u(x,y,0)≡ 0. The exact solution to this problem is u(x,y, t) = x2y2t3

(
x2 −1

)(
1− y2

)
.

Tables 3 and 4 show the error values for various values of the parameters σ , h and τ . Figure 1 (right) shows the
approximate solution of the problem on the layer n = 1000 at α = 0.85. It follows from results given in Tables 1 and
3 that the error is a value of the order of O

(
h2
)
. Similarly, it follows from results given in Tables 2 and 4 that the

error is an order of magnitude O
(
τ2
)
. Thus, computational experiments have confirmed that the difference scheme

converges with the second order both in spatial variables and time.
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TABLE 1. Error analysis for Problem 1

Mesh size α = 0.15 α = 0.5 α = 0.85

h = 1/100 1.374858 ·10−7 1.098641 ·10−7 5.933419 ·10−8

h = 1/500 5.557511 ·10−9 4.585992 ·10−9 2.634147 ·10−9

h = 1/1000 1.430960 ·10−9 1.297898 ·10−9 8.675095 ·10−10

h = 1/2000 4.004706 ·10−10 4.850132 ·10−10 4.320614 ·10−10

h = 1/5000 1.147281 ·10−10 2.657353 ·10−10 3.123288 ·10−10

h = 1/10000 7.063983 ·10−11 2.355103 ·10−10 2.960129 ·10−10

TABLE 2. Error analysis for Problem 1

Mesh size α = 0.15 α = 0.5 α = 0.85

τ = 10−5 1.386493 ·10−9 1.297898 ·10−9 8.675095 ·10−10

τ = 10−6 1.155476 ·10−11 8.650119 ·10−12 2.399971 ·10−12

τ = 10−7 8.692040 ·10−14 4.623733 ·10−14 4.631788 ·10−15

τ = 10−8 5.877397 ·10−16 2.145534 ·10−16 7.503443 ·10−18

FIGURE 1. Approximate solution of the Problem 1 (left) and Problem 2 (right) at α = 0.85

TABLE 3. Error analysis for Problem 2

Mesh size α = 0.15 α = 0.5 α = 0.85

h = 1/100 3.283814 ·10−7 2.846682 ·10−7 1.552110 ·10−7

h = 1/500 1.451361 ·10−8 1.199802 ·10−9 6.984047 ·10−9

h = 1/1000 3.767931 ·10−9 3.487531 ·10−9 2.356834 ·10−9

h = 1/2000 1.085025 ·10−9 1.378421 ·10−9 1.205480 ·10−9

h = 1/5000 3.428998 ·10−10 8.026266 ·10−10 8.855067 ·10−10

h = 1/10000 2.404071 ·10−10 7.222409 ·10−10 8.399404 ·10−10

TABLE 4. Error analysis for Problem 2

Mesh size α = 0.15 α = 0.5 α = 0.85

τ = 10−5 3.709663 ·10−9 3.487531 ·10−9 2.356834 ·10−9

τ = 10−6 3.151834 ·10−12 2.440338 ·10−12 8.282573 ·10−12

τ = 10−7 2.468931 ·10−15 1.448078 ·10−15 2.613030 ·10−16

τ = 10−8 1.786572 ·10−18 7.579424 ·10−19 1.613023 ·10−19

020062-5



CONCLUSION

Thus, the implicit finite difference scheme is constructed for the fractional differential equation with variable coef-
ficients containing the fractional time derivative in the sense of Caputo. The stability and error estimation of the
difference scheme are established. Empirical convergence agrees well with theoretical estimates. The results obtained
can find application in the numerical solution of other equations containing a fractional time derivative.
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Abstract. In this paper, we study numerical methods for solving the Navier-Stokes equations in doubly connected domains. Two
methods for solving the problem are considered. The first method is based on constructing a difference problem in variables of
the stream function and the vortex of velocity using the uniqueness condition for pressure. The numerical solution of the elliptic
equation for stream functions is found as the sum of the solutions of two simple problems of an elliptic type. One problem is
with homogeneous boundary conditions, and the other is with a homogeneous equation. An alternative approach to solving the
problem is the fictitious domain method with the continuation of the least coefficient. This method does not require satisfying the
pressure uniqueness condition, and is simple to implement. An important direction in the development of numerical simulation
methods is the study of approximate methods for solving problems of mathematical physics in complex multidimensional areas.
To solve many applied problems in irregular areas, the fictitious domain method is widely used, which is characterized by a high
degree of automation of programming. The main idea of the fictitious domain method is that the problem is solved not in the
original complex domain, but in some other, simpler domain. This allows to create software immediately for a fairly wide class
of problems with arbitrary computational domains. The possibilities of applying the fictitious domain method to the problems
of hydrodynamics in the variables “stream function, vortex of velocity” are considered in many works. In this paper, we study
a numerical method for solving the Navier-Stokes equations in doubly connected domains. A computational finite difference
algorithm for solving an auxiliary problem of the fictitious domain method has been developed. The results of numerical modeling
of the two-dimensional Navier-Stokes equations by the fictitious domain method with continuation by the lowest coefficient are
presented. For this problem, a parallel algorithm was developed using the CUDA architecture, which was tested on various grid
dimensions.

INTRODUCTION

The growth in productivity of computer technology and the development of parallel computing contributed to the
solution of important practical problems of the industry. One example of such tasks is the assessment of effectiveness
and forecasting of oil field development indicators. Due to the complexity of mathematical models describing these
processes, calculations for one field can last from several hours to several days. Therefore, the issue of developing
effective parallel algorithms that can significantly speed up the calculation becomes relevant.

Along with the classical model of flows in porous media based on the Darcy law [1, 2], a number of other models
is widely used to study fluid flows in oil reservoirs, such as the models of N. E. Zhukovsky [3], Forchheimer [4],
Navier-Stokes [3, 4]. The use of these models is associated with a violation of the Darcy law under certain conditions,
the need for a detailed study of the flow processes near wells, etc.

In this paper, we set the goal of constructing an algorithm for the numerical implementation of an incompressible
fluid motion model using the CUDA software and hardware parallel computing architecture. We consider the initial-
boundary-value problem for the Navier-Stokes equations in the variables “stream function, velocity vortex” in a two-
dimensional doubly connected domain.

The paper considers methods for numerically solving the Navier - Stokes equation in a multiply connected domain.
One of the difficulties in numerically solving the Navier - Stokes equation in the variables of the stream function and
the velocity vortex in the case of a multiply connected domain is caused by the uncertainty of the values of the stream
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function at the internal boundaries. The numerical solution of the Navier-Stokes equations in multiply connected
domain was considered in [5, 6], which proposed an explicit method for numerical solution of the Navier-Stokes
equations in a doubly connected domain. This problem using the uniqueness condition for pressure was solved in the
work of Syrochenko V.P. [7]. In [8], it was concluded that the explicit scheme leads to an unstable calculation. In the
present paper, we construct a stable explicit difference scheme for numerically solving the Navier-Stokes equations
in a multiconnected domain using the pressure uniqueness condition and the fictitious domain method for solving
this problem. To solve this problem, an alternative approximate method is considered based on the fictitious domain
method with continuation by lower coefficients. The obtained equations were discretized in the work by the finite
difference method; however, in subsequent works, the results of the study will be used in parallel implementation of
finite element methods. In conclusion, the results of computational experiments for various grid configurations and
analysis of computational acceleration are presented.

Works [9, 10] are devoted to the study of the fictitious domain method for problems with discontinuous coefficients.
In [11, 12], an elliptic-type equation with strongly varying coefficients is considered. Interest in the study of such
equations is caused by the fact that equations of this type are obtained using the fictitious domain method. A special
method is proposed for the numerical solution of an elliptic equation with strongly varying coefficients. A theorem
is proved for estimating the rate of convergence of the developed iterative process. A computational algorithm is
developed and numerical calculations are carried out to illustrate the effectiveness of the proposed method. In [13],
modifications of well-known iterative methods for solving arising grid problems using the fictitious domain method
were constructed. The capabilities of the fictitious domain method are illustrated by examples of solving problems of
an ideal and viscous incompressible fluid, flows under a hydraulic structure.

Parallel implementations of the fictitious domain method are also known. For example, in [14] a parallel fictitious
domain method was constructed for the three-dimensional Helmholtz equation, in [15] for modeling flows loaded
with particles and turbulent flow in a channel, in [16] for problems of biomechanics.

Currently, high-performance computing is widely used in research. Every day, computing techniques and hydro-
dynamic models are developing, which allow the assessment and analysis of various technological processes. In this
regard, increases the efficiency of solving scientific problems. Supercomputer technology is widely used in many
industries. Computations performed on graphic devices significantly speed up the calculation of «large» tasks, due to
its unique architecture [17, 18].

A lot of work has been devoted to the study of the applicability of the CUDA parallel computing architecture,
which allows increasing computational performance due to the use of graphic processors. Its many applications to
the problems of computational fluid dynamics are known, including the problems of the oil industry [17, 19], the
problems of motion of a viscous incompressible fluid [18], the problems of underground hydrogen storage [20] and
others [18, 21].

FORMULATION OF THE PROBLEM

To simulate convective flows, we consider the Navier–Stokes equations in the Boussinesq approximation [7]:

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+
∂ p
∂x

=
1

Re
Δu,

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+
∂ p
∂y

=
1

Re
Δv−Grθ , (1)

∂u
∂x

+
∂v
∂y

= 0, (2)

∂θ
∂ t

+u
∂θ
∂x

+ v
∂θ
∂y

=
1

RePr
Δθ , (x,y) ∈ D, t ∈ (0,T ] (3)

with initial and boundary conditions

u = u0 (x,y) , v = v0 (x,y) , θ = θ0 (x,y) , (x,y) ∈ D, t = 0, (4)

u = ax (x,y, t) , v = ay (x,y, t) , θ = ξ (x,y, t) , (x,y) ∈ ∂D, t = [0,T ] , (5)
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where u, v are the velocity components, p is the pressure, θ is the temperature, Re is the Reynolds number, Gr is the
Grashof number, Pr is the Prandtl number, ∂D = γ1 ∪ γ2 is the boundary of the domain.

It is convenient to solve problem (1)-(5) by eliminating pressure from the equations of motion and introducing
new variables — the stream function and vorticity. An essential role is played by the integral conditions for the
uniqueness of pressure. In the work of Ladyzhenskaya O. A. for the unique solvability of the difference scheme for
the Navier-Stokes equation, the uniqueness condition for the pressure of the following form is added to the system

of equations [22]:

∫∫
D

p(x,y)dxdy = 0. The necessity of setting a condition in this form is due to the fact that the

difference analogue of equation (2) is not linearly independent. In the work of Syrochenko V. P. [7] another variant of
the pressure uniqueness condition is proposed which is written as∮

γ3

∂Π
∂x

dx+
∂Π
∂y

dy = 0 (6)

where Π = p+
(
u2 + v2

)
/2 is the full pressure.

Introduce the current function ψ and the velocity vortex ω , which are related to the velocity components u, v by

the following relations: u =
∂ψ
∂y

, v =−∂ψ
∂x

, ω =
∂u
∂y

− ∂v
∂x

.

Problem (1)-(5) in variables ψ,ω is written as follows [7]:

∂ω
∂ t

+
∂ψ
∂y

∂ω
∂x

− ∂ψ
∂x

∂ω
∂y

=
1

Re
Δω +Gr

∂θ
∂x

, Δψ = ω, (7)

∂θ
∂ t

+
∂ψ
∂y

∂θ
∂x

− ∂ψ
∂x

∂θ
∂y

=
1

RePr
Δθ , (x,y) ∈ D, t ∈ (0,T ] , (8)

ω = α (x,y) , θ = φ (x,y) , (x,y) ∈ D, t = 0, (9)

ψ = ξ1 (x,y, t) ,
∂ψ
∂�n

= η1 (x,y, t) , (x,y) ∈ γ1, t ∈ (0,T ] , (10)

ψ = ξ2 (x,y, t)+λ (t) ,
∂ψ
∂�n

= η2 (x,y, t) , (x,y) ∈ γ2, t ∈ (0,T ] , (11)

θ = βl (x,y, t) , (x,y) ∈ γ1, l = 1,2, t ∈ (0,T ] , (12)

α , φ , ξi, ηi, βi, i = 1,2 are given functions. Write the condition (6) as follows:

∮ [(
∂ 2ψ
∂ t∂y

+ω
∂ψ
∂x

+
1

Re

∂ω
∂y

)
dx+

(
− ∂ 2ψ

∂ t∂x
+ω

∂ψ
∂y

− 1

Re

∂ω
∂x

−Grθ
)

dy
]
= 0. (13)

The solution of the difference analogue of problem (7)-(13) is sought in the form

ωn+1 (x,y) = ωn+1
0 (x,y)+λ (n+1)ωn+1

1 (x,y) , ψn+1 (x,y) = ψn+1
0 (x,y)+λ (n+1)ψn+1

1 (x,y) , (14)

where n is the number of iterations. The first auxiliary problem is as follows:

ωn+1
0 −ωn

τ
+

∂ψn

∂y
∂ωn+1

0

∂x
− ∂ψn

∂x
∂ωn+1

0

∂y
=

1

Re
Δωn+1

0 +Gr
∂θ n+1

∂x
, (15)

Δψn+1
0 =−ωn+1

0 , (x,y) ∈ D,

ψn+1
0

∣∣∣
γ1

= 0,
∂ψ0

∂n

∣∣∣∣
γ1

= 0, ψn+1
0

∣∣∣
γ2

= 0,
∂ψ0

∂n

∣∣∣∣
γ2

= 0, (16)
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the second auxiliary problem is as follows:

ωn+1
1 −ωn

τ
+

∂ψn

∂y
∂ωn+1

1

∂x
− ∂ψn

∂x
∂ωn+1

1

∂y
=

1

Re
Δωn+1

1 , (17)

Δψn+1
1 =−ωn+1

1 , (x,y) ∈ D,

ψn+1
1

∣∣∣
γ1

= 0,
∂ψn+1

1

∂n

∣∣∣∣∣
γ1

= 0, ψn+1
1

∣∣∣
γ2

= 1,
∂ψn+1

1

∂n

∣∣∣∣∣
γ2

= 0. (18)

We construct a uniform mesh in domain D:

Dh =

{
(xi,y j) , xi = (i−1)h1, y j = ( j−1)h2, i = 0,1, ...,n1, j = 0,1, ...,n2, h1 =

l1
n1 −1

, h2 =
l2

n2 −1

}
.

We suppose that the inner subdomain D0 is a rectangle:

D0h =
{
(x,y) , xk1 ≤ x ≤ xk2, ym1 ≤ y ≤ ym2, xi = (i−1)h1, y j = ( j−1)h2, i = 0,1, ...,n1, j = 0,1, ...,n2

}
,

nodes of which build in domain D. We consider domain D1 = {(x,y) , xk3 ≤ xk4, ym3 ≤ y ≤ ym4} covering domain
D0.

RESULTS AND DISCUSSION

The above method has numerically solved test problem (1)-(5) for the Navier-Stokes equations of a viscous incom-
pressible fluid in variables: stream function, velocity vortex in the Boussinesq approximation.

The temperature distributions and current functions are presented as numerical results. The results were obtained
for various cavity sizes, temperature conditions at the boundary, and values that determine the flow of dimensionless
parameters — the Grashof Gr and Prantl Pr numbers. The first method is based on constructing a difference problem
in variables of the stream function and the vortex of velocity using the uniqueness condition for pressure. This
condition allows us to determine the coefficient used in formula (14). The solutions for the function of the current
and the velocity vortex are found as the sum of two simple problems. The developed algorithm converges uniformly
for a certain amount of iteration, and with the help of the developed numerical algorithm, more accurate results are
obtained. The numerical results of this method are presented in Figure 1.

The second approach is based on solving the fictitious domain method with continuation of the lower coefficient.
The solution lies with the accuracy ε . This method is simple to implement and does not require the condition of
pressure to be unambiguous. Figure 2 show the results of the task posed by the fictitious domain method with a
continuation on the lower coefficients.

A parallel algorithm for this task was implemented using the CUDA architecture. When implementing the parallel
algorithm on CUDA, two optimization methods were used:

1. Streams of computational data are copied to the internal cells of the subdomain from global memory to shared
memory, then boundary data is copied from global memory. In this case, the size of the subdomain does not change
[21].

2. We cannot avoid duplicating data from the global memory at the boundary of a subdomain. In the above cases,
columns and rows are copied at the boundaries of the subarea. Therefore, you need to change the scheme of two-
dimensional decomposition to one-dimensional. Thus, we exclude repeated copying of columns. It is known that in
C++ the matrix elements in memory are stored line by line. In this case, each block gets a one-dimensional array,
which consists of rows of matrices of the original block.

In the calculations, a uniform grid of 128 x 128, 256 x 256, 512 x 512, 1024 x 1024 and 2048 x 2048 sizes were
used. All data were presented as real numbers with single precision (float). A computational experiment was carried
out on a personal computer with a quad-core Intel Core i7-3770 3.40 GHz processor and an Nvidia GeForce GTX 550
Ti graphics card. The test result is shown in Figure 3 (a). In the calculation, the optimal block size was 16x16 (the
number of threads in one block is 256). Figure 3 (b) shows the performance gain compared to a sequential algorithm
depending on the size of the grid.
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(a) (b)

FIGURE 1. Isolines (a) and isotherms (b). Cavity size is 1.0×1.0, on internal borders θ = 1, Pr = 5.39, Gr = 100

(a) (b)

FIGURE 2. Isolines (a) and isotherms (b). Cavity size is 1.0× 1.0, on internal borders (a) θ = 0.5, (b) θ = −0.5, Pr = 5.39,
Gr = 100

(a) (b)

FIGURE 3. (a) Time of execution of the parallel algorithm on different computational mesh, (b) Acceleration of parallel algorithm
on CUDA
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CONCLUSION

Thus, in the paper, questions of the numerical implementation of the Navier-Stokes equations in a two-dimensional
doubly connected domain using the CUDA parallel computing architecture are investigated. The results of computa-
tional experiments show that the use of parallel algorithms using CUDA for this kind of tasks gives good acceleration.

Further research will be aimed at creating parallel algorithms and speeding up computations related to solving non-
linear multiphase filtering problems by finite element methods using the CUDA hardware-software parallel computing
architecture.
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Abstract. Mathematical modeling of the nonlinear problem biological population nondivergent form with absorption, variable
density are considered. Qualitative properties of considered problem which include the critical and double critical cases are
discussed. Results of the numerical experiments are analyzed.

INTRODUCTION

Consider the following Cauchy problem for degenerate parabolic equation in nondivergent form with absorption and
variable density

Lu ≡−∂u
∂ t

= un∇(|x|lum−1|∇uk|p−2∇u)+ γ(t)u−b(t)uq, (1)

u(0,x) = u0(x)≥ 0, x ∈ RN .

Here u(x, t) is the population, n, l, k, p are given numerical parameters characterizing media, 0 < γ(t),b(t) ∈
C(0,∞),q ≥ 1.
Equation (1) in the case n+k(p−2)+m−1> 0 corresponds to slowly diffusion and in the case n+k(p−2)+m−1<
0 it corresponds to fast diffusion equation.

Problem (1), in particular value of numerical parameters, is used for modeling different physical, chemical, biolog-
ical, spread of an epidemic filtration in gas, liquid, and other processes [1-9]. Many works are devoted to investigate
qualitative properties of solutions of Cauchy problem (1) and boundary value problem for particular value of nu-
merical parameters [1-15]. For instance, A. A. Samarskii, V. A. Galaktionov and S. P. Kurdyumov [2] and V. A.
Galaktionov [3] studied the properties of self-similar solutions (1), (2) in details when q > 1, n = 0, p = 2, b(t) = 1,
γ(t) = 0. In particular, they established a new asymptotic solution for large t in the critical value of the numerical
parameter q = 1+2/N.

Mathematical theory of the porous medium equation (n = 0, l = 0, p = 2, b(t) = 0) was considered by J. Vazguez
[4]. Chunhua Jin and Jingxue Yin [5] studied properties of self-similar solutions for a class of nondivergent form
equations. M. Bertsh, R. D. Passo and M. Ughi [6] established nonuniqueness of solutions of the equation (1) when
q > 1, l = 0, b(t) = 0, γ(t) = 1. C. Z. Yao, Z. Wenshu [7] considered shrinking self-similar solutions of a nonlinear
diffusion equation with nondivergent form in the case b(t) = 0, l = 0, γ(t) = 1. Blow up property, Fujita type global
solvability for double linear parabolic equation with variable coefficient and nonlinear source in the case n = 0,
b(t) = 0, γ(t) = 1 were studied by P. Cianci, A. V. Martynenko, and A. F. Tedeev [9]. J. N. Zhao [10] considered for
p-Laplacian equation case.

In works [13-20] for case n = 0, b(t) = 0 with different variable density and with source or absorption, authors
studied different qualitative properties of solution of the problem (1) based on self-similar approach. In particular
estimates of solutions, and free boundary, Fujita type global solvability Cauchy problem, phenomena finite speed of
propagation, condition of a space localization, the asymptotic of self-similar solutions, large time asymptotic in critical
case [17] of the heat conduction problem with double nonlinearity with absorption at a critical parameter [19, 20], the
critical curves of a doubly nonlinear parabolic equation in nondivergent form with a source and a nonlinear boundary
flux were considered.
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AIP Conf. Proc. 2325, 020064-1–020064-6; https://doi.org/10.1063/5.0040820

Published by AIP Publishing. 978-0-7354-4069-2/$30.00

020064-1



In [11], for equation (1) in case l = n = 0, m = k, 0 < q < 1, b(t) = 0, by constructing an exact solution and by
analyzing it, L. K. Martinson established the following properties of solutions: an inertial effect of a finite velocity of
propagation of thermal disturbances, spatial heat localization and finite time localization solution effect.

Considered problem for particular value of numerical parameters under some suitable assumptions, the existence,
uniqueness and regularity of a weak solution to the Cauchy problem (1) and their variants have been extensively
investigated by many authors [1-11]. Moreover, Z. Xiang, C. Mu and X. Hu [12] investigated the properties of spatial
localization, existence and non-existence of global solutions for problem (1) - (2) in case l = n = 0, k = 1, b(t) = 0,
q ≥ 1, γ(t) = 1.

V. Galaktionov and J. R. King [15] established behavior of blow-up interfaces, an asymptotic analysis of the behav-
ior of blow-up solutions for an inhomogeneous filtration equation with variable density.

P. Zheng, C. Mu, D. Liu, X. Yao, and S. Zhou [21] studied the properties of solution of self-similar equation double
nonlinear parabolic equation with source in case l = n = 0, b(t) = 0 q ≥ 1.

In this work, we establish the condition of Fujita type global solvability considered problem, estimates of solution
for p>l and and free boundary. The critical case n+ k(p−2)+m+n−1 = 0 and double critical case n+ k(p−2)+
m+ n− 1 = 0, p = l are considered. The following properties of solutions: an effect of a finite velocity population
flash disturbances, spatial localization flash population established. An exact solution for wide class of coefficients
γ(t), b(t) are obtained. The results of the numerical experience are given.

GENERALIZED RADIAL SYMMETRICAL PRESENTATION OF THE EQUATION (1)

By putting,

u(t,x) = ū(t)w(τ(t),ϕ(|x|))
in (1), where

ū(t) = exp(
∫ t

0
b(y)dy),

τ(t) =
∫ t

0
[ū(y)]k(p−2)+n+m−1dy,

ϕ(|x|) = p
p− l

|x|(p−l)/p , i f p > l,

ϕ(|x|) = ln |x| , i f p = l,

equation (1) can be reduced to the "radial-symmetric" form

∂w
∂τ

= wnϕ1−s ∂
∂ ϕ

(
ϕs−1wm−1

∣∣∣∣∂wk

∂ ϕ

∣∣∣∣
p−2 ∂w

∂ ϕ

)
−b0(τ)wβ = 0, i f p > l, (2)

∂w
∂τ1

= wn(
∂

∂ ϕ

(
wm−1

∣∣∣∣∂wk

∂ ϕ

∣∣∣∣
p−2 ∂wl

∂ ϕ

)
+wm−1

∣∣∣∣∂wk

∂ ϕ

∣∣∣∣
p−2 ∂w

∂ ϕ
)−b0(τ)wβ = 0, (3)

if p = l, where b0(τ) = γ(t) [ū(y)]−(k(p−2)+n+m−1), s = pN/(p− l).
Notice that, number s plays role of dimension in equation (2). Presentation of the equation in the form (2), (3)

allows us easily construct the Zeldovich-Barenblatt-Pattle type solution [1] to the principal member of the equation
(1)

∂u
∂ t

= un∇(|x|l um−1
∣∣∣∇uk

∣∣∣p−2
∇u). (4)
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Introduce the functions

u+(τ,x) = ū(t)ũ(τ) f̄ (η),

η = ϕ/[τ1(τ)]1/p, ũ(τ) = [T +(β −1)
∫ τ

0
b0(y)]−1/(β−1),

η = ϕ(|x|)/[τ(t)]1/p, ϕ(|x|) = p
p− l

|x|(p−l)/p , p > l,

τ1(τ) =
∫ t

0
[ũ(y)]k(p−2)+n+m−1dy,

b1 = (k(p−2)+m+n−1)pp/(p−1), p > l,

η = ϕ(|x|)/[τ(t)]1/p, ϕ(|x|) = ln |x| , i f p = l,

f (η) =

⎧⎨
⎩ (a−b1|η |p/(p−1))+

(p−1)/(k(p−2)+m+n−1)
, i f k(p−2)+m+n−1 �= 0

exp(− (p−1)η p/(p−1)

k(p−2)/(p−1)p1/(p−1) , i f k(p−2)+m+n−1 = 0
. (5)

FUJITA TYPE GLOBAL SOLVABILITY

Theorem 1 Assume that k(p−2)+m+n−1 > 0, p > l,

b0(τ)[ũ(τ)]q−(k(p−2)+m+n)τ1(τ)< s/p, T ≥ 0, τ > 0,

u0(x)≤ u+(0,x), x ∈ RN .

Then, there is a global solution to the Cauchy problem (1)-(2) for which the estimate

u(t,x)≤ u+(t,x) ∈ Q

is valid and for free boundary the estimate
|x| ≤ ( a

b )
(p−1)/p p1 [τ(t)]1/(p−l), holds where u+(t,x) is defined above.

Critical case: The case k(p−2)+m+n−1 = 0, p > l we will call a critical case. In this case behavior of solution
of the problem (1) changes. Namely, following statement is true.

Theorem 2 Assume that k(p−2)+m+n−1 = 0, p > l,

b0(τ))[ũ(τ)]q−1(T + t)< N/p− l), T ≥ 0, t > 0,

u0(x)≤ u+(0,x), x ∈ RN .

Then, there is a global solution to the Cauchy problem (1) for which in Q the estimate

u(t,x)≤ u+(t,x) = ū(t)ũ(τ) f̄ (ξ ), ξ = ϕ(|x|)/(T + τ(t))1/p

holds. Here, ū(t), ũ(t), f̄ (ξ ), τ(t) are above defined functions.
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Malthusians model case: β = 1. When in (1) β = 1, k = 1, p = 2 the problem (1) is known as Malthusian population
model [1,23]. In this case depending on value numerical parameters we establish property a finite speed of population
depth and a space localization.

Theorem 3 Let us

β = 1, p > l, n+m+ k(p−2)> 1,

τ2(∞)<+∞, α ≤ s/[p+(k(p−2)+m−1)s].

Then, the solution problem (1) has property a space localization if

u0(x)≤ z1(0,x), x ∈ RN .

For free boundary the estimate

|x| ≤ (a/b1)
(p−1)/p [τ2(t)]

1/(p+k(p−2)+m+n−1)s , x ∈ RN , t > 0

holds. It is phenomena finite speed of perturbation [1].

Theorem 4 Assume that

k(p−2)+m+n−1 = 0, p > l, u0(x) ≤ z+(0,x), x ∈ RN\{0},

β ≥ (k (p−2)+m+n)+(1−q)(p− l)/N, q < 1.

Then, there is a global solution to the Cauchy problem (1) - (2) for which in Q\{0} the estimate

u(t,x) ≤ z+(t,x) = ū(t)ũ(τ)exp(− (p−1)η p/(p−1)

k(p−2)/(p−1)p1/(p−1)

holds, where

η = ϕ(|x|)/(T + t)1/p, ũ(τ) = (T +(β −1)τ)−1/(β−1), η = ϕ[T + τ]−1/p.

Double critical case: The case k(p−2)+m+n−1 = 0, p = l we will call a double critical case.

Theorem 5 Assume k(p− 2)+m+ n− 1 = 0, p = l, u0(x) ≤ z+(0,x), x ∈ RN\{0}, β ≥ 1+ p. Then, there is a
global solution to the Cauchy problem (1)-(2) for which in Q\{0} the estimate

u(t,x)≤ z2(t,x) = ū(t)ũ(τ)(T + t)−1/p exp(− (p−1)η p/(p−1)

k(p−2)/(p−1)p1/(p−1)
, in Q\{0}

holds, where

η = ln(|x|)/(T + t)1/p, ũ(τ) = (T +(β −1)
∫ τ

0
b0(y)dy)−1/(β−1), T ≥ 0.

Proof. Proof all Theorems based on comparison principle [1]. As comparison functions, we used the functions
constructed above u+(t,x), z+(t,x), z1(t,x), z2(t,x). Further, we also checked it is satisfying the conditions L(u+)≤
0, L(z+) ≤ 0, L(z1)≤ 0, L(z2)≤ 0 for applying comparison principle.
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FIGURE 1. Parameters values: (left) n=1.1, p=4, k=1.3, m=1.3 (right) n=1.1, p=4, k=1.1, m=1.1

THE EXACT SOLUTION AND NONLINEAR PHENOMENA

It is proved that equation (1) has the following exact solution.

u(t,x) = ū(t)a(τ)( f (τ)−ϕγ)
γ1
+ , γ = p/(p−1),

γ1 = (p−1)/(k(p−2)+m+n−1),

where functions a(τ), f (τ) satisfy to the system of algebraic equation

−γγ1a(τ) d f
dτ +b1(τ)aq = (γkγ1)

p−1γγ1an+m+k(p−2) f (τ),

da
dτ +(γkγ1)

p−1[(γγ1 + s)]ak(p−2)+n+m = 0, s = pN/(p− l).
(6)

By the analysis of solutions, the following nonlinear effects observed: the inertial finite speed of propagation, the
effect of a spatial localization of population flash, the effect of finite time of existence of population flash. Notice that
this solution in the case n = 0, k = 1, l = 0, b(t) = 0 was constructed in the work [16].

RESULTS OF NUMERICAL EXPERIMENTS

Main problem for numerical calculation is to find appropriate initial approximation so that suggested numerical
method quickly converges to the solution with necessary accuracy. Based on qualitative properties of solutions estab-
lished above the numerical calculations are analyzed. For the numerical calculations used modification method [5]
suggested for numerical calculation of weak wave type solution to porous media equation. Computational experiments
showed the sweep method is stable and provides a unique solution. Results of a numerical experiments showed, usage
estimates of solutions and free boundary are good appropriate for construction of iteration process quickly converging
to solution of the considered problem keeping nonlinear effects. Due to appropriate initial approximation depending
value the numerical parameters reached quickly convergence to solution initial problem. Number iteration in each
case not more than three. Obtained results is true for porous media equation, p-Laplacian equation with variable
density. Some results of numerical experiments are given below. Numerical calculations were performed by using
Python3.

CONCLUSION

In the work, the critical and double critical cases established due to as representation of the double nonlinear parabolic
equation with variable density with absorption in "radial symmetrical" form. This presentation of an initial equation
gave possibility to easy construct Zeldovoch- Barenbatt-Pattle type [1] solutions for critical cases as comparison
functions. Using an algorithm of splitting Fujita type global solvability, considered problem covering all early results
of other authors is established. We established the behavior of solution of the Cauchy problem for considered critical
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cases. The following phenomenon is finite speed of population flash and a space localization of population depth.
Results of a numerical experiments showed that usage estimates of solutions and free boundary are good appropriate
for construction of iteration process quickly converging to solution of the considered problem keeping nonlinear
effects.
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Abstract. Covid-19 is the most recently discovered infectious disease affecting the countries all around the world. SARS-CoV-2,
which is a member of coronavirus family, is the virus that makes the infection. Until the 28th of September 2020, almost 34
million people infected by the virus and more than 1 million people died all around the world. One of the most discussed ideas
about the disease to die out is vaccination. In our study, we tried to analyze this idea and show the effect of vaccine for Covid-19.
Our work starts with constructing an SVI mathematical model. Afterwards, we made the analyze of our model. Then, by taking
into consideration of incoming passengers and precautions that should be taken, we used the vaccination idea with changing the
percentage of vaccinated people in a population. In last section, we used numerical simulations to support our idea. In our work,
we conclude that vaccination is substantially effective if we consider the other things that affect the disease which is incoming
passengers and precautions like wearing mask, maintaining social distance, etc.

INTRODUCTION

Nowadays, the whole world is struggling with the epidemic called Covid-19. Disease can caught by an infection of
the virus SARS-CoV-2, which is a member of coronavirus family. It is a respiratory disease that seriously affects
lungs also [1]. When an infected person coughs, speaks or sneezes, people that are susceptible can get infected. From
the point of symptoms and mode of transmission, Covid-19 shows similarities with other diseases caused by influenza
viruses [2]. Ever since it became a pandemic, governments trying to make right decisions to prevent the spread.
However, with the removal of restrictions on transportation between countries, the disease started to spread rapidly.
In order to prevent the increase in spread of epidemic because of removal of these restrictions, people should comply
with hygiene rules, wear masks, maintain social distance, and not to be in crowded environments unless necessary.
As of September 28, 2020, there has been nearly 34 million Covid-19 infection with more than 1 million deaths in the
world [3].

From the beginning of the epidemic, scientists are trying to find a solution to reduce the transmission and death
rates. There are many ideas for the disease to die out in time, including herd immunity and vaccine [4]. For viruses, it
has been stated that vaccine has a huge contribution in global health [5]. In order to prevent from influenza infection,
which has many similarities with Covid-19, vaccine is the most effective option [6]. Influenza type A, also known as
H1N1, became severe in April 2009 and in October 2009, vaccination for the disease started after the declaration of
the disease as "pandemic" by WHO, in June 2009. According to the estimations, 700,000-1,500,000 clinical cases,
hospitalization of 4,000-10,000 people and 200-500 deaths prevented, by means of vaccine, between 2009-2010 [7,
8].

The paper is organized as follows: first it is given model. Then, we gave the analysis of the model. Lastly, we gave
numerical simulations to support the idea that vaccine is the most effective way for Covid-19 if people obey the rules
stated above and the travel between countries restricted.

MODEL FORMULATION

In the model, there are four compartments as susceptible individuals S, infected individuals I, vaccinated individuals
V , and recovered individuals R in a population. Here susceptible compartment includes the people that do not obey
the rules we mentioned, the incoming passengers and the ones that are not vaccinated. The parameters used in the
model are given in Table 1. The system is given as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Λ−βS(t)I(t)− rS(t)−μS(t),

dV
dt = rS(t)− kV (t)I(t)− (1− k)V (t)−μV (t),

dI
dt = e−μτ(βS(t − τ)+ kV (t − τ))I(t − τ)− (d + γ +μ)I(t),

dR
dt = (1− k)V (t)+(d + γ +μ)I(t).

(1)

TABLE 1. Parameters of the model
Parameters Descriptions

Γ Recruitment of individuals
β Transmission coefficient of susceptible individuals to the infected compartment
r Rate of vaccination
k Probability of vaccinated individuals to be infected
μ Natural death rate
d Death rate from the disease
τ Incubation period
γ Recovery rate

By using the system (1) and next generation matrix method, basic reproduction number R0 calculated as

R0 =
e−μτ

(γ +μ +d)(r+μ)

[
β +

kr
μ +1− k

]
. (2)

For details, [9] can be checked.

GLOBAL STABILITY ANALYSIS

Global stability analysis of the equilibrium points are explained in [9], in detail. For the stability, authors dealt with
the following two theorems.

Theorem 1 The disease free equilibrium is globally asymptotically stable if R0 < 1.

Theorem 2 The endemic equilibrium is globally asymptotically stable.

NUMERICAL SIMULATIONS

In this section, we discussed the relation between the spread of the disease and percentage of vaccinated people and
susceptible compartment in a population. All of the ratios calculated by using the data taken from 50 countries which
has the highest number of cases.
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FIGURE 1. Parameter values: β = 0.0035, k = 0.000001 μ = 0.005, d = 0.0375, τ = 4.6 days, and R0 = 3.36

FIGURE 2. Parameter values: β = 0.0035, k = 0.000001 μ = 0.005, d = 0.0375, τ = 4.6 days, and R0 = 2.37
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FIGURE 3. Parameter values: β = 0.0035, k = 0.000001 μ = 0.005, d = 0.0375, τ = 4.6 days, and R0 = 1.98

FIGURE 4. Parameter values: β = 0.0035, k = 0.000001 μ = 0.005, d = 0.0375, τ = 4.6 days, and R0 = 0.96

020065-4



RESULTS AND DISCUSSIONS

In this paper, the effect of vaccine verified. In order to see the effect of the vaccine it is assumed that 20% and 50%
of the population are vaccinated. As a result of this, we can see from Figure 1 and Figure 3, in order to get a serious
reaction, major percentage of the population should be vaccinated. On the other hand, there is a lot to think about
such as the vaccine reaching every country, the cost of the vaccine, and the hesitation of people about whether or
not to be vaccinated. So, we can not say that vaccine is enough for the disease to die out in time. Figure 2 shows
that susceptible compartment is an important effect for the infectiousness of Covid-19. The decrease in susceptible
compartment causes decrease in infected people with the implementation of vaccine. The predominant effect can
achieved if enough people vaccinated in a population with the decrease in susceptible compartment as can be seen
easily in Figure 4.
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Abstract. In the present study, first and second order of accuracy difference schemes for the numerical solution of the boundary
value problem with nonlocal conditions for a one-dimensional third order partial differential equation are presented. Results of
numerical experiments are provided.

INTRODUCTION

The subject of third order partial differential equations with time and space variables and nonlocal boundary conditions
has been growing fast in the last years. In the last decades, the development of numerical techniques for the solution of
nonlocal boundary value problems has been an important research topic in many branches of science and engineering.
Numerical solution of third order partial differential equations with a nonlocal conditions to be a major research area
with widespread applications in modern physics and technology. Note that these type of boundary value problems
have been studied widely in the literature (for instance, see [1-14]).

The authors M. Deneche and A. Memou in paper [9] investigated nonlocal boundary value problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ 3u(t)
∂ t3 + ∂

∂x (a(x, t)
∂u
∂x ) = f (x, t), 0 < t < T, 0 < x < 1,

u(x,0) = 0, ∂u
∂ t (x,0) = 0, ∂ 2u

∂ t2 (x,T ) = 0, x ∈ (0,1),

u(0, t) = 0, t ∈ [0,T ] ,
∫ 1

0 u(x, t)dx = 0, t ∈ [0,T ]

for third-order partial differential equations with integral conditions. This paper was proved the existence and unique-
ness of a strong solution for a linear equation. The authors were also used energy inequalities and the density of the
range of the generated operator.

In the paper [6] the nonlocal boundary value problem for the third order partial differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3u(t)
dt3 +μ d2u(t)

dt2 +A du(t)
dt = f (t), 0 < t < 1,μ > 0,

u(0) = γu(λ )+ϕ , u′(0) = αu′ (λ )+ψ , |γ|< 1,

u′′(0) = βu′′ (λ )+ξ ,
∣∣1+αβe−μλ

∣∣>
(
|α +β |+

μ
2 (|α−β |√

δ− μ2

4

)
e−

μλ
2 ,0 < λ ≤ 1

in a Hilbert space H with a self-adjoint positive definite operator A was investigated. The main theorem on the stability
estimates for the solution of problem is proved.

NUMERICAL EXPERIMENTS

When the analytical methods do not work properly, the numerical methods for obtaining approximate solutions of
partial differential equations play an important role in applied mathematics. We can say that there are many consid-
erable works in the literature (for instance, see [2, 3, 4, 5]). In this section for the approximate solution of a nonlocal
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boundary value problem, we will use the first and second order of accuracy difference schemes. Numerically we show
that the second order of accuracy for the approximate solution of the problem are more accurate than the first order
of accuracy difference scheme. We apply a procedure of modified Gauss elimination method to solve the problem.
Results of numerical experiences are given.

The First Order of Accuracy Difference Scheme

We consider the nonlocal boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ 3u(t,x)

∂ t3
+4

∂ 2u(t,x)

∂ t2
− ∂ 3u(t,x)

∂ t∂x2
= f (t,x),

f (t,x) = 2e−t sinx,0 < t < 1, 0 < x < π,

u(0,x) = 1
4 u(1,x)+

(
1− 1

4e

)
sinx, 0 ≤ x ≤ π,

ut(0,x) = 1
4 ut(1,x)−

(
1− 1

4e

)
sinx, 0 ≤ x ≤ π,

utt(0,x) = 1
4 utt(1,x)+

(
1− 1

4e

)
sinx, 0 ≤ x ≤ π,

u(t,0) = u(t,π) = 0, 0 ≤ t ≤ 1

(1)

for a third order partial differential equation. The exact solution of problem (1) is

u(t,x) = e−t sinx.

For the approximate solutions of boundary value problem (1), applying formulas

u(tk+2)−3u(tk+1)+3u(tk)−u(tk−1)

τ3
−u′′′(tk) = O(τ),

u(1)−u(1− τ)
τ

−u′(1) = O(τ),

u(xn+1)−2u(xn)+u(xn−1)

h2
−u′′(xn) = O(h2), (2)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′(tk+1)−2u′(tk)+u′(tk−1)

τ2
−u′′′(tk+1) = O(τ),

u(τ)−u(0)
τ

−u′(0) = o(τ),
u(1)−u(1− τ)

τ
−u′(1) = O(τ),

u(2τ)−2u(τ)+u(0)
τ2

−u′′(0) = O(τ),

u(1)−2u(1− τ)+u(1−2τ)
τ2

−u′′(1) = O(τ).
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We get the first order of accuracy in t difference scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+2
n −3uk+1

n +3uk
n −uk−1

n

τ3
+4

uk+2
n −2uk+1

n +uk
n

τ2

−uk+2
n+1 −uk+1

n+1 −2
(
uk+2

n −uk+1
n
)
+uk+2

n−1 −uk+1
n−1

τh2
= f (tk,xn),

f (tk,xn) = 2e−tk sinxn, tk = kτ, 1 ≤ k ≤ N −2 ,
1 ≤ n ≤ M−1,

Nτ = 1, xn = nh, 1 ≤ n ≤ M−1, Mh = π,

u0
n =

1
4 uN

n +

(
1− 1

4e

)
sinxn, 0 ≤ n ≤ M,

u1
n −u0

n

τ
= 1

4

uN
n −uN−1

n

τ
−
(

1− 1

4e

)
sinxn,0 ≤ n ≤ M,

u2
n −2u1

n +u0
n

τ2
= 1

4

uN
n −2uN−1

n +uN−2
n

τ2
+

(
1− 1

4e

)
sinxn,

0 ≤ n ≤ M,

uk
0 = uk

M = 0,0 ≤ k ≤ N.

(3)

It is the system of algebraic equations and it can be written in the matrix form

{
A un+1 +Bun +Cun−1 = Dϕn, 1 ≤ n ≤ M−1,

u0 =
→
0 , uM =

→
0 .

(4)

Here,

A =C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0 0 0
0 0 a −a · · · 0 0 0
0 0 0 a · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 a −a
0 0 0 0 · · · 0 0 0
0 0 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+1)×(N+1)

,

B =

⎡
⎢⎣

X · · · Z
...

. . .
...

W · · · Y

⎤
⎥⎦
(N+1)×(N+1)

,

where

X =

⎡
⎢⎢⎢⎣

1 0 0 0 0
b −3b+4d 3b− c−8d b− c+4d 0
0 b −3b+4d 3b− c−8d b− c+4d
0 0 b −3b+4d 3b− c−8d
0 0 0 b −3b+4d

⎤
⎥⎥⎥⎦ ,
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Z =

⎡
⎢⎢⎢⎣

0 0 0 0 − 1
4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ ,

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−1

τ
1

τ
0 0 0

1

τ2
− 2

τ2

1

τ2
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 3b− c−8d b− c+4d 0 0
0 −3b+4d 3b− c−8d b− c+4d 0
0 b −3b+4d 3b− c−8d b− c+4d

0 0 0
1

4τ
− 1

4τ
0 0 − 1

4τ2

1

2τ2
− 1

4τ2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

a =
1

τh2
, b =− 1

τ3
, c =

2

τh2
,d =

1

τ2
,

ϕn =

⎡
⎢⎣

ϕ0
n
...

ϕN
n

⎤
⎥⎦
(N+1)×1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕk
n = f (tk,xn) = 2e−tk sinxn,

tk = kτ,1 ≤ k ≤ N −2, 1 ≤ n ≤ M−1,

ϕ0
n =

(
1− 1

4e

)
sinxn,0 ≤ n ≤ M,

ϕN−1
n =−

(
1− 1

4e

)
sinxn,0 ≤ n ≤ M,

ϕN
n =

(
1− 1

4e

)
sinxn,0 ≤ n ≤ M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and D = IN+1 is the identity matrix,

us =

⎡
⎢⎣

u0
s
...

uN
s

⎤
⎥⎦
(N+1)×1

, s = n,n±1.

Therefore, for the solution of the matrix equation (4), we will use the modified Gauss elimination method. We seek a
solution of the matrix equation by the following form:

un = αn+1un+1 +βn+1, n = M−1, ...,1, (5)

where uM =
→
0 , α j ( j = 1, ...,M − 1) are (N + 1)× (N + 1) square matrices, β j ( j = 1, ...,M − 1) are (N + 1)× 1

column matrices, α1, β1 are zero matrices and

αn+1 =−(B+Cαn)
−1 An, (6)

βn+1 = (B+Cαn)
−1 (Dϕn −Cβn) ,n = 1, ...,M−1.
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TABLE 1. Errors analysis

N,M N = M = 20 N = M = 40 N = M = 80

Difference scheme (3) 1.1806e−02 5.8856e−03 2.9381e−03

The errors are computed by

EN
M = max

1≤k≤N−1,1≤n≤M−1

∣∣∣u(tk,xn)−uk
n

∣∣∣ (7)

of the numerical solutions, where u(tk,xn) represents the exact solution and uk
n represents the numerical solution at

(tk,xn) and the results are given in Table I. As it is seen in Table I, we get some numerical results. If N and M are
doubled, the value of errors decrease by a factor of approximately 1/2 for first order difference scheme.

The Second Order of Accuracy Difference Schemes

Now, we will consider the high order of accuracy difference schemes for the approximate solution of the problem (1),
for the approximate solution of boundary value problem (1), applying formulas (2),

u(tk+2)−3u(tk+1)+3u(tk)−u(tk−1)

τ3
− 3

4
u′′′(tk)− 1

4
u′′′(tk+2) = O(τ3),

3u(1)−4u(1− τ)+u(1−2τ)
2τ

= u′(1)+O(τ2), (8)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(tk+1)−2u(tk)+u(tk−1)

τ2
− 1

2
[u′′(tk+1)+u′′(tk−1)] = O(τ2),

u(tk+1)−2u(tk)+u(tk−1)

τ2
− 1

2
u′′(tk)− 1

4
[u′′(tk+1)+u′′(tk−1)] = O(τ2),

−u(2τ)+4u(τ)−3u(0)
2τ

−u′(0) = O(τ2),

3u(1)−4u(1− τ)+u(1−2τ)
2τ

−u′(1) = O(τ2),

−3u(3τ)+4u(2τ)−5u(τ)+2u(0)
τ2

−u′′(0) = O(τ2),

−3u(1)+4u(1− τ)−5u(1−2τ)+2u(1−3τ)
τ2

−u′′(1) = O(τ2).
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We get the second order of accuracy in t difference scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u3
n −3u2

n +3u1
n −u0

n

τ3

−u3
n+1 −2u3

n +u3
n−1 +u2

n+1 −2u2
n +u2

n−1

4τh2

+

(
u1

n+1 −2u1
n +u1

n−1

)
+
(
u0

n+1 −2u0
n +u0

n−1

)
4τh2

+4
u3

n −u2
n −u1

n +u0
n

2τ2

=
f (t1,xn)+ f (t2,xn)

2
= (e−t1 + e−t2)sinxn,

1 ≤ n ≤ M−1,

uk+2
n −2uk+1

n +2uk−1
n −uk−2

n

2τ3

−uk+2
n+1 −2uk+2

n +uk+2
n−1 −

(
uk−2

n+1 −2uk−2
n +uk−2

n−1

)
8τh2

−uk+1
n+1 −2uk+1

n +uk+1
n−1 −

(
uk−1

n+1 −2uk−1
n +uk−1

n−1

)
4τh2

+4
uk+2

n −2uk
n −uk−2

n

2τ2

= f (tk,xn), f (tk,xn) = 2e−tk sinxn,
tk = kτ, 2 ≤ k ≤ N −2 , 1 ≤ n ≤ M−1,

Nτ = 1, xn = nh, 1 ≤ n ≤ M−1, Mh = π,

u0
n =

1
4 uN

n +

(
1− 1

4e

)
sinxn, 0 ≤ n ≤ M,

−u2
n +4u1

n −3u0
n

2τ
= 1

4

3uN
n −4uN−1

n +uN−2
n

2τ
−
(

1− 1

4e

)
sinxn,

0 ≤ n ≤ M,

−u3
n +4u2

n −5u1
n +2u0

n

τ2
= 1

4

2uN
n −5uN−1

n +4uN−2
n −uN−3

n

τ2

+

(
1− 1

4e

)
sinxn,0 ≤ n ≤ M,

uk
0 = uk

M = 0,0 ≤ k ≤ N.

(9)

This system can be written in the matrix form (4), too. Here,

A =C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 · · · 0 0 0 0 0
a a −a −a 0 · · · 0 0 0 0 0
1
2 a a 0 −a − 1

2 a · · · 0 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 · · · 0 −a − 1
2 a 0 0

0 0 0 0 0 · · · a 0 −a − 1
2 a 0

0 0 0 0 0 · · · 1
2 a a 0 −a − 1

2 a
0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 · · · 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(N+1)×(N+1)

,
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B =

⎡
⎢⎣

X · · · Z
...

. . .
...

W · · · Y

⎤
⎥⎦
(N+1)×(N+1)

,

where

X =

⎡
⎢⎢⎢⎣

1 0 0 0 0
−2b−2a+4c 6b−2a−4c −6b+2a−4c 2b+2a+4c 0
−b−a+4c 2b−2a −8c −2b+2a b+a+4c

0 −b−a+4c 2b−2a −8c −2b+2a
0 0 −b−a+4c 2b−2a −8c

⎤
⎥⎥⎥⎦ ,

Z =

⎡
⎢⎢⎢⎣

0 0 0 0 − 1
4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ ,

W =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−3
2τ

2
τ

1
2τ 0 0

2
τ2 − 5

8τ2
4
τ2

−1
τ2 0

⎤
⎥⎥⎥⎥⎦ ,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

−8c −2b+2a b+a+4c 0 0
2b−2a −8c −2b+2a b+a+4c 0

−b−a+4c 2b−2a −8c −2b+2a b+a+4c

0 0 − 1

8τ
1

2τ − 3

8τ
0

1

4τ2
− 1

τ2

5

4τ2
− 1

2τ2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

a =
1

4τh2
, b =

1

2τ3
,c =

1

2τ2

ϕn =

⎡
⎢⎣

ϕ0
n
...

ϕN
n

⎤
⎥⎦
(N+1)×1

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕk
n = f (tk,xn) = 2e−tk sinxn,

tk = kτ,1 ≤ k ≤ N −2, 1 ≤ n ≤ M−1,

ϕ1
n =

f (t1,xn)+ f (t2,xn)

2
= (e−t1 + e−t2)sinxn,

1 ≤ n ≤ M−1,

ϕ0
n =

(
1− 1

4e

)
sinxn,0 ≤ n ≤ M,

ϕN−1
n =−

(
1− 1

4e

)
sinxn,0 ≤ n ≤ M,

ϕN
n =

(
1− 1

4e

)
sinxn,0 ≤ n ≤ M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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TABLE 2. Errors analysis

N,M N = M = 20 N = M = 40 N = M = 80

Difference scheme (9) 8.8717e−04 2.4416e−04 6.3723e−05

for difference scheme (9). Therefore, for the solution of the matrix equation (4), we will use the same formulas (5),

(6) and the errors are computed by formula (7). Numerical results are given in following table
As it is seen in Table II, we get numerical results for difference scheme (9). Note that if N and M are doubled, the

value of errors decrease by a factor of approximately 1/4 for second order of accuracy in t difference schemes (9).
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Abstract. Firstly, a perturbation based correction of an admissible open-loop control in an unperturbed problem is constructed in
the form of linear feedback. The constructed control transfers the perturbed system to a neighborhood of a given point. Secondly,
then the resulting feedback is refined to reach the end point. The proposed algorithm is illustrated by numerical experiments.

INTRODUCTION

In recent years, in connection with the rapid development of the direction associated with the problems of real-time
control of autonomous objects motions, it became necessary to develop new algorithms for solving point-to-point
control problems. In some works, researchers rely on the selection of initial constructions for the final trajectory (for
example, see the trajectory planning method in [1, 2]). Then the resulting initial trajectory and the corresponding
control are selected taking into account the problem constraints and, as a result, an acceptable trajectory and the
corresponding admissible control solving the point-to-point problem are obtained.

Such an inverse approach has a significant advantage over traditional algorithms of the optimal control theory,
because using specific problem properties, such as geometric and spatial features of motion caused by constraints,
one can quickly calculate a qualitative image of an admissible trajectory, which allows one to quickly construct an
admissible control.

However, this approach is not applicable in many practical problems due to the dimensionality of objects and non-
linearity in their mathematical models. Here we demonstrate some intermediate variant between direct and inverse
approaches to finding an admissible point-to-point control. It consists in a searching and the application of the algo-
rithm of a system simplifications combination and using the qualitative properties of models and their optimization.
Such an approach can lead to more efficient and rational solutions and corresponding numerical algorithms.

To search for an admissible point-to-point control that transfers a dynamic system to a given state in a finite time,
for example, one can use model simplifications associated with introducing various small parameters into the model,
which will allow asymptotic expansions to be used to refine qualitative approximations to solutions and to construct
extrapolation procedures (see, for example, works related to the penalty functions method [3, 4, 5]).

In this paper, we consider the solution of a perturbed nonlinear point-to-point problem based on control correction
using a small parameter characterizing perturbations of the right-hand sides of the system. The control correction in
the form of optimal synthesis determines an approximate algorithm for constructing an admissible control based on
the solution of a limiting, simplified point-to-point control problem.

THE PROBLEM STATEMENTS

Let us consider the next point-to-point control problem

ẋ = F0(t,x,u)+ εF1(t,x,u), x0(0) = x0, x0(T ) = xT ,

0 < ε ≤ ε0, x ∈ X ⊂ Rn, u ∈U ⊆ Rr,
(1)

where x is a state vector, u is a control vector, ε0 is a sufficiently small positive number, X and U are corresponding
closed or open sets of admissible values of state and control vectors.

The small positive parameter ε is considered to be known. Suppose that for ε = 0 we know the admissible contin-
uously differentiable program control u0(t) that transfers the unperturbed system from the initial position to the final
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given state in time T

ẋ0 = F0(t,x0,u0), x0(0) = x0, x0(T ) = xT ,

u0(t) ∈U, x0(t) ∈ X ,
(2)

and it is assumed that the trajectory and control satisfy the constraints and are continuously differentiable vector
functions for all 0 ≤ t ≤ T .

As the experience of finding open-loop controls for optimal control problems with a small parameter shows, both
with various constraints and without them (see, for example, [6]), the use of common optimization and control meth-
ods is effective in the vicinity of asymptotic behavior. Because asymptotic behavior, taking into account at least
part of the structure of the solution, can be often in local neighborhoods of extremum points. Therefore, the idea
arises of representing an admissible solution to the perturbed problem in the form of formal first-order asymptotic
approximations, where all members or part of them are sought in the feedback form.

So, we are looking for admissible trajectory and control in the form

x1(t,ε) = x0(t)+ εx1(t), u1(x, t,ε) = u0(t)+ εu1(x+ εx1, t,ε), (3)

assuming here that u0(t) the is an open-loop control and u1(x+ εx1, t,ε) is a closed-loop one, which transfers the
system (1) to a specified neighborhood of the given final state x(T ) = xT .

In view of (2), for x1, and u1 we obtain the following problems

ẋ0 = F0(t,x0(t),u0(t)), x0(0) = x0, x0(T ) = xT , (4)

ẋ1 = F0,x(t,x0(t),u0(t))x1(t)+F0,u(t,x0(t), u0(t))u1(t)+F1(t,x0(t),u0(t)), x1(0) = 0, x1(T ) = 0, (5)

where F0,x =
∂F0
∂x ,F0,u =

∂F0
∂u .

Due to the smallness of ε , it can be established that, under quite general conditions on the right-hand sides of (1), the
u0 transfers the system to a sufficiently small neighborhood of the given end point. However, the open-loop control
obtained in this way are not able to respond to arising errors. Therefore, in this neighborhood, as is often done in
applications, it is desirable to make a correction via some feedback control u1.

In this case, on the one hand, the correction feedback control should take into account the structure of the system
and be a solution in a simplified system. On the other hand, this correction should be the only solution to some control
problem and contribute to the tendency of x1 to 0 on the right end. It is known from computational experiments that
these conditions are fulfilled by the choice of an auxiliary problem in the form of a linear-quadratic control problem
in which control is unique, representable in the form of feedback, which often has stabilizing properties.

For example, under the conditions of controllability and observability in a stationary linear system, the transition
process in a closed-loop system disappears quite quickly, i.e. trajectories tend to 0 over a sufficiently large period of
time. Taking into account the above, for the unambiguous choice of u1(t) we will construct it by solving the following
optimal control problem

J(u1) =
1

2

T∫
t0

(
x1

′(τ)Q(τ)x1
′(τ)+u1

′(τ)R(τ)u1(τ)
)
dτ → min

u1, u0+εu1∈U
,

on the trajectories of system (5) under phase constraints x0(t)+ εx1(t) ∈ X . Here Q and R are the positive definite
matrices, turning during the control design. This problem solution without phase constraints has the form [7]

u1(x1, t) =−R−1(t)BT (t)(P(t)x1 +q(t)) =−R−1(t)BT (t)P(t)x1 −R−1(t)BT (t)q(t) = k(x1(t), t)+ p(t),

where k(x1(t), t) =−R−1(t)BT (t)P(t)x1 , p(t) =−R−1(t)BT (t)q(t), P and q are defined from the following equations

Ṗ =−AT P−PA+PBR−1BT P−Q, P(T ) = 0,
q̇ = (PBR−1BT P−AT )q+Pl, q(T ) = 0,

and A(t) = F0,x(t,x0(t),u0(t)), B(t) = F0,u(t,x0(t),u0(t)), l(t) = F1(t,x0(t),u0(t)).
To take constraints into account and to improve the accuracy of control, we introduce in u1 an additional term ω as

follows

u1(x1(t), t) = k(x1(t), t)+ p(t)+ω(t,ci, j). (6)
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The components of a vector function ω are represented in the form of the expansions by next system of functions

ωi(τ(t),ci, j) =
1

2
ci,0 +

kω

∑
l=1

ci,2l−1 cos( jτ)+ ci,2l sin( jτ),

τ =
π(2t −T )

T
, t ∈ [0,T ], τ ∈ [−π,π], i = 1, ..,r, j = 0,1, ...,2kω .

(7)

In (7) a parameter kω ≥ 0 determines the number of terms in series and the vectors of unknown coefficients ci, j are
determined by solving the residual minimization problem for each i-th coordinate of the vector-function ω(t)

e′e → min
ci, j

,

where

e = x(T )− x(t,u0(t)+ ε (k(x1(t), t)+ p(t)+ω(t,ci, j)))
∣∣
t=T , i = 1, ..,r, j = 0, ...,2kω ,

and u0(t), k(x1(t), t), p(t) are already known.

Let’s note also that the offered correction algorithm for point-to-point control is close to the method, illustrated
in [8] on specific control tasks for spacecraft.

NUMERICAL EXPERIMENTS

Let us consider the problem

ẋ1 = x2,
ẋ2 = u1 − ε(x2x1),
ẋ3 = u2 + ε(x2x3),

x(0) =

⎡
⎣ 0.5

0
2

⎤
⎦ , x(1) =

⎡
⎣ 1

1
1

⎤
⎦ , |u1| ≤ 2, |u2|< 2. (8)

In the zero approximation of this problem it is easy to construct the next admissible trajectory and control

x0,1 = 0.5t2 +0.5, x0,2 = t, x0,3 =−t +2,
u0,1 = 1, u0,2 =−1,

where x0,i and u0, j are coordinates of vectors x0 and u0 accordingly, i = 1,2,3, j = 1,2.

We have the following matrices for (8)

F0 =

⎡
⎣ x2

u1

u2

⎤
⎦ , F1 =

⎡
⎣ 0
−x2x1

x2x3

⎤
⎦ , F0,x(t,x0(t),u0(t)) =

⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦ , F0,u(t,x0(t),u0(t)) =

⎡
⎣ 0 0

1 0
0 1

⎤
⎦ ,

F1(t,x0(t),u0(t)) =

⎡
⎣ 0

−0.5t(t2 +1)
t(2− t)

⎤
⎦ .

The unit weight matrices Q and R of corresponding dimensions were used for the control u1 construction and the
parameter kω = 1 was used for ω design. The Fig. 1 shows the coordinates of closed-loop systems along the controls
u0, u1 = u0 + ε(k(x1(t), t)+ p(t)) and uω = u0 + ε(k(x1(t), t)+ p(t)+ω(t)) for ε = 1, and the Fig. 2 presents these
controls themselves.

The Table I shows the terminal error values J(u) = (x(T,u)− xT )′(x(T,u)− xT ) along different control for various
ε . As one may see, for all considered cases, u1(x, t,ε) is more effective then control u0(t) and uω is better then
u1(x, t,ε). Let us note that the superiority of u1(x, t,ε) of over u0(t) is retained even in the case of ε = 1, where the
introduction of the parameter is, in fact, formal, and the system is no more weakly nonlinear.
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FIGURE 1. Trajectories of closed-loop systems along various controls for ε = 1

FIGURE 2. Controls time evaluations for ε = 1

TABLE 1. Values of J for various ε

ε J(u0) J(u1) J(uω )

1 0.5801 0.3688 5.7335∗10−8

0.5 0.1471 0.0931 7.1214∗10−8

0.1 0.5949∗10−2 0.3703∗10−2 1.8095∗10−6

0.01 0.5966∗10−4 0.3701∗10−4 1.2832∗10−7
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CONCLUSION

The paper proposes an algorithm for constructing a correction of an admissible control in a nonlinear point-to-point
control problem. The correction consists of two terms. The first one is constructed using an auxiliary linear-quadratic
control problem and has a feedback form. The second one is intended to clarify the solution and fulfill the constraints
on the coordinates of the system and control. It is open-loop control and is based on the solution of the nonlinear
programming problem. Note that this problem is solved in the neighborhood of the control with the first correcting
term, which is already found. That reduces the solution search time. The experiments showed the effectiveness of the
proposed approach.
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Abstract. In the present paper, the initial value problem for the first order ordinary differential equation with involution is studied.
We obtain equivalent initial value problem for the second order ordinary differential equations to the initial value problem for first
order linear differential equations with involution. Theorem on stability estimates for the solution of the initial value problem for
the first order ordinary linear differential equation with involution is proved. Theorem on existence and uniqueness of bounded
solution of initial value problem for first order ordinary nonlinear differential equation with involution is proved.

INTRODUCTION

Differential equations with involution appear in mathematical models of ecology, biology, and population dynamics
(see, e.g, [1-7] and the reference given therein).

Our goal in this paper is to investigate the boundedness of the solution of the initial value problem for the first order
ordinary differential equation with involution

iy′(t) = f (t;y(t);y(u(t)), t ∈ I = (−∞,∞),y(t0) = y0. (1)

Here and in future u(t) is involution function, that is u(u(t)) = t, and t0 is a fixed point of u. Problem (1) does not seem
to yield directly to any techniques that for ordinary differential equations without involution term can be used them
in (1). Therefore, we consider the first order linear differential equations with involution. We obtain equivalent initial
value problem for the second order ordinary differential equations to the initial value problem for first order linear
differential equations with involution. Theorem on stability estimates for the solution of the initial value problem for
the first order ordinary linear differential equation with involution is established. Finally, Theorem on existence and
uniqueness of bounded solution of initial value problem for the first order nonlinear ordinary differential equation
with involution is proved.

LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH INVOLUTION

Let C∞[I] be set of all differentiable functions for all degrees.

Theorem 1 Let u(t) be a continuous function that it is own inverse on an open interval I,u ∈ C∞[I], and t0 ∈ I be a
fixed point of u. Let y0 be any real number and each of a(t), b(t) be a function of class C∞ on I, such that b(t) does
not vanish on the interval I, then the problem

iy′(t) = a(t)y(t)+b(t)y(u(t))+ f (t), t ∈ I,y(t0) = ϕ (2)

is equivalent to the following problem for the second order ordinary differential equation⎧⎨
⎩

iy′′(t) = p(t)y(t)+q(t)y
′
(t)+F(t), t ∈ I,

y(t0) = ϕ ,y′
(t0) =−ı(a(t0)ϕ +b(t0)ϕ + f (t0)) ,

(3)

where

p(t) =
[

a′(t)− b′(t)
b(t)

a(t)+ ia(t)a(u(t))u′(t)− ib(t)b(u(t))u′(t)
]
,
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q(t) = a(t)+a(u(t))u′(t)+
ib′(t)
b(t)

,

and

F(t) = ia(u(t))u′(t) f (t)− b′(t)
b(t)

f (t)− ib(t)u′(t) f (u(t))+ f ′(t).

The proof of Theorem 1 is based on approaches of proof of Theorem 1 of paper [1] on the first order linear differential
equation with involution. Now we consider the initial value problem

iy′(t) = by(π − t)+ay(t)+ f (t), t ∈ I,y
(π

2

)
= ϕ (4)

for the first order ordinary differential equation with involution. We are interested in studying the stability of problem
(4) on I. In general cases of a and b the solution of (4) is not bounded on I. It is important in applications. Applying
Theorem 1, we get the equivalent initial value problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y
′′
(t)− (b2 −a2)y(t) = F(t),

F(t) =−a f (t)+b f (π − t)− i f ′(t), t ∈ I,

y
(π

2

)
= ϕ,y′(π

2 ) =−i(a+b)ϕ + f (π
2 )

(5)

for the second order ordinary differential equation. We will obtain the solution of the problem (5). There are three
cases: a2−b2 > 0,a2−b2 = 0,a2−b2 < 0. In the first case a2−b2 =m2 > 0. Substituting m2 for a2−b2 into equation
(5), we get

y
′′
(t)+m2y(t) = F(t), t ∈ I.

Applying Laplace and inverse Laplace transforms, we get

y(t) = cos(mt )y(0)+
1

m
sin(mt )y′(0)+

1

m

t∫
0

sin(m(t − y))F(y)dy.

Now, we obtain y(0) and y′(0). Taking the derivative, we get

y′(t) =−msin(mt )y(0)+ cos(mt) y′(0)+
t∫

0

cos(m(t − y))F(y)dy.

Putting F(y) =−a f (y)+b f (π − y)− i f ′(y), we get

y(t) = cos(mt)y(0)+
1

m
sin(mt)y′(0)

+
1

m

t∫
0

sin(m(t − y))
[−a f (y)+b f (π − y)− i f ′(y)

]
dy, (6)

y′(t) =−msin(mt) y(0)+ cos(mt) y′(0)

+

t∫
0

cos(m(t − y))
[−a f (y)+b f (π − y)− i f ′(y)

]
dy. (7)
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Substituting π
2 for t into equations (6) and (7) gives us

y
(π

2

)
= cosm

π
2

y(0)+
1

m
sinm

π
2

y′(0)

+
1

m

π
2∫

0

sinm
(π

2
− y

)[−a f (y)+b f (π − y)− i f ′(y)
]

dy,

y′
(π

2

)
=−msinm

π
2

y(0)+ cosm
π
2

y′(0)

+

π
2∫

0

cosm
(π

2
− y

)[−a f (y)+b f (π − y)− i f ′(y)
]

dy.

Applying initial conditions y
(π

2

)
= ϕ,y′(π

2 ) =−i
{
(a+b)ϕ + f

(π
2

)}
, we obtain⎧⎨

⎩
cos

(mπ
2

)
y(0)+ 1

m sin
(mπ

2

)
y′(0) = ϕ −α1,

−msin
(mπ

2

)
y(0)+ cos

(mπ
2

)
y′(0) =−i

{
(a+b)ϕ + f (π

2 )
}−α2.

Here

α1 =
1

m

π
2∫

0

sin
(

m
(π

2
− y

))[−a f (y)+b f (π − y)− i f ′(y)
]

dy,

α2 =

π
2∫

0

cos
(

m
(π

2
− y

))[−a f (y)+b f (π − y)− i f ′(y)
]

dy.

Since

Δ =

∣∣∣∣ cos
(mπ

2

)
1
m sin

(mπ
2

)
−msin

(mπ
2

)
cos

(mπ
2

) ∣∣∣∣ = cos2 m
π
2

+sin2 m
π
2
= 1 �= 0,

we have that

y(0) =
Δ0

Δ
=

∣∣∣∣ ϕ −α1
1
m sin

(mπ
2

)
−i{(a+b)ϕ + f (π

2 )}−α2 cos
(mπ

2

) ∣∣∣∣

y(0) = cos
(mπ

2

)
[ϕ −α1]+

1

m
sin

(mπ
2

)[
−i

{
(a+b)ϕ + f (

π
2
)
}
−α2

]
,

y′(0) =
Δ1

Δ
=

∣∣∣∣ cos
(mπ

2

)
ϕ −α1

−msin
(mπ

2

) −i
{
(a+b)ϕ + f

(π
2

)}−α2

∣∣∣∣

y′(0) =−cos
(mπ

2

)[
i
{

ϕ + f
(π

2

)}
+α2

]
+msin

(mπ
2

)
[ϕ −α1] .
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Putting y(0) and y′(0) into equation (6), we get

y(t) = cosm
(

t − π
2

)
ϕ +

1

m
sinm

(π
2
− t

)[
i{(a+b)ϕ + f

(π
2

)]

− 1

m

π
2∫

t

sinm(t − y)
[−a f (y)+b f (π − y)− i f ′(y)

]
dy. (8)

Since cosm(t)and sinm(t) are bounded functions on I, we can obtain stability estimates in this case for the solution
of the problem (4). In the second case a2 −b2 = 0. Then,

y
′′
(t) = F(t). (9)

Integrating this equation, we get

y′(t)− y′
(π

2

)
=

t∫
π
2

F(s)ds

and integrating last equation, we get

y(t)− y
(π

2

)
− y′

(π
2

)(
t − π

2

)
=

t∫
π
2

(t − s)F(s)ds.

Applying initial conditions y
(π

2

)
= ϕ,y′

(π
2

)
=−i

{
(a+b)ϕ + f

(π
2

)}
, we get

= ϕ +
(π

2
− t

)
i
{
(a+b)+ f

(π
2

)}
−

π
2∫

t

(t − y)F (y)dy.

Since t is not bounded function on I, in general, we can not obtain stability estimates of the solution for problem (4)
for this case.
In the third case a2 −b2 = m2 < 0. Substituting −m2 for a2 −b2 into equation (5), we get

y
′′
(t)−m2y(t) = F(t), t ∈ I.

Applying Laplace and inverse Laplace transforms, we get

y(t) = cosh(mt )y(0)+
1

m
sinh(mt )y′(0)+

1

m

t∫
0

sinh(m(t − y))F(y)dy.

Now, we obtain y(0) and y′(0). Taking the derivative, we get

y′(t) =−msinh(mt )y(0)+ cosh(mt) y′(0)+
t∫

0

cosh(m(t − y))F(y)dy.

Putting F(y) =−a f (y)+b f (π − y)− i f ′(y), we get

y(t) = cosh(mt)y(0)+
1

m
sinh(mt)y′(0)

+
1

m

t∫
0

sinh(m(t − y))
[−a f (y)+b f (π − y)− i f ′(y)

]
dy, (10)
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y′(t) = msinh(mt) y(0)+ cosh(mt) y′(0)

+

t∫
0

cosh(m(t − y))
[−a f (y)+b f (π − y)− i f ′(y)

]
dy. (11)

Substituting π
2 for t into equations (10) and (11), we get

y(
π
2
) = coshm

π
2

y(0)+
1

m
sinhm

π
2

y′(0)

+
1

m

π
2∫

0

sinhm(
π
2
− y)

[−a f (y)+b f (π − y)− i f ′(y)
]

dy,

y′
(π

2

)
= msinhm

π
2

y(0)+ coshm
π
2

y′(0)

+

π
2∫

0

coshm
(π

2
− y

)[−a f (y)+b f (π − y)− i f ′(y)
]

dy.

Applying initial conditions y
(π

2

)
= ϕ,y′(π

2 ) =−i
{
(a+b)ϕ + f

(π
2

)}
, we obtain⎧⎨

⎩
cosh

(mπ
2

)
y(0)+ 1

m sinh
(mπ

2

)
y′(0) = ϕ −α1,

msinh
(mπ

2

)
y(0)+ cosh

(mπ
2

)
y′(0) =−i

{
(a+b)ϕ + f (π

2 )
}−α2.

Here

α1 =
1

m

π
2∫

0

sinh
(

m
(π

2
− y

))[−a f (y)+b f (π − y)− i f ′(y)
]

dy,

α2 =

π
2∫

0

cosh
(

m
(π

2
− y

))[−a f (y)+b f (π − y)− i f ′(y)
]

dy.

Since

Δ =

∣∣∣∣ cosh
(mπ

2

)
1
m sinh

(mπ
2

)
msinh

(mπ
2

)
cosh

(mπ
2

) ∣∣∣∣ = cosh2 m
π
2

− sinh2 m
π
2
= 1 �= 0,

we have that

y(0) =
Δ0

Δ
=

∣∣∣∣ ϕ −α1
1
m sinh

(mπ
2

)
−i{(a+b)ϕ + f

(π
2

)}−α2 cosh
(mπ

2

) ∣∣∣∣

y(0) = cosh
(mπ

2

)
[ϕ −α1]+

1

m
sinh

(mπ
2

)[
−i

{
(a+b)ϕ + f

(π
2

)}
−α2

]
,

y′(0) =
Δ1

Δ
=

∣∣∣∣ cosh
(mπ

2

)
ϕ −α1

msinh
(mπ

2

) −ia+b+ f (π
2 )−α2

∣∣∣∣
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y′(0) =−cosh
(mπ

2

)[
i(a+b)ϕ + f

(π
2

)
+α2

]
−msinh

(mπ
2

)
[ϕ −α1] .

Putting y(0) and y′(0) into equation (10), we get

y(t) = coshm
(

t − π
2

)
ϕ − 1

m
sinhm

(π
2
− t

)[
i{(a+b)ϕ + f

(π
2

)]

− 1

m

π
2∫

t

sinhm(t − y)
[−a f (y)+b f (π − y)− i f ′(y)

]
dy.

Since cosh(mt) and sinh(mt) are not bounded functions on I, in general, we can not obtain stability estimates of the
solution for problem (4) for this case.

Theorem 2 Assume that 0 �= |b|< |a| . Then the problem (4) is stable and the following stability estimate holds

sup
t∈I

|y(t)| ≤
(

1+
|a|+ |b|√

a2 −b2

)⎡
⎣|ϕ|+ ∞∫

−∞

| f (y)|dy

⎤
⎦ . (12)

Proof. Applying formula (8), we get

y(t) = cos
√

a2 −b2
(

t − π
2

)
ϕ +

i√
a2 −b2

sin
√

a2 −b2
(π

2
− t

)
(a+b)ϕ (13)

− 1√
a2 −b2

π
2∫

t

sin
√

a2 −b2(t − y) [−a f (y)+b f (π − y)]dy

+i

π
2∫

t

cos
√

a2 −b2(t − y) f (y)dy.

The proof of estimate (12) is based on the formula (13) and the triangle inequality.

NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH INVOLUTION

We consider the initial value problem

iy
′
(t) = by(−t)+ay(t)+ f (t,y(t)), t ∈ I,y(0) = ϕ (14)

for the first order nonlinear ordinary differential equation with involution. We are interested in studying the existence
and uniqueness of bounded solution of problem (14) on I. In general cases of a and b the solution of (14) is not
bounded on I. Let C(I) be the complete space of all continuous functions defined on the interval I with the metric d
defined by[9]

d(x,y) = sup
t∈I

|x(t)− y(t)| .

Theorem 3 Assume that |b|< |a| ,a ∈ (−∞,0) and f is continuous and bounded function on the region

P = {(t,x) : −∞ < t < ∞, |x−ϕ|< M} .
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Suppose that f satisfies a Lipschitz condition on P with respect to its second argument, that is, there is a constant l
such that for (t,x) , (t,y) ∈ P

| f (t,x)− f (t,y)| ≤ l |x− y| . (15)

Then, initial value problem (14) has a unique solution y ∈ C(I). This function y is the limit of the iterative sequence
{yn}∞

n=0 defined by the recursive Picard iteration formula

yn(t) = cos
√

a2 −b2
(

t − π
2

)
ϕ +

i√
a2 −b2

sin
√

a2 −b2
(π

2
− t

)
(a+b)ϕ

− 1√
a2 −b2

π
2∫

t

sin
√

a2 −b2(t − s) [−a f (s,yn−1(s))+b f (π − s,yn−1(s))]ds

+i

π
2∫

t

cos
√

a2 −b2(t − s) f (s,yn−1)ds,n = 1,2, ...,

where y0 (t) is an arbitrary continuous function.

Proof. Applying formula (13), we can write problem (14) in the equivalent integral form y(t) = Ty(t). Here

Ty(t) = cos
√

a2 −b2
(

t − π
2

)
ϕ +

i√
a2 −b2

sin
√

a2 −b2
(π

2
− t

)
(a+b)ϕ

− 1√
a2 −b2

π
2∫

t

sin
√

a2 −b2(t − s) [−a f (s,y(s))+b f (π − s,y(s))]ds

+i

π
2∫

t

cos
√

a2 −b2(t − s) f (s,y)ds.

Note that integral form is a Volterra type integral-differential equation of the second kind. Therefore, applying the
fixed-point theorem, we can complete the proof of Theorem 3.

CONCLUSION

In the present paper, the initial value problem for the first order differential equation with involution is investigated.
Theorem on stability estimates for the solution of the initial value problem for the first order ordinary linear differential
equation with involution is proved. Theorem on existence and uniqueness of bounded solution of initial value problem
for the first order ordinary nonlinear differential equation with involution is established. Moreover, applying the result
of the monograph [8], the single-step stable difference schemes for the numerical solution of the initial value linear
and nonlinear problems (4) and (14) for the first order linear and nonlinear differential equations with involution can
be presented and studied.
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Abstract. This study investigates the cointegration and causality relationships between business confidence and financial stress for
the PIGS countries (Portugal, Italy, Greece, and Spain) based on monthly data covering between January 2008 and December 2019.
Panel ARDL methodology and Pooled Mean Group estimation techniques are used to test the short-run and long-run relationships
between the variables. The findings indicate that financial stress is significantly and negatively affected by business confidence
in the examined countries in both the long run and short run. Furthermore, the current month’s financial stress level is negatively
affected by the last month’s business confidence and financial stress levels. Finally, a univariate causality relationship running from
business confidence towards financial stress is revealed.

INTRODUCTION

Initial efforts using certain indicators to understand the general situation of the financial sector commenced in the
1980s. Early indicators included the Monetary Condition Index proposed by the Bank of Canada, the Bloomberg
Financial Condition Index, Goldman Sachs FCI, etc. Towards the end of the 1990s, a financial stress began to be
used by academicians and central banks as a concept to represent the total stress of the entire financial system. The
popularity of this concept particularly increased after the 2008 financial crisis [1].
Financial stress does not emerge in isolation. The recent financial crisis proved that strong links exist between the
financial sector and the real sector and these sectors respond to shocks that occur in the other. Various studies have
investigated the possible impacts of financial stress on different economic activities such as unemployment, prices,
monetary policy measures, GDP and so on ( [2, 3, 4]).
This study investigates the relationship between financial stress and business confidence in the PIGS countries (Por-
tugal, Italy, Greece, and Spain) based on monthly data covering the period January 2008-December 2019. Business
confidence surveys are regularly conducted to develop a clear picture of world business and to identify potential chal-
lenges. Business confidence indices are designed for different regions and countries to measure overall confidence in
businesses [5].

LITERATURE REVIEW

Financial Stress

Multiple studies have investigated financial stress in different contexts. Some studies have been devoted to construct
financial stress indices for different countries and regions. The study of Illing and Liu [6] was one of the early studies
that devised an FSI for a developed country-Canada. Cardarelli et al. [7] designed an FSI to calculate the financial
stress in 17 developed countries, including Spain and Italy. The Central Bank of Turkey [8] published a Financial
Stability Report, in which an FSI was designed for the financial sector of Turkey to assess the crisis-time financial
performance of the country. Louzis and Vouldis [9] devised an FSI for Greece using the GARCH methodology. Oet
et al. [10] presented the Cleveland FSI calculated on a daily basis. This study took four financial markets and eleven
variables into account while constructing the FSI. Ekinci [1] calculated the financial stress index for Turkey based
on banking and public sectors, stock markets and foreign exchange markets and broke down the Turkish economy
into different stress periods. Aboura and van Roye [11] devised an FSI for the French economy using the Markov-
Switching Bayesian VAR model and indicated low and high stress periods.
Another strand of the literature has investigated the financial stress index (FSI) in relation to different economic
activities. The real effects of financial stress have been comprehensively investigated in the literature. David and
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Hakkio [2] assessed the influence of financial stress on economic activity in the USA and identified two regimes. In a
normal regime, the financial stress level is low and the level of economic activity is high. A reverse condition occurs
when the US economy operates in a distressed regime. In the distressed regime, the impact of financial stress on
economic activity becomes larger than the normal regime. Li and St-Amant [12] found that financial stress lessens
the output growth in Canada. Mallick and Sousa [4] investigated the real effects of financial stress in the Eurozone
markets. They determined that financial stress is strongly and negatively affected by tight monetary policies. On the
other hand, their findings showed that unexpected variations in the FSI and output fluctuations are closely related in
the Eurozone. Van Roye [13] devised an FSI for Germany and examine how financial stress affects economic activity
in that country. The findings showed that inflation rates and GDP are severely dampened when financial stress is high.
Short-term nominal interest rates also substantially drop as a result of high financial stress. Hubrick and Tetlow [14]
investigated the impacts of financial stress on the real economy. They found that monetary policy reactions differ
in stress and non-stress periods. Nazlioglu et al. [3] investigated the financial stress-oil prices relationship, looking
for volatility spillovers. They used WTI crude oil prices and the Cleveland Financial Stress Index as variables and
examined the relationship between them in pre-crisis, crisis, and post-crisis periods. The study results showed that
substantial spillovers exist between energy and financial markets. Malega and Horvath [15] found that financial stress
affects prices, unemployment, interest rates, and output levels in the Czech Republic and has significantly negative
effects for the economy. Aboura and van Roye [11] found that during high financial stress periods, economic activity
significantly reduces in France.

Business Confidence

Sood [16] stated that business confidence or expectations surveys are regularly conducted in different countries. Such
surveys investigate business conditions and the expectations of firms and can therefore be effective tools for determin-
ing the short-term characteristics of economies. Many studies have devised business confidence indices on different
economic areas. Oral et al. [5] constructed the Real Sector BCI for Turkey. Santero and Westerlund [17] found
that business and consumer confidence indices can help to explain the overall economic situation and make fore-
casts. They also found that business confidence indicators are more effective for economic analysis than consumer
confidence indicators, as a looser relationship exists between output fluctuations and consumer confidence indicators.
Cevik et al. [18] investigated how business confidence affects stock returns using the ISM manufacturing index as
a business confidence indicator and found that regime-switching probabilities in the US stock markets are affected
by the business confidence factor. Sum and Chorlian [19] examined the dynamic effects of business confidence and
consumer confidence on stock market risk premiums. They identified that when business confidence and consumer
confidence experience shocks, stock market risk premiums immediately show a positive response. Furthermore, the
results indicated that business and consumer confidence levels together explain around 7.4% of the variations in risk
premiums of stock markets. Ayuningtyas and Koesrindartoto [20] also examined the relationship among the same
variables for Indonesia from 2000 to 2013. They found that quarterly stock indices are significantly and positively
affected by business confidence in Indonesia. Tibulca [21] investigated how business confidence in the manufacturing
sector is affected by fiscal policy decisions. The author used change in taxation to quantify fiscal policy and found that
only 15% of the business confidence level can be explained by taxation. Furthermore, the findings indicated that the
impact of change in taxation on business confidence is much higher in Japan than in OECD Eurozone member states.
The paper of De Jongh and Mncayi [22] investigated the relationship between business confidence, investments, and
economic growth in South Africa from 1995Q1 to 2017Q4. Using the autoregressive distributed lag (ARDL) model,
they found a significant positive relationship among the variables. The Granger causality results further proposed that
“the BCI acts as a key leading indicator for investment and growth in the economy”. Khan and Upadhayaya [23]
examined whether business investment growth is influenced by the business confidence level in the US and revealed
that business confidence can predict investment growth in that country. In addition, they found that the forecasting
power of business confidence is much stronger than traditional determinants.
Many studies have investigated the FSI and BCI separately. To the best of the authors’ knowledge, this is the first
study to examine the financial stress – business confidence nexus. We have employed panel ARDL and Pooled Mean
Group estimators together with panel causality analysis to prove the relationship between the two variables.
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DATA AND METHODOLOGY

The Pooled Mean Group Estimation method is largely used in studies with large sample sizes and a high number
of observations [24]. This model is an effective method in dynamic non-stationary panels. The method calculates
the cointegration relationship among variables and it is possible to obtain short-run and long-run results from this
model. A basic requirement for the model to yield valid results is that the variables must be I(0) or I(1). Pesaran et
al. [25] excluded the existence of I(2) variables for ARDL estimation. This can be tested using unit root tests for both
variables at levels and at the first differences. The general formula of the PMG estimator can be modelled as below:

Yit =
p

∑
j=1

λi jyi,t− j +
q

∑
j=0

δi jXi,t− j +μt + εit ,

where the number of cross sections i = 1,2, ...,n and time t = 1,2,3, ...,λ . Xi,t is a vector of K ×1 regressors, λi j is a
scalar, and μt is a group specific effect.

TABLE 1. Panel Unit Root Test Summary

Business Confidence Index Level Method Statistic Probability

Levin, Lin Chu -0.46452 0.3211
Im, Pesaran and Shin W-stat -185.866 0.0315
ADF - Fisher Chi-square 153.800 0.0522
PP - Fisher Chi-square 105.484 0.2286
1st difference
Levin, Lin Chu -177.995 0.0375
Im, Pesaran and Shin W-stat -627.841 0.0000
ADF - Fisher Chi-square 591.381 0.0000
PP - Fisher Chi-square 340.695 0.0000

TABLE 2. Panel Unit Root Test Summary

Financial Stress Index Level Method Statistic Probability

Levin, Lin Chu -148.364 0.0690
Im, Pesaran and Shin W-stat -302.326 0.0013
ADF - Fisher Chi-square 247.767 0.0017
PP - Fisher Chi-square 301.222 0.0002
1st difference
Levin, Lin Chu -872.604 0.0000
Im, Pesaran and Shin W-stat -156.301 0.0000
ADF - Fisher Chi-square 201.725 0.0000
PP - Fisher Chi-square 376.139 0.0000

Various methodologies have been employed in the literature to test the relationship between two variables, depend-
ing on the characteristics of the data. After running several tests, panel ARDL model developed by Pesaran and Smith
[26] and Pesaran et al. [24] was found to be effective for the analysis. Pesaran and Smith [26] and Pesaran et al. [24]
also proposed the Pooled Mean Group Estimator within the panel ARDL method, which is an efficient estimator as
parameters are estimated for each country and then for the group in this model. The PMG estimator allows the short
run parameters to act heterogeneously across countries, but in the long run, it considers parameters to be homogenous
[27]. Pesaran et al. [24] linked the existence of homogeneity in the long run to several factors such as common tech-
nology usage or common institutional improvements. The ARDL model allows the estimation of short-run parameters
via the Error Correction Model. Error correction terms in this model are derived from ARDL long-run relationships.
To estimate the relationship between FSI and BCI with an ARDL model, we first introduce the unit root test to exam-
ine the stationarity of our variables. Panel unit root test results to determine the stationarity of the business confidence
index (BCI) are indicated in Table 1. The E-views software presents a summary of different unit root tests in one
table. The null hypotheses of all four tests is that the variable is subject to unit root. Three of the four tests approve
that there is unit root at level. The alternative hypothesis is accepted in all four tests conducted at the 1st difference.
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TABLE 3. Kao Residual Cointegration Test

t-Statistic Prob.

ADF -2.983.303 0.0014
Residual variance 0.003126
HAC variance 0.001430

TABLE 4. Pedroni Residual Cointegration Test. Null Hypothesis: No cointegration

Statistic Prob. Statistic Prob.

Panel v-Statistic 4.589.211 0.0000 2.129.615 0.0166
Panel rho-Statistic -1.113.020 0.0000 -1.474.675 0.0000
Panel PP-Statistic -5.966.604 0.0000 -7.466.503 0.0000
Panel ADF-Statistic -5.460.399 0.0000 -5.580.743 0.0000
Group rho-Statistic -1.098.371 0.0000
Group PP-Statistic -7.071.321 0.0000
Group ADF-Statistic -5.829.654 0.0000

Thus, the variable BCI is an I(1) variable. The unit root test results for the financial stress index (FSI) variable are
presented in Table 2.

The test results largely show that there is no unit root either at the level or at the first difference. Thus, FSI is an
I(0) variable. Proving that none of the variables are integrated at the second difference meets the main condition of
the panel ARDL method.
Cointegration and causality tests can also be useful tools to further explain the behavior of variables. Searching
for cointegration is a helpful step, although not strongly required, to provide evidence that the long-run results are
common across countries, which is a necessary step to conduct PMG estimation. Two cointegration tests were used to
check whether the two variables are cointegrated or not, which are the Kao Residual Cointegration Test and Pedroni
Residual Cointegration Test. The results of these tests are presented in Table 3 and Table 4. The null hypothesis

TABLE 5. Long Run Cointegration Results

Variable Coefficient Std. Error t-Statistics Probability

BCI -0.041460 0.004810 -8.620.170 0.0000

of the test supports that there is no cointegration between variables. As the probability value is less than 5%, the
null hypothesis must be rejected and the existence of long-run cointegration must be accepted. The Pedroni Residual
Cointegration test results further strengthen the evidence of long-run cointegration. The Pedroni [? ] test consists of
different within-dimension and between-dimension statistics (see Table 4). As all probability values for the panel and
group indicators are less than 5%, the alternative hypothesis of the existence of panel cointegration between variables
can be accepted. However, the Pedroni test can only indicate the presence of cointegration among the variables, but is
unable to estimate the long-run relationship. Thus, we use the panel ARDL method suggested by Pesaran et al. [26].
The ARDL approach firstly examines a long-run cointegration relationship among the variables and then estimates
the coefficients of the variables. The Pooled Mean Group Estimator developed by Pesaran et al. [24] provides the
estimation results in Table 5.

Accepting the FSI as the dependent variable, the long-run results indicate that there is a negative significant re-
lationship between the variables. It indicates that BCI negatively affects FSI in the long run, which is a reasonable
finding. According to the cointegration results, a one unit increase in the business confidence index is accompanied
by an approximate 0.04 unit decrease in the financial stress index in the long run.
The study investigates the short run cointegration between FSI and BCI. The results show that only up to the 1st
lag of both variables can affect the dependent variable in the short run. Specifically, the 1st lag of FSI is significant
and negatively affects the current FSI. Also, BCI is a significant explanatory variable to explain FSI. According to
the short-run test results, BCI has negative affect on FSI. However, the 1st lag of BCI is significant and it positively
affects FSI in the short run. The Error Correction Term is significant and negative, which is a desirable outcome for
our study (see Table 6). The short-run cointegration results indicate that a 1 unit increase in the business confidence
index results in an approximate 0.09 unit decrease in the financial stress index. The findings also show that a 1 unit
increase in the last month’s FSI results in a 0.12 unit decrease in the current FSI. Furthermore, a 1 unit increase in the
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TABLE 6. Short Run Cointegration Results

Variable Coefficient Std. Error t-Statistic Probability

COINTEQ01 -0.205827 0.068309 -3.013.188 0.0027
D(FSI(-1)) -0.123799 0.046383 -2.669.078 0.0078
D(FSI(-2)) -0.085211 0.045586 -1.869.248 0.0621
D(FSI(-3)) -0.030927 0.033828 -0.914259 0.3610
D(BCI) -0.093915 0.015551 -6.038.979 0.0000
D(BCI(-1)) 0.073090 0.022768 3.210.253 0.0014
D(BCI(-2)) -0.052855 0.055840 -0.946537 0.3443
D(BCI(-3)) 0.029587 0.034422 0.859519 0.3904
C 0.879385 0.289790 3.034.556 0.0025

TABLE 7. Granger Causality Test

Null Hypothesis: Obs F-Statistic Prob.

FSI does not Granger Cause BCI 568 201.503 0.1343
BCI does not Granger Cause FSI 671.407 0.0013

last month’s BCI results in a 0.07 unit decrease in the current month’s FSI.

To check the causal relationship between variables, the Granger Causality test is conducted [27]. The test results
prove that there is a unidirectional relationship running from BCI to FSI (see Table 5).

CONCLUSION

The popularity of financial stress levels in economies as general measurements of financial stability has increased, par-
ticularly after the 2008 financial crisis. Previous studies have extensively investigated the potential outcomes of high
financial stress levels on different sectors of the economy. This study examined the short-run and long-run relation-
ship between financial stress and business confidence. To the best of the authors’ knowledge, the relationship between
these variables has not been examined well, if at all. The findings of the study revealed that business confidence nega-
tively affects financial stress in the long term and in the short term in the PIGS countries. Hence, when confidence and
expectations in business environment strengthen, financial stress decreases in these countries. The study also found
that business confidence causes financial stress in the PIGS countries, but the reverse causality running from financial
stress towards business confidence was not found.
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Abstract. One common negative side effect of orthodontic treatment with fixed appliances is the development of white spot
lesions (WSLs) around brackets. This study aimed to compare the efficacy of various oral hygiene practices in preventing enamel
demineralization around orthodontic brackets under similar in-vitro conditions. The study included 90 extracted bovine incisors,
which were randomized into 6 groups. The changes in the demineralization degree were evaluated by measuring the Ca+2 concen-
tration (mg/dL) in the demineralization solution at days 5, 10, 15, 19. The procedures were carried out at the Medical Biochemistry
Laboratory at Near East University Hospital. Calcium content of each beaker was measured with the Abbott Architect c8000
biochemistry autoanalyzer system using the Arsenazo III method.

INTRODUCTION

One of the most common negative side effects of fixed orthodontic treatment is the development of incipient caries
lesions [1].

Studies have shown that while it takes at least 6 months for caries to develop in a patient not submitted to orthodontic
treatment, it takes around 1 month [2, 3] to develop in an orthodontic patient because of the difficulty these patients
have with performing oral hygiene [4]. This information shows the rapid progression of this disease and the need
for continual follow-up of these patients [2]. Investigations have put the incidence of white spot lesion(WSL) during
orthodontic treatment with fixed appliances at 73% to 95% [5, 6].

Although there are many methods for the effective control of this initial stage of caries disease, prevention and early
and accurate detection of WSLs is a great challenge to orthodontists [7].

However, when the WSLs are found during clinical practice, the lesions are found to have opacity, at least. At
present, a few studies have focused on the degree of remineralization of the already-formed WSLs and the prognosis
of remineralization therapy. Despite this, there are several questions as follows:
1. Can we prevent the WSLs before they occur?
2. Does prophylactic treatment during orthodontic treatment reduce the occurrence of the WSLs?
3. How should we choose the most effective and correct method when we have such a wide range of products and
new materials?

Therefore, the aim of the present study was to investigate the preventive effect of the medical minerals gel and
compare it with that of two types of varnishes (fluoride varnish and CPP-ACP varnish), which have been proved to be
effective as protective agents, by using methods of observing the changes in visual score and amount of demineraliza-
tion. If this study finds that medical minerals gel is effective in prevention, then this gel may possibly be added to the
list of advised products that can be used to reduce demineralization and the occurrence of WSLs during orthodontic
treatment.

APPLICATIONS AND CYCLING MODEL

Tooth Preparation

Ninety incisor teeth were collected from the mandibles of 3-year-old fifteen bovines (negative BSE test) and selected.
The selection criteria included intact buccal enamel surfaces without the WSLs, visible cracks, or enamel irregularities.

The teeth were debrided and stored in 0.1% thymol solution at 4◦C. For standardization of the exposed enamel
surface, 4 x 6 mm2 window was created that was placed 5mm gingivally to the incisal edge and in the mesiodistal
center of the clinical crown. All teeth were painted with a thin coat of acid-resistant nail polish on all surfaces
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excluding the window area. Metal lower incisor brackets (3M Unitek, MN, USA) were bonded with a light-cured
resin composite cement (Transbond XT, 3M Unitek, MN, USA) at the center of the exposed area [8] which can be
seen in Figure 1.

FIGURE 1. Images of teeth before and after bonding the brackets. Left picture represents before bonding the bracket: Nail varnish
painted around the exposed enamel surface. Right picture represents after bonding the bracket: Exposed enamel around the bracket
represents the area of interest

Visual Assessment

The exposed enamel surfaces of each tooth were examined visually by two examiners in accordance with the scoring
criteria established by Ekstrand et al. [9] (listed in Table 1). Only lesions scoring 1 were included in the study.
The same visual assessment was conducted at day 19 to evaluate the colour and opacity changes of enamel around
brackets.

TABLE 1. Visual examination criteria used in the selection and assessment of teeth [9].

Score Visual Assessment Criterion

1 No, or slight, change in enamel translucency after air-drying for 5 seconds.
2 Opacity or discoloration hardly visible on the wet surface but visible after air-drying.
3 Visible opacity or discoloration without air-drying.
4 Localised enamel breakdown with opacity or greyish discoloration from the underlying dentin.
5 Cavitation in opaque or discolored enamel exposing the dentin.

pH Cycling Model

After the materials were applied as described later, the groups were cycled in a 25ml demineralization solution at
37◦C for 8 hours per day; each tooth was placed in a separate beaker [10]. Following 8 hours of exposure to the
demineralization cycle, the teeth were placed in remineralization solution in separate beakers [8] for approximately
15 hours until the next demineralization cycle [10]. Details can be seen in Table 2.

TABLE 2. Explanation of pH Cycling Model

Cycling Model Exposure Time to Solutions Components of Solutions

Demineralization 8 h/ day Lactic acid and adjusted to pH 4.5 with sodium NaOH
Remineralization 15h/ day 20 mmol/l NaHCO3, 3 mmol/l NaH2PO4, and 1 mmol/l CaCl2 at neutral pH

Assigning to Groups of Treatments and Cycling Procedure

Under the same severity, six groups were established based on the prevention method as shown in Table 3.

020070-2



TABLE 3. Treatment Groups. Here FT denotes fluoride toothpaste, NFT denotes non-fluoride toothpaste, FV+FT denotes fluoride
varnish plus fluoride toothpaste, CPP-ACP+FT denotes CPP-ACP varnish plus fluoride toothpaste and MMG+NFT denotes medical
minerals gel plus non-fluoride toothpaste

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

No intervention(control) FT NFT FV+FT CPP-ACP+FT MMG+NFT

Each group contained 15 teeth. The duration of the experiment was 19 days. The materials (as listed in Table 4)
were applied to the exposed enamel surface around each bracket. All the groups were cycled daily as described before.
Varnishes were applied once, at the beginning of the experiment. Medical minerals gel was applied daily according
to the manufacturer’s instructions and 30 min before starting the next demineralization cycle. Both toothpastes were
applied daily, during the remineralization cycle, after immersing in AS for 30 min.

TABLE 4. Composition of commercially available products used in this study.

Material Composition

Fluoride toothpaste (Colgate Total, Colgate-Palmolive
Company, NY, USA)

Sodium fluoride (0.312% (1,450 ppm)), water, glycerin,
hydrated silica, sorbitol, PVM/MA copolymer, sodium
lauryl sulfate, aroma, carrageenan, sodium hydroxide,
propylene glycol, cellulose gum, triclosan, sodium sac-
charin, limonene, CI 77891 (white pigment).

Non- fluoride toothpaste (R.O.C.S. Pro Brackets & Or-
tho, ‘DRC-Group’ Company, Russia)

Sorbitol, silica, glycerin, aqua, xylitol, cocamidopropyl
betaine, aroma, xanthan gum, calcium glycerophos-
phate, bromelain, magnesium chloride, sodium saccha-
rin, sodium benzoate, O-cymen-5-ol, titanium dioxide.

Fluoride varnish (Bifluorid 12, Voco,
Cuxhaven,Germany)

Sodium fluoride and calcium fluoride (6%),
ethylacetate, pyroxylin, fumed silica, clove oil,
ısoamylpropionate.

Casein phosphopeptide-Amorphous Calcium
Phosphate(CPP-ACP) varnish (MI varnish, GC,
Tokyo, Japan)

Sodium fluoride and CPP-ACP (5%), polyvinyl acetate,
hydrogenated rosin, ethanol, silicon dioxide.

Medical minerals gel (R.O.C.S. Medical Minerals;
‘DRC-Group’ company, Russia)

Aqua, glycerin, xylitol, hydroxyethylcellulose, calcium
glycerophosphate, polysorbate-20, aroma, methyl-
paraben, magnesium chloride, hydroxypropyl guar.

Numerical Determination of Calcium Loss (Demineralization)

To assess the amount of demineralization, colorimetric technique were used [11, 12]. The procedures were carried
out at the Medical Biochemistry Laboratory at Near East University Hospital. After 8 hours of exposure to the
demineralization cycle, the teeth were removed from each beaker. Calcium content of each beaker was measured with
the Abbott Architect c8000 biochemistry autoanalyzer system using the Arsenazo III method [13].

The Ca+2 content of demineralization solution samples was analyzed for each group at days 5, 10, 15, and 19 to
observe change of demineralization according to the days. The lack of Ca+2 in demineralization solution is estimated
as a measure of the demineralization inhibitory effect of the materials [14].

Statistical Evaluations

Descriptive statistics were calculated. Median differences among the pre- and post treatment visual assessment data
for each of the groups were compared using the Bonferroni adjusted Wilcoxon Sign Rank test (p < 0.001) [15, 16].

ANOVA test with the Post-hoc Bonferroni test revealed the significant differences between groups for average
demineralization. The results were considered significant at p = 0.05. Power analysis was conducted on the Wilcoxon
test data to ensure that the sample size and the magnitude of the observed effect were sufficient. The statistical analysis
was performed using SPSS software (version 24.0.1, SPSS, Chicago, Ill).
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EVALUATION OF NUMERICAL DATA WITH STATISTICAL ANALYSIS

Visual Assessment

A summary of the results of the corresponding statistical analysis via the Bonferroni Adjusted Wilcoxon Sign Rank
test is listed in Table 5.

TABLE 5. Median pre- and posttreatment visual examination scores in each group (used products), interquartile ranges and
significance levels.

Treatment regime Control FT NFT FV+FT CPP-ACP+FT MMG+NFT

Pretreatment median (interquartile range) 1 (1-2) 1 (1-2) 1 (1-2) 1 (1-2) 1 (1-2) 1 (1-2)
Posttreatment median (interquartile range) 3 (2-3) 2 (2-3) 2 (2-3) 2 (2-3) 1 (1-2) 2 (1-2)

Sample size (n) 15 15 15 15 15 15
Significance level (p) < 0.001 < 0.001 < 0.001 < 0.001 0.157 < 0.001

These results indicate that the majority of teeth in the CPP-ACP+FT group exhibited no shift in appearance, whereas
in the other groups (Control, FT, NFT, FV+FT, MMG+NFT), the visual appearance of the enamel translucency was
significantly changed (p < 0.001).

Ca Loss Measurement (Demineralization)

The degrees of demineralization that were evaluated by measuring the Ca+2 concentration in the demineralization
solution at days 5, 10, 15, 19 for each group and the corresponding A Post-hoc Bonferroni test results of the Ca+2 loss
measurements confirm the findings of the visual appraisal and indicate that the extent of prevention afforded by the
six different treatment regimes investigated in this study for all time points of measurement is in the following order:
control ∼ NFT ∼ FT ∼ FV +FT ∼ MMG+NFT <CPP−ACP+FT (Table 6).

At all the four time points of measurement (days 5, 10, 15, and 19), the significantly lowest Ca+2 concentration in
the demineralization solution was observed for the CPP-ACP+FT group.

No advantage was observed for the use of the FV as a supplement to the daily application of the FT during experi-
ment period, but when the MMG was used as a supplement to daily application of the NFT, additional protection was
observed at all the time points of measurement.

At day 5, MMG+NFT’s preventive efficacy was significantly higher than FV+FT’s, but at days 10, 15, and 19,
their efficacy was similar. However, at all the time points, MMG+NFT’s efficacy was significantly higher than that of
control, whereas FV+FT’s efficacy was decreased at days 10, 15, and 19 and was close to the efficacy of control.

TABLE 6. The average amount of Ca loss for groups at days 5., 10., 15.,19. ( mg/ dL)

Groups MMG+NFT FT FV+FT CPP-ACP+FT NFT Control

At Day 5: Average (mg/dL), Std. Deviation 0.4, 0.07 0.7, 0.11 0.6, 0.15 0.1, 0.09 0.9, 0.21 0.9, 0.19
At Day 10: Average (mg/dL), Std. Deviation 0.6, 0.16 0.9, 0.28 0.8, 0.21 0.2, 0.13 0.9, 0.21 1.2, 0.21
At Day 15: Average (mg/dL), Std. Deviation 0.6, 0.17 0.8, 0.17 0.8, 0.21 0.2, 0.11 0.9, 0.21 1, 0.12
At Day 19: Average (mg/dL), Std. Deviation 0.5, 0.14 1, 0.24 0.8, 0.15 0.3, 0.15 0.9, 0.13 0.9, 0.19

The findings of this 19-day in-vitro study have indicated that:
1. One-time application of the CPP-ACP varnish as an adjunct to the fluoridated dentifrice is significantly the most
protective treatment against demineralization.
2. Daily application of medical minerals gel plus non-F toothpaste exhibited more protection than fluoride varnish
plus F toothpaste.
3. There was no clinical advantage of one-time application of 5% sodium fluoride varnish as a supplement to daily
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application of fluoride toothpaste.
4. Both toothpastes (fluoride and non-fluoride) had a weak preventive effect.
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