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Abstract. In this paper, a third order of accuracy difference scheme for the

approximation of the solution of elliptic identification problem with Neumann

type overdetermination is presented. We obtain stability estimates for the

solutions of constructed difference scheme. Furthermore, a third order of ac-

curacy difference scheme for Neumann type overdetermined multidimensional

elliptic problem with Dirichlet boundary condition is constructed. Finally, a

numerical example for two-dimensional problem is given.
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1 Introduction

Identification problems for elliptic type differential and difference equations and their

applications were studied extensively by several researchers (see [1–10] and the references

therein). Dirichlet type overdetermined inverse problems for elliptic differential equations

and their approximations were investigated in [4–8]. Particularly, papers [7,8] are devoted

to construct high order of accuracy stable difference schemes for inverse problem with

Dirichlet type overdetermination.

Stable first and second order of accuracy difference schemes (ADS) for the following

Neumann type overdetermined elliptic problem with a self-adjoint positive definite op-

erator A in an arbitrary Hilbert space H to find a function u and an element p ∈ H
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A third order of ADS for the Neumann type overdetermined elliptic problem

−utt(t) +Au(t) = f(t) + pt, t ∈ (0, 1),

ut(0) = φ, ut(λ) = ξ, ut(1) = ψ, 0 < λ < 1

(1.1)

are presented in [8].

We also apply the abstract results to approximate the following Neumann type overde-

termined inverse problem for the multi-dimensional elliptic equation with Dirichlet bound-

ary condition

−utt(t, x)−
n∑

r=1
(ar(x)uxr

)xr
+ σu(t, x) = f(t, x) + p(x)t,

x = (x1, · · · , xn) ∈ Ω, t ∈ (0, 1),

u(0, x) = φ(x), u(1, x) = ψ(x), u(λ, x) = ξ(x), x ∈ Ω,

u(t, x) = 0, x ∈ S, t ∈ [0, 1].

(1.2)

Here, Ω = (0, 1) × · · · × (0, 1) is the open cube in Euclidean space Rn with boundary S,

Ω = Ω ∪ S, ar(x) (x ∈ Ω), φ(x), ξ(x), ψ(x) (x ∈ Ω), f(t, x) (t ∈ (0, 1), x ∈ Ω) are known

smooth functions, ar(x) ≥ a > 0(x ∈ Ω), and 0 < λ < 1, σ > 0 are given numbers.

We would like point out that the first and second order of ADS for (1.2) were presented

in [8]. The paper [9] is devoted to numerical solution of Neumann type overdetermined

inverse elliptic problem with mixed boundary conditions. In the present paper, we con-

struct a third order of ADS for problem (1.2) and establish stability estimates for its

solutions.

The paper is organized as follows. Section 2 describes a third order of ADS for inverse

problem (1.1) and here stability estimates for its solution are given. In Section 3, we

construct a third order of accuracy stable difference scheme for problem (1.2). Then, the

results of numerical experiments are displayed in Section 4. Finally, we give concluding

remarks in Section 5.

2 Difference scheme for identification problem

Let N be a given natural number and Nτ = 1. To present a third order of ADS for

approximation aforementioned problem (1.1), let us introduce the set of grid points

{tk = kτ, 0 ≤ k ≤ N } and denote by Cτ (H), Cα
τ (H), and Cα,α

τ (H) (0 < α < 1) the

spaces of H-valued grid functions {qk}N−1
k=1 with the following norms∥∥∥{qk}N−1

k=1

∥∥∥
Cτ (H)

= max
1≤k≤N−1

∥qk∥H ,
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∥∥∥{qk}N−1
k=1

∥∥∥
Cα
τ (H)

=
∥∥∥{qk}N−1

k=1

∥∥∥
Cτ (H)

+ sup
1≤k<k+n≤N−1

∥qk+n − qk∥H
(nτ)

α ,

∥∥∥{qk}N−1
k=1

∥∥∥
Cα,α
τ (H)

=
∥∥∥{qk}N−1

k=1

∥∥∥
Cτ (H)

+ sup
1≤k<k+n≤N−1

(kτ + nτ)α(1− kτ)α∥qk+n − qk∥H
(nτ)

α ,

respectively. Let I be the identity operator and C = A+ τ2

12A
2, F = 1

2 (τC+
√
4C + τ2C2),

R = (I+τF )−1. Recall that A is a self-adjoint positive definite operator, then the operator

F will be a self-adjoint positive definite operator, too (see [14]). In addition, the bounded

operator F is defined on the whole space H. Let [·] be the greatest integer function.

Denote by l =
[
λ
τ

]
. By using approximate formulas

τut(0) = u(τ)− u(0)− τ2

3 utt(0)−
τ2

6 utt(τ) + o(τ4),

τut(1) = u(1)− u(1− τ) + τ2

3 utt(1) +
τ2

6 utt(1− τ) + o(τ4),

τut(λ) = u(tl+1)− u(tl)− τ2

3 utt(tl)−
τ2

6 utt(tl+1) + o(τ4),

(2.1)

and high order approximation of abstract elliptic equation ( [11]- [13]), we can obtain a

third order of ADS for problem (1.1)

−τ−2(uk+1 − 2uk + uk−1) + Cuk = ptk + f(tk)

+ τ2

12

(
f(tk+1)−2f(tk)+f(tk−1)

τ2 +Af(tk)
)
, tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,(

I − τ2

6 A
)
u1 −

(
I + τ2

3 A
)
u0 = φτ + τ2

3 f0 +
τ2

6 f1 +
τ3

6 p,(
I + τ2

3 A
)
uN −

(
I − τ2

6 A
)
uN−1 = ψτ − τ2

3 fN − τ2

6 fN−1 − (1 + τ) τ2

6 p,(
I − τ2

6 A
)
ul+1 −

(
I + τ2

3 A
)
ul = ξτ + τ2

3 fl +
τ2

6 fl+1 +
(
tl +

τ
3

)
τ2

2 p.

(2.2)

For solving difference problem (2.2), we reduce it to some auxiliary difference problem.

Namely, for a solution {uk}N−1
k=1 of difference problem (2.2), we apply the substitution

uk = vk +A−1 (ptk ) (2.3)

and get a nonlocal boundary value difference problem for obtaining {vk}Nk=0 . Later,

putting k = l , we find vt(tl). Then, by using formula

p = A (ξ − vt(tl)) , (2.4)

we define the element p. Finally, applying (2.3), we can obtain the solution {uk}N−1
k=1

of difference problem (2.2). According to this algorithm, we get the auxiliary difference
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A third order of ADS for the Neumann type overdetermined elliptic problem

problem for obtaining {vk}Nk=0 :

−τ−2(vk+1 − 2vk + vk−1) + Cvk = f(tk)

+ τ2

12

(
f(tk+1)−2f(tk)+f(tk−1)

τ2 +Af(tk)
)
, tk = kτ, 1 ≤ k ≤ N − 1, Nτ = 1,(

I − τ2

6 A
)
v1 −

(
I + τ2

3 A
)
v0 −

(
I − τ2

6 A
)
vl+1

+
(
I + τ2

3 A
)
vl = (φ− ξ) τ + τ2

3 (fl − f0) +
τ2

6 (fl+1 − f1) ,(
I + τ2

3 A
)
vN −

(
I − τ2

6 A
)
vN−1 −

(
I − τ2

6 A
)
vl+1

+
(
I + τ2

3 A
)
vl = (ψ − ξ) τ + τ2

3 (fN + fl) +
τ2

6 (fN−1 + fl+1) .

(2.5)

Now, we give some lemmas.

Lemma 2.1 The following estimates hold [13]:∥∥(I −R2N )−1
∥∥
H→H

≤M(δ), kτ
∥∥FRk

∥∥
H→H

≤M(δ),∥∥Rk
∥∥
H→H

≤M(δ)(1 + δτ)−k, k ≥ 1, δ > 0,∥∥F β(Rk+r −Rk)
∥∥
H→H

≤M(δ) (rτ)α

(kτ)α+β , 1 ≤ k < k + r ≤ N, 0 ≤ α, β ≤ 1.

Lemma 2.2 The following estimate [13]

N−1∑
j=1

τ
∥∥FRj

∥∥
H→H

≤M(δ)Y (τ, δ)

is valid, where

Y (τ, δ) = min

{
ln

1

τ
, 1 + |ln ∥F∥H→H |

}
.

Lemma 2.3 The operators

S1 = (I −R2N )−1
(
R−R2N−1 +RN−1 −RN+1 − I +R2N

)
and

S2 = (I −R2N )−1
(
−I +R2N +Rl −R2N−l +R−R2N−1 −Rl+1

+R2N−l−1 −RN−1 +RN+1 +RN−l−1 −RN+l+1 −RN−l +RN+l
)

have the inverses such that G1 = S−1
1 , G2 = S−1

2 , and the estimates

∥ G1 ∥H→H≤M(δ), ∥ G2 ∥H→H≤M(δ) (2.6)

are valid.

The proof of Lemma 2.3 is based on Lemma 2.1 and the following equalities

S1 = −(I −R)
(
I −RN−1

) (
I +RN

)−1
,

S2 = −(I −RN )−1 (I −R)
(
I −Rl

) (
I −RN−l−1

)
.
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Lemma 2.4 The operator

Sτ
3 = S2 −

τ2

6
(I −R2N )−1A

[
R−R2N−1 −Rl+1 +R2N−l−1 + 2I − 2R2N − 2Rl

+2R2N−l −RN−1 +RN+1 +RN−l−1 −RN+l+1 + 2RN−l − 2RN+l
]

has an inverse Gτ
3 = (Sτ

3 )
−1
, and the inequality

∥ Gτ
3 ∥H→H≤M(δ) (2.7)

is satisfied.

Proof. We can write

Gτ
3 −G = Gτ

3GK
τ , (2.8)

where

Kτ = τ2

6 (I −R2N )−1A
[
R−R2N−1 −Rl+1 +R2N−l−1 + 2I − 2R2N − 2Rl

+2R2N−l −RN−1 +RN+1 +RN−l−1 −RN+l+1 + 2RN−l − 2RN+l
]
.

According to estimates of Lemma 2.1, we get

∥ Kτ ∥H→H=∥ τ2

6 (I −R2N )−1A

×
[
R−R2N−1 −Rl+1 +R2N−l−1 + 2I − 2R2N − 2Rl + 2R2N−l

−RN−1 +RN+1 +RN−l−1 −RN+l+1 + 2RN−l − 2RN+l
]
∥H→H≤M1(δ)τ.

(2.9)

By using formula (2.8), estimates (2.6), (2.9), the triangle inequality, and Lemma 2.3 ,

we obtain

∥ Gτ
3 ∥H→H≤∥ G ∥H→H + ∥ Gτ

3 ∥H→H∥ G ∥H→H∥ Kτ ∥H→H

≤ M(δ)+ ∥ Gτ
3 ∥H→H M(δ)M1(δ)τ

for any small parameter τ > 0. Hence, the estimate (2.7) is valid

Theorem 2.5 Assume that φ, ξ, ψ ∈ D(A) and {fk}N−1
k=1 ∈ Cα,α

τ (H) (0 < α < 1) . Then,

for any {fk}N−1
k=1 , φ, ψ, ξ the difference problem (2.5) is uniquely solvable in Cτ (H) and

solution of (2.5) satisfies the following stability and almost coercive stability estimates∥∥∥{vk}N−1
k=1

∥∥∥
Cτ (H)

≤M

[
∥φ∥H + ∥ξ∥H + ∥ψ∥H +

∥∥∥{fk}N−1
k=1

∥∥∥
Cτ (H)

]
, (2.10)

∥∥∥{τ−2(vk+1 − 2vk + vk−1)
}N−1

k=1

∥∥∥
Cτ (H)

+
∥∥∥{Cvk}N−1

k=1

∥∥∥
Cτ (H)

(2.11)

≤M

[
min

{
ln

1

τ
, 1 + |ln ∥F∥H→H |

}∥∥∥{fk}N−1
k=1

∥∥∥
Cτ (H)

+ ∥Fφ∥H + ∥Fξ∥H + ∥Fψ∥H

]
.

Here, M is independent of α, τ, φ, ξ, ψ, and {fk}N−1
k=1 .
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Proof. Following [13], we get that the direct difference problem −τ−2(vk+1 − 2vk + vk−1) + Cvk = θk, 1 ≤ k ≤ N − 1,

v0 and vN are given
(2.12)

has a solution

vk = (I −R2N )−1[
((
Rk −R2N−k

)
v0 +

(
RN−k −RN+k

)
vN

)
(2.13)

−
(
RN−k −RN+k

)
(2I + τF )−1F−1

N−1∑
i=1

(
RN−1−i −RN−1+i

)
θiτ ]

+(2I + τF )−1F−1
N−1∑
i=1

(
R|k−i|−1 −Rk+i−1

)
θiτ, k = 1, . . . , N − 1,

and the following estimates∥∥∥{vk}N−1
k=1

∥∥∥
Cτ (H)

≤M

[∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

+ ∥Rv0∥Cτ (H) + ∥RvN∥Cτ (H)

]
, (2.14)

∥∥∥{τ−2(vk+1 − 2vk + vk−1)
}N−1

k=1

∥∥∥
Cτ (H)

+
∥∥∥{Cvk}N−1

k=1

∥∥∥
Cτ (H)

(2.15)

≤M

[
min

{
ln

1

τ
, 1 + |ln ∥F∥H→H |

}∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

+ ∥CRv0∥H + ∥CRvN∥H

]
are valid. By using (2.13) and nonlocal conditions, we get

v0 = −Gτ
3(I −R2N )−1

[(
I − τ2

6
A

)(
RN−1 −RN+1 −RN−l−1 +RN+l+1

)
(2.16)

+

(
I +

τ2

3
A

)(
RN−l −RN+l

)]
×
{
G1(I −R2N )−1

[(
I − τ2

6
A

)(
RN−1 −RN+1 +R−R2N−1

)
+

(
I +

τ2

3
A

)(
−I +R2N

)
(2I + τF )−1F−1

N−1∑
i=1

(
RN−1−i −RN−1+i

)
θiτ

]

−G1(2I + τF )−1F−1
N−1∑
i=1

[(
I − τ2

6
A

)(
R|1−i|−1 −Ri +R|N−1−i|−1 −RN+i−2

)
+

(
I +

τ2

3
A

)(
R|l−i|−1 −Rl+i−1 −R|N−i|−1 +RN+i−1

)]
θiτ +G1 (φ− ψ) τ

+
τ2

3
G1 (fl − f0 − fN − fl) +

τ2

6
G1 (fl+1 − f1 − fN−1 − fl+1)

}
+Gτ

3(I −R2N )−1

[(
I − τ2

6
A

)(
RN−1 −RN+1 −RN−l−1 +RN+l+1

)
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+

(
I +

τ2

3
A

)(
RN−l −RN+l

)]
(2I + τF )−1F−1

×
N−1∑
i=1

(
RN−1−i −RN−1+i

)
θiτ − F τ

3 (2I + τF )−1F−1

×
N−1∑
i=1

[(
I − τ2

6
A

)(
R|1−i|−1 −Ri −R|l+1−i|−1 −Rl+i

)
+

(
I +

τ2

3
A

)(
R|l−i|−1 −Rl+i−1

)]
θiτ

+Gτ
3 (φ− ξ) τ +

τ2

3
Gτ

3 (fl − f0) +
τ2

6
Gτ

3 (fl+1 − f1)

and

vN = −v0 +G1(I −R2N )−1

[(
I − τ2

6
A

)(
RN−1 −RN+1 +R−R2N−1

)
+

(
I +

τ2

3
A

)(
−I +R2N

)
(2I + τF )−1F−1

N−1∑
i=1

(
RN−1−i −RN−1+i

)
θiτ

]

−G1(2I + τF )−1F−1
N−1∑
i=1

[(
I − τ2

6
A

)(
R|1−i|−1 −Ri +R|N−1−i|−1 −RN+i−2

)
+

(
I +

τ2

3
A

)(
R|l−i|−1 −Rl+i−1 −R|N−i|−1 +RN+i−1

)]
θiτ +G1(φ− ψ)τ

+
τ2

3
G1 (fl − f0 − fN − fl) +

τ2

6
G1 (fl+1 − f1 − fN−1 − fl+1) . (2.17)

Therefore, there exists a unique solution of difference scheme (2.5) and it can be found

by formulas (2.13), (2.16) and (2.17). By using (2.13), (2.16), (2.17), and Lemmas 2.1-2.3,

we can get that the solution of difference problem (2.5) obeys the following estimates

∥Rv0∥Cτ (H) ≤M

[
∥φ∥H + ∥ξ∥H + ∥ψ∥H +

∥∥∥{fk}N−1
k=1

∥∥∥
Cτ (H)

]
, (2.18)

∥RvN∥Cτ (H) ≤M

[
∥φ∥H + ∥ξ∥H + ∥ψ∥H +

∥∥∥{fk}N−1
k=1

∥∥∥
Cτ (H)

]
, (2.19)

∥CRv0∥H ≤M

[
min

{
ln 1

τ , 1 + |ln ∥F∥H→H |
}∥∥∥{fk}N−1

k=1

∥∥∥
Cτ (H)

+ ∥Fφ∥H

+ ∥Fξ∥H + ∥Fψ∥H ] ,

(2.20)

∥CRvN∥H ≤M

[
min

{
ln 1

τ , 1 + |ln ∥F∥H→H |
}∥∥∥{fk}N−1

k=1

∥∥∥
Cτ (H)

+ ∥Fφ∥H + ∥Fξ∥H + ∥Fψ∥H ] ,

(2.21)
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In [13], the estimates∥∥∥{vk}N−1
k=1

∥∥∥
Cτ (H)

≤M

[∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

+ ∥Rv0∥Cτ (H) + ∥RvN∥Cτ (H)

]
, (2.22)∥∥∥{τ−2(vk+1 − 2vk + vk−1)

}N−1

k=1

∥∥∥
Cτ (H)

+
∥∥∥{Cvk}N−1

k=1

∥∥∥
Cτ (H)

≤M

[
min

{
ln

1

τ
, 1 + |ln ∥F∥H→H |

}∥∥∥{θk}N−1
k=1

∥∥∥
Cτ (H)

+ ∥CRv0∥H + ∥CRvN∥H

]
(2.23)

are established for the solution of difference problem (2.12). So, applying (2.18), (2.19),

and (2.22), we get estimate (2.10). Estimate (2.11) follows from inequalities (2.20),

(2.21), and (2.23).

Let F be a self-adjoint positive definite operator in a Hilbert space H and 0 < α < 1.

Denote by Eα = Eα (D (F ) ,H) , the Banach space of those functions q ∈ H for which

the norm ∥q∥Eα
= supz>0 z

1−α
∥∥Be−zBq

∥∥
H

+ ∥q∥H is finite.

Theorem 2.6 Suppose that φ, ξ, ψ ∈ D(F ) and {fk}N−1
k=1 ∈ Cα,α

τ (H) (0 < α < 1) . Then,

the solution {vk}N−1
k=1 of difference scheme (2.5) obeys the following coercive inequality∥∥∥{τ−2(vk+1 − 2vk + vk−1)

}N−1

k=1

∥∥∥
Cα

τ (H)
+
∥∥∥{Cvk}N−1

k=1

∥∥∥
C

α,α
τ (H)

≤M

[
1

α(1− α)

∥∥∥{fk}N−1
k=1

∥∥∥
Cα

τ (H)
+ ∥Fφ∥Eα

+ ∥Fψ∥Eα
+ ∥Fξ∥Eα

]
, (2.24)

where M does not depend on α, τ, φ, ξ, ψ, and {fk}N−1
k=1 .

Proof. Applying formulas (2.5), (2.16),(2.17), Lemmas 2.1-2.3, and definitions of norm

of spaces Eα and Cα
τ (H), we have the following estimates

∥CRv0 − θ1∥Eα
≤M

[
1

α(1−α)

∥∥∥{θk}N−1
k=1

∥∥∥
Cα

τ (H)

+ ∥Fφ∥Eα
+ ∥Fψ∥Eα

+ ∥Fξ∥Eα

]
,

(2.25)

∥CRvN − θN−1∥Eα
≤M

[
1

α(1−α)

∥∥∥{θk}N−1
k=1

∥∥∥
Cα

τ (H)
.

+ ∥Fφ∥Eα
+ ∥Fψ∥Eα

+ ∥Fξ∥Eα

]
,

(2.26)

In [13], for the solution of difference problem (2.12) estimate∥∥∥{τ−2(vk+1 − 2vk + vk−1)
}N−1

k=1

∥∥∥
Cτ (H)

+
∥∥∥{Cvk}N−1

k=1

∥∥∥
Cτ (H)

≤M

[ ∥∥∥{θk}N−1
k=1

∥∥∥
Cα

τ (H)
+ ∥CRv0 − θ1∥Eα

+ ∥CRvN − θN−1∥Eα

]
(2.27)
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is proved. Therefore, from estimates (2.26) and (2.27) yield estimate (2.24).

From Theorems 2.5 and 2.6, formulas (2.3) and (2.4), and the triangle inequality we

can establish the following theorems on stability estimates for the solution
(
{uk}N−1

k=1 , p
)

of difference problem (2.2).

Theorem 2.7 Assume that φ, ξ, ψ ∈ D(A) and {fk}N−1
k=1 ∈ Cα,α

τ (H) (0 < α < 1) . Then,

the solution
(
{uk}N−1

k=1 , p
)
of difference problem (2.2) in Cτ (H)×H obeys the following

stability estimates:∥∥∥{uk}N−1
k=1

∥∥∥
Cτ (H)

≤M

[
∥φ∥H + ∥ξ∥H + ∥ψ∥H +

∥∥∥{fk}N−1
k=1

∥∥∥
Cτ (H)

]
,

∥∥A−1p
∥∥
H

≤M

[
∥φ∥H + ∥ξ∥H + ∥ψ∥H +

∥∥∥{fk}N−1
k=1

∥∥∥
Cτ (H)

]
,

∥p∥H ≤M

[
∥Aφ∥H + ∥Aξ∥H + ∥Aψ∥H +

1

α(1− α)

∥∥∥{fk}N−1
k=1

∥∥∥
Cα,α
τ (H)

]
,

where M is independent of α, τ, φ, ξ, ψ, and {fk}N−1
k=1 .

Theorem 2.8 Suppose that φ, ξ, ψ ∈ D(A) and {fk}N−1
k=1 ∈ Cα,α

τ (H) (0 < α < 1) . Then,

for the solution
(
{uk}N−1

k=1 , p
)

of difference scheme (2.2) in Cτ (H) × H obeys almost

coercive stability estimate∥∥∥{τ−2(uk+1 − 2uk + uk−1)
}N−1

k=1

∥∥∥
Cτ (H)

+
∥∥∥{Cuk}N−1

k=1

∥∥∥
Cτ (H)

+ ∥p∥H

≤M

[
min

{
ln

1

τ
, 1 + |ln ∥F∥H→H |

}∥∥∥{fk}N−1
k=1

∥∥∥
Cτ (H)

+ ∥Fφ∥H + ∥Fξ∥H + ∥Fψ∥H

]
,

where M does not depend on α, τ, φ, ξ, ψ, and {fk}N−1
k=1 .

Theorem 2.9 Assume that φ, ξ, ψ ∈ D(A) and {fk}N−1
k=1 ∈ Cα

τ (H) (0 < α < 1) . Then,

the solution
(
{uk}N−1

k=1 , p
)

of difference problems (2.2) obeys the following coercive in-

equality ∥∥∥{τ−2(uk+1 − 2uk + uk−1)
}N−1

k=1

∥∥∥
Cα
τ (H)

+
∥∥∥{Cuk}N−1

k=1

∥∥∥
Cα,α
τ (H)

+ ∥p∥H

≤M

[
1

α(1− α)

∥∥∥{fk}N−1
k=1

∥∥∥
Cτ (H)

+ ∥Fφ∥Eα
+ ∥Fψ∥Eα

+ ∥Fξ∥Eα

]
,

where M is independent of α, τ, φ, ξ, ψ, and {fk}N−1
k=1 .
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3 Difference scheme for multi-dimensional problem

Recall that differential expression Axu(x) = −
n∑

r=1
(ar(x)uxr )xr +σu defines a self-adjoint

strongly positive definite operator Ax acting on L2(Ω) with the domain [14]

D(Ax) =
{
u(x) ∈W2(Ω), u(x) = 0, x ∈ S

}
.

The approximation of problem (1.2) is carried out in two steps. In the first step, define

the grid spaces

Ω̃h = {x = (h1m1, . . . , hnmn);m = (m1, . . . ,mn),

mr = 0, . . . ,Mr, hrMr = 1, r = 1, . . . , n},Ωh = Ω̃h ∩ Ω, Sh = Ω̃h ∩ S,

where M1, ...,Mn are given natural numbers. We assign the difference operator Ax
h by

formula

Ax
hu

h(x) = −
n∑

r=1

(
ar(x)u

h
xr
(x)

)
xr,jr

+ σuh(x) (3.1)

acting in the space of grid functions uh(x), satisfying the condition uh(x) = 0 for all

x ∈ Sh.

Let L2h = L2(Ω̃h) and W 2
2h = W 2

2 (Ω̃h) be spaces of the grid functions qh(x) =

{q(h1m1, · · · , hnmn)} defined on Ω̃h, equipped with the norms

∥q∥L2h
=

 ∑
x∈Ω̃h

|qh(x)|2h1 · · ·hn

1/2

,
∥∥qh∥∥

W 2
2h

=
∥∥qh∥∥

L2h

+

 ∑
x∈Ω̃h

n∑
r=1

∣∣(qh)xr

∣∣2 h1 · · ·hn
1/2

+

 ∑
x∈Ω̃h

n∑
r=1

∣∣(qh(x))xrxr, mr

∣∣2 h1 · · ·hn
1/2

.

For
{
uh(t, x), ph(x)

}
, we get a system of ordinary differential equations

−d2uh(t,x)
dt2 +Ax

hu
h(t, x) = fh(t, x) + tph(x), 0 < t < 1, x ∈ Ω̃h,

uht (0, x) = φ(x), uht (λ, x) = ξ(x), uht (T, x) = ψ(x), x ∈ Ω̃h.

(3.2)

In the second step of approximation, applying (2.2), system equations (3.2) is replaced
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by a third order of ADS

−τ−2(uhk+1 − 2uhk + uhk−1) +Ax
hu

h
k + τ2

12 (A
x
h)

2
uhk = phtk + fh(tk)

+ τ2

12

(
fh(tk+1)−2fh(tk)+f(tk−1)

τ2 +Afh(tk)
)
, tk = kτ,

1 ≤ k ≤ N − 1, Nτ = 1,(
I − τ2

6 A
x
h

)
uh1 −

(
I + τ2

3 A
x
h

)
uh0 = τφh + τ2

3 f
h
0 + τ2

6 f
h
1 + τ3

6 p
h,(

I − τ2

6 A
x
h

)
uhl+1 −

(
I + τ2

3 A
x
h

)
uhl = τξh + τ2

3 f
h
l + τ2

6 f
h
l+1 +

(
tl +

τ
3

)
τ2

2 p
h,

−
(
I − τ2

6 A
x
h

)
uhN−1 +

(
I + τ2

3 A
x
h

)
uhN

= τψh − τ2

3 f
h
N − τ2

6 f
h
N−1 − (1 + τ) τ2

6 p
h.

(3.3)

Applying (2.3) , we have auxiliary difference problem

−vh
k+1(x)−2vh

k (x)+vh
k−1(x)

τ2 +Ax
hv

h
k (x) +

τ2

12 (A
x
h)

2
vhk (x) = fh(tk, x)

+ τ2

12

(
fh(tk+1,x)−2fh(tk,x)+fh(tk−1,x)

τ2 +Ax
hf

h(tk, x)
)
,(

I − τ2

6 A
x
h

)
vh1 (x)−

(
I + τ2

3 A
x
h

)
vh0 (x)−

(
I − τ2

6 A
x
h

)
vhl+1(x)

+
(
I + τ2

3 A
x
h

)
vhl (x) =

(
φh(x)− ξh(x)

)
τ + τ2

3

[
fh0 (x)− fhl (x)

]
+ τ2

6

[
fh1 (x)− fhl+1(x)

]
, x ∈ Ω̃h(

I + τ2

3 A
x
h

)
vhN (x)−

(
I − τ2

6 A
x
h

)
vhN−1(x)−

(
I − τ2

6 A
x
h

)
vhl+1(x)

+
(
I + τ2

3 A
x
h

)
vhl (x) =

(
ψh(x)− ξh(x)

)
τ − τ2

3

[
fhN (x) + fhl (x)

]
− τ2

6

[
fhN−1(x) + fhl+1 (x)

]
, x ∈ Ω̃h, l =

[
λ
τ

]
.

(3.4)

We define function ph(x) by formula

ph(x) = Ax
h

(
ξh(x)− vht (tl, x)

)
, x ∈ Ω̃h. (3.5)

Let τ > 0 and |h| =
√
h21 + · · ·+ h2n > 0 be sufficiently small numbers.

Theorem 3.1 For solution of difference scheme (3.3) we have the following stability

estimates:∥∥∥{uhk}N−1

1

∥∥∥
Cτ (L2h)

≤ M [
∥∥φh

∥∥
L2h

+
∥∥ξh∥∥

L2h
+
∥∥ψh

∥∥
L2h

+
∥∥∥{fhk }N−1

1

∥∥∥
Cτ (L2h)

],∥∥∥(Ax)
−1
ph

∥∥∥
L2h

≤ M

[∥∥φh
∥∥
L2h

+
∥∥ξh∥∥

L2h
+
∥∥ψh

∥∥
L2h

+
∥∥∥{fhk }N−1

1

∥∥∥
Cτ (H)

]
,

where M does not depend on α, τ, h, φh(x), ξh(x), ψh(x), and
{
fhk (x)

}N−1

1
.

Theorem 3.2 The solution of difference scheme (3.3) obeys the following almost coercive
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stability estimate:

max
1≤k≤N−1

∥∥∥∥∥uhk+1 − 2uhk + ukk−1

τ2

∥∥∥∥∥
L2h

+ max
1≤k≤N−1

∥∥∥ (
uhk

)
xrxr, mr

∥∥∥
L2h

+
∥∥ph∥∥

L2h

≤ M

[
ln

(
1

τ + h

)∥∥∥{fhk }N

1

∥∥∥
Cτ (L2h)

+
∥∥φh

∥∥
W 1

2h

+
∥∥ξh∥∥

W 1
2h

+
∥∥ψh

∥∥
W 1

2h

]
,

where M is independent of α, τ, h, φh(x), ξh(x), ψh(x), and
{
fhk (x)

}N−1

1
.

The proofs of Theorems 3.1 and 3.2 are based on symmetry properties of operator Ax
h

in L2h, the results of abstract Theorems 2.7 and 2.8, and the following theorem on the

coercivity inequality.

Theorem 3.3 [15] For the solution of the elliptic difference problemA
x
hu

h(x) = ωh(x), x ∈ Ω̃h,

uh(x) = 0, x ∈ Sh,

the following coercivity inequality holds :

n∑
r=1

∥∥(uhk)xrxr,jr

∥∥
L2h

≤M ||ωh||L2h
,

where M does not depend on ωh and h.

4 Numerical example

In this section, by using a third order of ADS, we give errors of numerical calculations

for the inverse elliptic problem

−∂2u(t,x)
∂t2 − ∂2u(t,x)

∂x2 + u(t, x) = exp (−πt) sin(πx) + tp(x),

0 < x < 1, 0 < t < 1,

ut(0, x) = (−π + 1) sin(x), 0 ≤ x ≤ 1,

u(1, x) = (−π exp (−π) + 1) sin(x), 0 ≤ x ≤ 1,

u(λ, x) = (−π exp (−πλ) + 1) sin(x), 0 ≤ x ≤ 1,

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1 (λ = 1
2 ).

(4.1)

It is clear that
{
(exp (−πt) + t) sin(πx),

(
π2 + 1

)
sin(πx)

}
is the exact solution of (4.1).

Let us take τ = 1
N and h = 1

M . For approximate solution of inverse problem (4.1),

introduce the set of grid points

(tk, xi) : {(tk, xi)|tk = kτ, k = 1, . . . , N − 1, xi = ih, i = 1, . . . ,M − 1}.
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By MATLAB program, we record numerical solutions for different values of N, M. ukn

and vkn are the numerical solutions of difference schemes at grid points of (tk, xn), respec-

tively, and pn is the numerical solutions at xn. The errors of calculations are computed

by

EvNM= max
1≤k≤N−1

(
M−1∑
n=1

∣∣v(tk, xn)− vkn
∣∣2 h) 1

2 ,

EuNM= max
1≤k≤N−1

(
M−1∑
n=1

∣∣u(tk, xn)− ukn
∣∣2 h) 1

2 , EpM=(
M−1∑
n=1

|p(xn)− pn|2 h)
1
2 ,

respectively.

Tables 1-3 are constructed for N = 10,M = 300, N = 20,M = 1200. Hence, third

order ADS is more accurate comparing with a first and a second order of ADS. Table 1

presents the error between the exact solution and solutions derived by difference schemes

for nonlocal problem. Table 2 include error between the exact and approximate of p

function. Table 3 gives the error for u function. As it can be seen from Tables 1-3, the

third order of ADS is more accurate comparing with a first and a second order of ADS.

Table 1. Error EvNM

Difference Schemes for v N=10,M=300 N=20,M=1200

First order of ADS 0.1096 0.052929

Second order of ADS 0.0217 5.84×10−3

Third order of ADS 7.06×10−4 9.61×10−5

Table 2. Error EpM

Calculation of p N=10,M=300 N=20,M=1200

First order of ADS 0.21335 0.095715

Second order of ADS 0.25584 0.065631

Third order of ADS 0.03099 4.60×10−3
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Table 3. Error EuNM

Difference Schemes for u N=10,M=300 N=20,M=1200

First order of ADS 0.1096 0.052929

Second order of ADS 0.0234 6.13×10−3

Third order of ADS 2.98×10−3 4.40×10−4

5 Conclusion

In this paper, a third order of ADS for approximate solution of Neumann type overde-

termination problem for elliptic differential equation with Dirichlet boundary condition

is presented. Theorems on the stability, almost coercive stability and coercive stabil-

ity estimates for its solution are proved. Furthermore, we study a third order of ADS

for multi-dimensional elliptic inverse problem. The results of numerical experiments are

given. Computer calculations show that a third order of ADS is more accurate comparing

to a first and a second order of ADS [8].
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