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Abstract. In this paper, a third order of accuracy difference scheme for the
approximation of the solution of elliptic identification problem with Neumann
type overdetermination is presented. We obtain stability estimates for the
solutions of constructed difference scheme. Furthermore, a third order of ac-
curacy difference scheme for Neumann type overdetermined multidimensional
elliptic problem with Dirichlet boundary condition is constructed. Finally, a

numerical example for two-dimensional problem is given.
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1 Introduction

Identification problems for elliptic type differential and difference equations and their
applications were studied extensively by several researchers (see [1-10] and the references
therein). Dirichlet type overdetermined inverse problems for elliptic differential equations
and their approximations were investigated in [4-8]. Particularly, papers [7,8] are devoted
to construct high order of accuracy stable difference schemes for inverse problem with
Dirichlet type overdetermination.

Stable first and second order of accuracy difference schemes (ADS) for the following
Neumann type overdetermined elliptic problem with a self-adjoint positive definite op-

erator A in an arbitrary Hilbert space H to find a function u and an element p € H
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A third order of ADS for the Neumann type overdetermined elliptic problem

_Utt(t) + Au(t) = f(t) +pt,te (07 1)a (11)

us(0) = @, ur(A\) =& u(l) =4, 0< A <1
are presented in [8].
We also apply the abstract results to approximate the following Neumann type overde-
termined inverse problem for the multi-dimensional elliptic equation with Dirichlet bound-

ary condition

NE

—uge(t,x) = 3 (ar(2)uz, ), + oult,z) = f(t,2) + p(2)t,

r=1

x= (21, ,2,) €Q, t€(0,1),

u(O,x) = QO(ZC), u(la 13) = w(l‘),u(x\,i) = f(l‘),ZE €,

u(t,z) =0, z €S, t €0,1].

Here, @ = (0,1) x --- x (0,1) is the open cube in Euclidean space R"™ with boundary S,
Q=QUS, a,(z) (z € Q), p(x),£(x), () (x € Q), f(t,z) (t € (0,1), x € Q) are known
smooth functions, a,(r) > a > 0(z € Q), and 0 < A < 1, o > 0 are given numbers.

We would like point out that the first and second order of ADS for (1.2) were presented
in [8]. The paper [9] is devoted to numerical solution of Neumann type overdetermined
inverse elliptic problem with mixed boundary conditions. In the present paper, we con-
struct a third order of ADS for problem (1.2) and establish stability estimates for its
solutions.

The paper is organized as follows. Section 2 describes a third order of ADS for inverse
problem (1.1) and here stability estimates for its solution are given. In Section 3, we
construct a third order of accuracy stable difference scheme for problem (1.2). Then, the
results of numerical experiments are displayed in Section 4. Finally, we give concluding

remarks in Section 5.

2 Difference scheme for identification problem

Let N be a given natural number and N7 = 1. To present a third order of ADS for
approximation aforementioned problem (1.1), let us introduce the set of grid points
{tx, = k1, 0 < k < N } and denote by C,(H),C¥(H), and C»*(H) (0 < a < 1) the

spaces of H-valued grid functions {qk},lfgll with the following norms

], -

a1 llaelle
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N_1 N—1 ||Qk+n - QkHH
i :’ ZH% - ()
H{ Fies ce () tte=rle ) 1<k<kinsn-1 (n7)°
N—1 . N-1
J@nS ey = JrniZ.
N sup (kT +n7)*(1 = E7)*||qksn — qrllm
1<k<k+n<N-1 (n7)” ’

respectively. Let I be the identity operator and C' = A+ I—;Az, F= %(TC’nH/W),
R = (I+7F)~!. Recall that A is a self-adjoint positive definite operator, then the operator
F will be a self-adjoint positive definite operator, too (see [14]). In addition, the bounded
operator F' is defined on the whole space H. Let [| be the greatest integer function.

Denote by | = [%] . By using approximate formulas

Tut(O) = U(T) — U(O) — %Utt(o) — %utt(T) + 0(7'4),
Tus(1) = w(1) — u(l = 7) + Sup(1) + Sup(l = 7) + o(74), (2.1)

Tus(A) = ultir) — u(t) — Sug(t) — Soug(tien) + o(r4),

and high order approximation of abstract elliptic equation ( [11]- [13]), we can obtain a

third order of ADS for problem (1.1)

—7 7 (upy1 — 2up + up—1) + Cug = pty + f(t1)

+%2 f(tk+1)_2f‘£§k)+f(tk—l) JrAf(tk)) tr=kr, 1<k<N-1, Nr=1,
(I—%A)ul—(I—F%A)uozgm'—k?fo—l—%fl—k%p, (2.2)
(I-i- %214) un — (I— %A) un—1 = YT — ng - %fol —(1+7) TT:P’

(I - %A> Uiy — (I+ %A) w =¢1+ %2fl + %flﬂ +(ti+3) p.

[\

For solving difference problem (2.2), we reduce it to some auxiliary difference problem.

Namely, for a solution {uk}]kvz_ll of difference problem (2.2), we apply the substitution
up = Vg + A1 (ptk ) (2.3)

and get a nonlocal boundary value difference problem for obtaining {/Uk:}icvzo‘ Later,

putting k =1 , we find v;(¢;). Then, by using formula

p=A(—w(t)), (2.4)

we define the element p. Finally, applying (2.3), we can obtain the solution {uk}i\;l

of difference problem (2.2). According to this algorithm, we get the auxiliary difference
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A third order of ADS for the Neumann type overdetermined elliptic problem

problem for obtaining {vk}ivzo :

—7 72 (V41 — 2vg + vi—1) + Cu = f(tx)

_|_71-2 (f(tk+1) 2f(tk)+f(tk 1) + Af(ty ) p=kr,1<k<N-1, Nr=1,

(I -5 2) v — (I—i— gA) v — ( - FA) Ul;rl 2.5)
+(I+F54) u=(p=Or+% (= fo)+ % (fa = f1) ,

(I + T—;A) UN — (I — L2A) UN_1 — ( - %A) Vi41
+(1+5A)u=@ -7+ 5 (fx+f)+ %5 (v + firn).

Now, we give some lemmas.

Lemma 2.1 The following estimates hold [15]:

[ = BNy < M)k [FRE - < M),
IR .y < M(8)(1+067)7F, k> 1,6 >0,
HFﬂ(Rk+T - R HH—>H < M(&)(k(:;iiiﬂ,l <k<k+r<NO0<ap<1.

Lemma 2.2 The following estimate [15]

N-1

Z T ||FRj||H—>H < M(8)Y (7,9)

j=1

1s valid, where
Y (7,d) = min {lni, 1+ [ln |F||HHH|} .
Lemma 2.3 The operators
Sy = (I — R*N)~1 (R- R2N-1 4 pN—1 _ pN+1 _ I+R2N)
and
Sy = (I—R*M)~! (_I+R2N LR RNl R R2N-1_ R+l
L R2N-I-1 _ pN—1 4 pN+1  pN—l-1 _ pN+i+1 _ pN-L +RN+I)
have the inverses such that Gy = Sy, Gy = Sy ', and the estimates
| Grllzsm< M(6), || Gz [|m—n< M(5) (2.6)
are valid.
The proof of Lemma 2.3 is based on Lemma 2.1 and the following equalities
Si = —(I-R)(I-R""Y(I+R")™",
Sy = —(I-RN)y"'(I-R)(I-R")(I-RN""1).
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Lemma 2.4 The operator

2
ST = 527%(17R2N)71A [R7R2N717Rl+1+R2N7171+2172R2N72R1

+2R2N71 _ RNfl _|_RN+1 _|_RN7I71 _ RN+Z+1 4 QRNfl _ 2RN+I}
has an inverse G = (ng1 , and the inequality
| G% lg—m< M(d) (2.7)
1s satisfied.
Proof. We can write
G; —G=G;GKT, (2.8)
where
KT = %(I—RQN)_lA [R— RZN—l _ Rl+1 +R2N—l—1 + 27 — 2R2N _ 2Rl
_|_2R2N7l _ RNfl +RN+1 4 RNflfl _ RN+Z+1 _|_2RN71 _ 2RN+Z] .
According to estimates of Lemma 2.1, we get
| K7 llasn=] 51—~ RY)~'A
x [R— R*N=1 — R 4 RPNZITL 4o — 2R?N — 2R! + 2RV (2.9)
*RN71 +RN+1 +RN7171 _ RNJrlJrl +2RN7Z _ 2RN+Z] ||H—>H§ M1(5)T
By using formula (2.8), estimates (2.6), (2.9), the triangle inequality, and Lemma 2.3 ,

we obtain

| Gilasu<| G llasm + || G3 la—ull Gllasul|l K™ |lH-a

< MO+ || Gs llm—sm M(5)Mi(d)T
for any small parameter 7 > 0. Hence, the estimate (2.7) is valid m

Theorem 2.5 Assume that ¢,&,9 € D(A) and {fk}]k\;l €C*(H)(0<a<1). Then,
for any {fk},ch_l1 , 0,0, & the difference problem (2.5) is uniquely solvable in C.(H) and

solution of (2.5) satisfies the following stability and almost coercive stability estimates

ey 28 el el ol + 01| (20)

C.(H) — cf(H>] ’

— N-—-1 _
H{r *(vks1 — 206 + k1) },_, H - H{Cvk}]kvzllHC " (2.11)
Cr(H) s

. 1 _
< ot fuin {1t P[RS+ 0L+ IPE + 10l
- (H

Here, M is independent of o, T, ¢,&,1, and {fk}fcvz_ll )
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A third order of ADS for the Neumann type overdetermined elliptic problem

Proof. Following [13], we get that the direct difference problem

77 2(vgg1 — 20, +vp_1) + Cop =0, 1<k < N —1,

(2.12)
v and vy are given
has a solution
vy = (I—=R*™)T((RF =R F) vy + (RN % — RNTF) uy) (2.13)
N-1
— (RNTF = RNTRY (2 + 7)Y D (RN - RN 7]
i=1
N—
F2I +7F)” Z (R"H’H ka””) r, k=1,...,N 1,
and the following estimates
N—1
H{Uk}kzl Hc (H) [H{ k} HCT(H) + HRUOHCT(H) T ”RWNHCT(H)} ’ (2.14)
_9 N-1 N-1
H{T (Va1 — 20k + vk1) } o + H{cvk}k:1 Hmm (2.15)

Cr(H)
. 1 _
< o1 [min {2 1 1Pl  JORS  ICRvl + CROx ]
Cr(H)

are valid. By using (2.13) and nonlocal conditions, we get

2
vo = —G5(I — R?N)~! [(I _ 7'6A> (RNfl _ RN+1 _ pN-i-1 +RN+Z+1) (2.16)

+ (I + T;A> (RN - RN“)]

2
X {G1(1 — RN~ [(1 — T6A> (RNt — RN*' 4 R — RPNT)

9 N-1
+ (1 + TgA) (—I+R¥™) @I +7F)'F 1y (RN - RYV-1H) 91'7"|

i=1

N—
—G1(2I +7F)~ Z [( > (Rll il-1 _ pi 4 gIN-1-i-1 7RN+i72)

+ <I + TBA> (R”—i'—l — R RIN=iL RN“‘I)] ;7 + G1 (o — )T

2

T T2
+§G1 (fi=fo—fn—1fO)+ EGl (fixr —fi— v — fz+1)}

+G3(I — R*V)~1 [(I— T;A> (RN—l _ RN+l _ pN-l-1 +RN+Z+1)
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+

2
<I + ZA) (RN - RN”)} (I +7F)" P!
N-1
x Y O (RNTV - RN g7 — FI (21 +7F) T ET
i=1
N-1 -2
o [1—i|-1 _ pi _ pli+l—i|-1 _ pl+i
xi_l[(l GA)(R R —R R+
(1474 G e I
3 2

2 7,2
G5 (p = )7+ TG (fi = fo) + =GCF (i = 1)

and

2
oy = —vy + G1(I — R*V)~? KI - 7'6A> (R¥-'— RNt 4+ R— RN

2 N—
+ (I - TSA) (-I+R*™M) (2l +7F)” Z RN~170 — RN=1H) aﬂl

N—
~G1(2] +7F)" Z [(IA) (R“ 1Tt — RU 4 RINTIISL g 2)

+ <1 + ;A) (R'HH — R RINTIT 4 RN”1>] 0,7 + G1(p — )7
7_2 7.2
t5Gu(fi=fo—fv = f)+ 5 Gi(fivr = fr = fvo1 = fir). (2.17)

Therefore, there exists a unique solution of difference scheme (2.5) and it can be found
by formulas (2.13), (2.16) and (2.17). By using (2.13), (2.16), (2.17), and Lemmas 2.1-2.3,

we can get that the solution of difference problem (2.5) obeys the following estimates

IRunllc, iy < M (Il + el + ol + L1, ] 219
|Rowlle sy < M [nwuH 1l + el + |35 (HJ L 219
|CRuo| < M [mm{ln Lt I Flls B[RS + 1Pl
Cr(H) (2.20)
Il + 1 F ),
|CRoxll < M [min{lni, L 1Pl g || 1
Cr(H) (2.21)

+ ||F‘P||H + ||F5HH + HFI/JHH] )
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In [13], the estimates

N— N—
{Uk}’“ﬂch,(H) <M [H{e’“}’fﬁlua(m + | Roollg, () + ||RUN||CT(H)} ;o (222

_ N-1
H{T 2(Uk+1 — 2u + Uk_l)}kzl

e

Cr (H) C-(H)

. 1 _
< o1 fin {1 2.1+l 01

are established for the solution of difference problem (2.12). So, applying (2.18), (2.19),

+CRul +ICRxl | (229
)

Cr(H

and (2.22), we get estimate (2.10). Estimate (2.11) follows from inequalities (2.20),
(2.21), and (2.23). m

Let F be a self-adjoint positive definite operator in a Hilbert space H and 0 < o < 1.
Denote by E, = E, (D (F), H), the Banach space of those functions ¢ € H for which

—zB

the norm ||q|l ;. = sup,~q2' || Be=*Bq||,, + llqlly is finite.

Theorem 2.6 Suppose that ¢,&,1 € D(F) and { fi g;ll €C*(H)(0<a<1). Then,

the solution {vk}fcv:_ll of difference scheme (2.5) obeys the following coercive inequality

_ N-1 N—
H{’T 2(Upg1 — 20 + vp_1) =1 ‘CQ(H)'FH{CUk}kzll e
1 N-1
<M 7” - ’ F F F , 9.24
<M | s [ o + 1PN, + 1F 6L, + IFEL, (224)

where M does not depend on o, T, ©,&,1), and {fk}k]\;1 .

Proof. Applying formulas (2.5), (2.16),(2.17), Lemmas 2.1-2.3, and definitions of norm

of spaces E, and C¢(H), we have the following estimates

N—
[CRvo — 01|, <M [a(ll_a) ‘{ok}k:11’

+Follg, + 1FYlg, +1FElE,]

Ce (H) (2.25)

ICRuN — On-1llp, <M [aula)

+ ||F€0||Ea + ||F¢||Ea + ||F§||Ea] )

In [13], for the solution of difference problem (2.12) estimate

[Cahany

Co(H) (2.26)

_ N—1 _
H{T ? (Vg1 — 20k, + “kfl)}kzl + H{Cvk}g:; H

Cr (H) Cr(H)

=

o (H) + ||CRUO — 91||Ea + ||CR1)N — 9N1||Ea:| (2.27)
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is proved. Therefore, from estimates (2.26) and (2.27) yield estimate (2.24). =
From Theorems 2.5 and 2.6, formulas (2.3) and (2.4), and the triangle inequality we
can establish the following theorems on stability estimates for the solution ({uk}i\;l , p)

of difference problem (2.2).

Theorem 2.7 Assume that p, &, € D(A) and {fk}i\[;ll €C¥*(H)(0< a<1l). Then,
the solution ({uk}fj;ll ,p) of difference problem (2.2) in C-(H) x H obeys the following
stability estimates:

N-—1
o],

o el 0l + 1+ [ (32

‘mm] ’

A7 0l < 0 el + el + o + [ |

Pl < M

1 N-1
4l + A + 1401 + = [ Hcg,%} 7
where M is independent of o, T, p,&, %, and {fk}llcvz_ll :

Theorem 2.8 Suppose that ¢, &, € D(A) and {fk}kN:_ll €C»(H) (0 <a<1). Then,
for the solution ({uk}g;ll 7p) of difference scheme (2.2) in Cr(H) x H obeys almost

coercive stability estimate

_ N-1 N—
[ =20 e} 5 [fCudS| L el
Cr (H)

C,(H
. 1 N-1
< a1 [min {1 L ) AR N+ e+ 1w
Cr(H
where M does not depend on a, 7, v, &1, and { fi ff;ll .

Theorem 2.9 Assume that ¢,&,¢ € D(A) and {f;g}i\;l € CH(H)(0<a<1l). Then,
the solution ({uk}év:_ll ,p) of difference problems (2.2) obeys the following coercive in-
equality

+ [{eu S|+ lpll

_ N—-1
H{T 2(Uk+1 — 2uyp +uk,1)}k:1
cg () e )

1 N-1
<M | =y WS + 1PN, + WP, + 1P, |
<01 | s NS oy + NP, + 1IP0I, + 1L,

where M is independent of o, T, ¢, &,1, and {fk}g;ll .
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3 Difference scheme for multi-dimensional problem

n
Recall that differential expression A%u(x) = — > (a,(z)uy, )., +ou defines a self-adjoint
r=1

strongly positive definite operator A” acting onig () with the domain [14]
= {u(z) € W2(Q), u(z) =0, z€S5}.

The approximation of problem (1.2) is carried out in two steps. In the first step, define

the grid spaces

ﬁh = {(E: (hlmlw"uhnmn);m:(mh...,mn),

m, = 0,...,M,, hTMr:].,?":1,...,n},Qh:thQ,ShzﬁhﬂS,

where M, ..., M,, are given natural numbers. We assign the difference operator A7 by

formula

n

Apuh(z) = =" (ay (@)ul (2), . +ou(x) (3.1)

r=1
acting in the space of grid functions u”(z), satisfying the condition u”(z) = 0 for all
T €S
Let Lop = Lo(€) and W2, = W2(Qy) be spaces of the grid functions ¢"(z) =
{g(hamq,- -+ ,hymy)} defined on Q. equipped with the norms

1/2
lallz,, = | D l¢"(@)ha - :||a =",
erh
n 1/2 N 1/2
X @ b | Y S @ @) | B
zeQy, T=1 z€Q), T=1

For {u"(t,z),p"(x)}, we get a system of ordinary differential equations

h ~
—dQUdt(;’I) + Azul(t,z) = fh(t,z) +tph(x), 0 <t <1, x € Qy,

uf(0,2) = p(x), uf(\z) =E&(x), u}(T,z)=¥(z),z € Q.

(3.2)

In the second step of approximation, applying (2.2), system equations (3.2) is replaced
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by a third order of ADS

—T_Q(UZH 2up 4 up_y) + Ajul + - (Aﬁ)z up = pty + f(tk)

i (fh(tk+1) 2f“(tk)+f(tk 1) +Afh(tk)) = kT,

1<k<N-1,Nr=1,

(1-%ap)ul - (1+3 A)%—w9+ SIS T (3.3)
( - *AT> Uy — <I+ T A% )ul =7+ % fz + 7 fl+1 (ti+3) Tziphv

- ( - ?Ai) ufe_1 + (I+ ?Aﬁ) ull

=Tl — TR - T — (L4 T) T,

+

Applying (2.3) , we have auxiliary difference problem

ol 1 (z —20" (z +vh71 T 72 z
— D2l 4+ Afol(e) + 53 (A ol (@) = ()

T2

4+ (fh(tk+1@)*2fh‘(rt2k@)+f (te—1,7) +Aifh(tk,
I %Af;g) o (z) - (1 + ﬁAﬂﬂ) ol (z) — ( -

+Q+§%%ﬁm(<>s%»rhﬂﬁmﬁwﬂ -
+% [flh ) —fl}ﬁﬂ( )} , T €y
0+§%1m> Qf—ﬁywa> (1 -5 4%) ol @)
+ (14 545) ol (@) = (0 (@) = @) 7= 5 [Fela) + f ()]
_7;} [ I}\l/ 1(x)+fl+1 ( )]7 xEthl_ [7]
We define function p"(x) by formula
ph(z) = AY (§h(:v) — vth(tl,x)) .z € Q. (3.5)

Let 7> 0 and |h| = \/h? + -+ + hZ > 0 be sufficiently small numbers.

Theorem 3.1 For solution of difference scheme (3.3) we have the following stability

estimates:
N—-1 N—-1
[t 7 S M, + 1 Ly, + P, + [, )
x\—1 N—-1
Janpt|, < m [anL%+Hfh||m+||whum+ (e3% Hc,w)]’

where M does not depend on o, T, h, p"(z), " (x), " (x), and {fk A

Theorem 3.2 The solution of difference scheme (3.3) obeys the following almost coercive
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stability estimate:

ult, | — 2uf 4 uk
1<kEN -1 = r2k = L +1§§cn§alif(—1H (UZ)MTT my Lgh+||thL2“
2h
1 N
< 0 [ () H gy 1, 1, 19, |

N-1

where M is independent of o, 7, h, " (x), " (), Y"(x), and {f,?(x) L

The proofs of Theorems 3.1 and 3.2 are based on symmetry properties of operator A7
in Lop, the results of abstract Theorems 2.7 and 2.8, and the following theorem on the

coercivity inequality.

Theorem 3.3 [15] For the solution of the elliptic difference problem
Azul(z) = wh(z), x € Qn,
u(z) =0, z €Y,

the following coercivity inequality holds :

n

Z H (uZ)ET'Wr WJr

r=1

Lo < MHwhHme

where M does not depend on w" and h.

4 Numerical example

In this section, by using a third order of ADS, we give errors of numerical calculations
for the inverse elliptic problem

2 2
-2 gﬁé’””) -2 ”gf;“’) + u(t, z) = exp (—=t) sin(mz) + tp(x),

0<z<1,0<t<l,

<z

IN

ut(0,2) = (—m 4+ 1) sin(z), 0 1,
u(l,x) = (—mexp (—7) + 1) sin(z),0 < z
u(Az) = (—mexp (—7wA) + 1) sin(z), 0 <z
u(t,0) =u(t,m)=0,0<t<1 (A=1).

(4.1)

IN
—

)

1

IN

7

It is clear that {(exp (—t) + t)sin(rz), (72 4+ 1) sin(rz)} is the exact solution of (4.1).
Let us take 7 = % and h = ﬁ For approximate solution of inverse problem (4.1),

introduce the set of grid points

(tg,x;) : {(tg, )|ty = kr,k=1,...,N = 1,2, =ih, i=1,...,M — 1}.
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By MATLAB program, we record numerical solutions for different values of N, M. u*
and v¥ are the numerical solutions of difference schemes at grid points of (¢, z,,), respec-
tively, and p,, is the numerical solutions at z,. The errors of calculations are computed
by

]Ml

N 2,41
EUM*1<I]31<313\’]< L Z ”U tk,.%n - | h 2,
N k . 2,01
EuM_1<k<N 1 Z |u s Tn) _u”‘ h » Bpm= (nzzjl Ip(25) — pnl™ h)2,
respectively.

Tables 1-3 are constructed for N = 10, M = 300, N = 20, M = 1200. Hence, third
order ADS is more accurate comparing with a first and a second order of ADS. Table 1
presents the error between the exact solution and solutions derived by difference schemes
for nonlocal problem. Table 2 include error between the exact and approximate of p
function. Table 3 gives the error for u function. As it can be seen from Tables 1-3, the

third order of ADS is more accurate comparing with a first and a second order of ADS.

Table 1. Error Evd;

Difference Schemes for v | N=10,M=300 | N=20,M=1200
First order of ADS 0.1096 0.052929
Second order of ADS 0.0217 5.84x1073
Third order of ADS 7.06x1074 9.61x107°
Table 2. Error Epys

Calculation of p N=10,M=300 | N=20,M=1200

First order of ADS 0.21335 0.095715

Second order of ADS | 0.25584 0.065631

Third order of ADS | 0.03099 4.60x1073
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Table 3. Error Eul;

Difference Schemes for v | N=10,M=300 | N=20,M=1200

First order of ADS 0.1096 0.052929

Second order of ADS 0.0234 6.13x1073

Third order of ADS 2.98x1073 4.40x10~4
Conclusion

In this paper, a third order of ADS for approximate solution of Neumann type overde-

termination problem for elliptic differential equation with Dirichlet boundary condition

is presented. Theorems on the stability, almost coercive stability and coercive stabil-

ity estimates for its solution are proved. Furthermore, we study a third order of ADS

for multi-dimensional elliptic inverse problem. The results of numerical experiments are

given. Computer calculations show that a third order of ADS is more accurate comparing

to a first and a second order of ADS [8].
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