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Abstract. We study the well-posedness of the source identification problem for the two dimensional elliptic differential equation
with nonlocal boundary conditions. Applying operator approaches, the exact estimates for the solution of this problem in Hölder
norms are established.

INTRODUCTION

Theoretical aspects and methods of solutions of source identification problems for partial differential equations have
been extensively investigated by many researchers (see [3, 4, 8, 9, 10, 11, 14, 15, 17, 18, 19] and the bibliography
herein). Well-posedness of non classical boundary value problems for various differential and difference equations
were investigated in a number of publications (see [1-22] and references therein).

In this paper, we study the source identification problem for the two dimensional elliptic differential equation with
nonlocal boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

− ∂ 2u(y,x)
∂y2 −a(x) ∂ 2u(y,x)

∂x2 +δu(y,x) = f (y,x)+ p(x),
0 < y < T,0 < x < l,
u(0,x) = u(T,x),uy(0,x) = uy(T,x), u(λ ,x) = ξ (x),0 ≤ x ≤ l,
u(y,0) = u(y, l), ux(y,0) = ux(y, l), 0 ≤ y ≤ T,

(1)

where a(x), ξ (x) and f (y,x) are given sufficiently smooth functions and a(x) > 0, 0 < λ < T,δ > 0 is a sufficiently
large number. Assume that all compatibility conditions are satisfied.

The well-posedness of the source identification problem (1) for the two dimensional elliptic differential equation
with nonlocal boundary conditions. Applying operator approaches, the exact estimates for the solution of this problem
in Hölder norms are established.

THE MAIN THEOREM ON WELL-POSEDNESS OF PROBLEM (1)

We introduce the Banach spaces Cβ [0, l] (0 < β < 1) of all continuous functions ϕ(x) satisfying a Hölder condition
for which the following norms are finite

‖ ϕ ‖Cβ [0,l]=‖ ϕ ‖C[0,l] + sup
0≤x<x+τ≤l

|ϕ(x+ τ)−ϕ(x)|
τβ ,

where C[0, l] is the space of the all continuous functions ϕ(x) defined on [0, l] with the usual norm

‖ ϕ ‖C[0,l]= max
0≤x≤l

|ϕ(x)|.
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Theorem 1 For the solution of the source identification problem (1) the following stability and coercive stability
estimates hold:

‖u‖C(Cβ [0,l]) ≤ M(β )
[
‖ξ‖Cβ [0,l] +‖ f‖C(Cβ [0,l])

]
,

‖u‖C2+α,α
0T (Cβ [0,l]) +‖u‖Cα,α

0T (Cβ+2[0,l]) +‖p‖Cβ [0,l]

≤ M(β )
α(1−α) ‖ f‖Cα,α

0T (Cβ [0,l]) +M(β )‖ξ‖Cβ+2[0,l] ,

where M(β ) is independent of α, ξ (x) and f (t,x),0 < α < 1, 0 < β < 1.Here Cα,α
0T (E) (0 < α < 1) is the Banach

space obtained by completion of the set of E−valued smooth functions ϕ(t) defined on [0,T ] with values in E in the
norm

‖ϕ‖Cα,α
0T (E) = ‖ϕ‖C(E) + sup

0≤t<t+τ≤T
τ−α(T − t)α(t + τ)α ‖ϕ(t + τ)−ϕ(t)‖E ,

where C(E) stands for the Banach space of all continuous functions ϕ(t) defined on [0,T ] with values in E equipped
with the norm

‖ϕ‖C(E) = max
0≤t≤T

‖ϕ(t)‖E .

Proof. It is known that the differential expression

Av(x) =−a(x)v′′(x)+δv(x) (2)

define a positive operator A acting in Cβ [0, l] with domain Cβ+2[0, l] and satisfying the conditions v(0) = v(l), vx(0) =
vx(l). Therefore, source identification problem (1) can be written in abstract form

⎧⎪⎨
⎪⎩
−u′′(t)+Au(t) = f (t)+ p, 0 < t < T,

u(0) = u(T ), u′(0) = u′(T ),u(λ ) = ξ
(3)

in a Banach space E with unknown parameter p = p(x) and unknown abstract function u(t) = u(t,x). Here, element
ξ = ξ (x) and smooth abstract function f (t) = f (t,x) defined on [0,T ] with values in E are given. Therefore, the

proof of Theorem 1 is based on the positivity of the elliptic operator A in Cβ [0, l] [7] and the following theorem on
well-posedness of problem (3).

Theorem 2 Assume that ξ ∈ D(A) and f (t)∈Cα,α
01 (E),0 < α < 1. For the solution {u(t), p} of source identification

problem (3) in Cα,α
0T (E)×E the stability and coercive inequality

‖u‖C(E) ≤ M
[
‖ξ‖E +‖ f‖C(E)

]
,

∥∥u′′
∥∥

Cα,α
0T (E) +‖Au‖Cα,α

0T (E) +‖p‖E ≤ M[‖Aξ‖E +
1

α(1−α)
‖ f‖Cα,α

0T (E)]

are satisfied, where M is independent of α,ξ and f (t).

CONCLUSION

In the current work, the well-posedness of the source identification problem for the two dimensional elliptic differen-
tial equation with nonlocal boundary conditions is investigated. The exact estimates for the solution of this problem
in Hölder norms are established. In future investigation, absolute stable difference schemes for approximately solu-
tion of the source identification problem for the two dimensional elliptic differential equation with nonlocal boundary
conditions will be constructed and investigated.
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