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Abstract

This paper is devoted to a Bitsadze-Samarskii type overdetermined multipoint
nonlocal boundary value problem (NBVP). This inverse problem is reduced to an
auxiliary multipoint NBVP. Stability estimates for the solution of the auxiliary NBVP are
established. The finite difference method is applied to get the first and second order
of accuracy of approximate solutions of the abstract overdetermined problem.
Stability estimates for the solution of difference problems are proved. Then the
established abstract results are applied to get stability estimates for the solution of
the Bitsadze-Samarskii type overdetermined elliptic multidimensional differential and
difference problems with multipoint nonlocal boundary conditions (NBVC). Finally,
numerical results with explanation on the realization for two dimensional and three
dimensional elliptic overdetermined multipoint NBVPs in test examples are presented.
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1 Introduction

The theory and methods of the solutions of inverse problems of determining the param-
eter of partial differential equations have been extensively studied by several researchers
(see [1-19] and the references therein).

The well-posedness of source identification problems for elliptic type differential and
difference equations was studied in [12-19]. These papers were devoted to various inverse
elliptic problems and their approximations. For abstract elliptic equations in general L,
spaces and some exposition on practical applications of inverse problems we refer to [20,
21] and the references therein.

In recent years, Bitsadze-Samarskii type NBVPs have been investigated extensively (see
[22-27]).

Let A be a self-adjoint positive definite operator (SAPD) in an arbitrary Hilbert space H.
Then B = A? is also an SAPD operator. One assumes that the smooth function f(-), el-
ements ¢,V,¢ € D(B), numbers Xg, A;, i = 1,...,¢, and nonnegative real coefficients k;,
i=1,...,q, are given. In [8], the Bitsadze-Samarskii type inverse elliptic problem of finding
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an element p € H and a function u(-) € C%([0, T],H) N C([0, T], D(A)) such that

—uy(t) +Au(t) =f(t) +p, 0<t<T,

1)
w(0)=¢,  w(T)=X"1 ku()+v¥,  ulh)=¢,

was studied. Here Ay,...,A; suchthat 0 <Xy <Ay <+ <A < T.
Under the conditions

q
i=1

the theorem on the solvability and uniqueness of the solution of problem (1) was proved.
Denote by C(H), C*(H), and Cyy (H) the corresponding Banach spaces of smooth H-
valued functions u on [0, 7] with the following norms:

lleell ey = 0r;ltaslelu(t)l .

lullcogn = lullcun +  sup s ||ult +s) —u(t)|

H}
0<t<t+s<T

o
leellcae iy = lullcan +  sup |u(t + ) - u(®)] -

0<t<t+s<T

(t+s)(T -1t)
=

Lemma 1 The following inequalities are fulfilled ([28]):

<t¢

[Be |y =27

0O<a<Lt>0, |([-e?™)"

< M(5)——

B (,—tB —(t+7)B
”B (e e )”HHH— (t +7)+B’

0<a,p<], (3)
O<t<t+r<l, |([xe™)7|, , <M®R), 0<r<T.

In beginning of this paper, we discuss stability estimates for the solution of the overde-
termined problem (1). Next, we apply the finite difference method and establish stability
estimates for the first and second order of accuracy difference schemes. Later, we con-
sider Bitsadze-Samarskii type overdetermined elliptic multidimensional differential and
difference problems with multipoint NBVC and we obtain stability estimates for their so-
lutions. Finally, we present numerical results with an explanation on the realization for
two dimensional and three dimensional elliptic overdetermined multipoint NBVP in test
examples.

2 Overdetermined differential problem
Let us take Q = (I — e 278)~1, It is well known that ([9]) the function

1
G(t, S) — _EQ[e_(HS)B + e—(ZT—t—s)B + e—\t—s\B + e—(2T—|t—s|)B] (4)

is the Green function for the following elliptic problem with second kind boundary con-
ditions:

—vu(t) + Av(t) =f(t), O0<t<T,
v:(0) = @, v(T)=&.

(5)
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Under the assumptions that ¢, & € D(B), f(-) € CX([0, T], H), the solution of problem (5) is
defined by the equation ([9])

V(t) — _Q[(e—tB + e—(ZT—t)B)B—l(p _ (e—(T—[)B + e_(T+t)B)B_1$]
T
+ / G(t,5)f (s) ds. (6)
0
Moreover, the derivative is given by the formula

vi(t) = Q[(e—tB _ e—(2T—t)B>(p " (e—(T—t)B _ e—(T+t)B)€]

+ F(B,f, 1),
1 T
F(B,f, t) — EQA (e—(t+s)B _ e—(ZT—t—s)B)f(S) ds (7)
N %Q /t(e(ts)B _ ef(ZT—tJrs)B)f(s) ds
0

1 T
_ EQ/ (e—(s—t)B _ e—(2T+t—s)B)f(S) ds.
t

Let us take « € (0,1). To formulate our results, we use the notation

=-1 1011
H’ y—;21)21~

ey 0) = |47l + |47y ], + |A47¢]

Theorem 1 Suppose that A is an SAPD operator, condition (2) for coefficients is valid,
0, ¥, € DIA)N D(A’% ), and f(t) € Cyy (H). Then for the solution (p, u(t)) of problem (1)
the following stability estimates hold.:

lull e < M) [Pl ¥,2) + Py (0,90 + Il can ) (®)

|A7'p,, = MO [P0, v, ) + If llcan]» )
1

el < M(8)|:P},(<p, V,0)+ a(—a) |lf||cg‘v7‘3‘(H)]: (10)

where M(S) does not depend on a, ¢, V, ¢, and f(t).
Proof Applying the substitution
u(t) = v(t) + AN (p), (11)

we get the auxiliary nonlocal boundary value problem:

—vu(t) + Av(t) =f(t), O0<t<T,

(12)
v(0) = ¢, v(T) = Z?:l kive(A) + 0,

to find a function v(-).
Thus, we consider the algorithm to solve (1) which includes three stages. In the first
stage, we solve the nonlocal boundary value problem (12). In the second stage, we put
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t = Ao, and find v(X¢). Then we obtain an element p by the formula
p=A¢ - Av(ro). 13)

In the third stage, we use equation (11) to find u(z).

In [22-27], the well-posedness of the Bitsadze-Samarskii type nonlocal BVP (12) in the
case of g =1 and its applications were investigated. The stability and coercive stability
estimates for the solution of problem (12) were established.

Taking into account equation (7) in the nonlocal condition of problem (12), we get the
equation

q
|:I _ Z kiQ(e—(T—M)B _ e—(T+M)B):|Vt(T)
i=1

q

= Zki[Q(e‘*iB —e TRy L FB,f, )] + ¥ (14)

i=1

to find v,(7T). In ([23]), the authors proved that the operator
q
G=1]- Z kiQ(e—(T—)»,')B _ e—(T+)»,')B)
i=1

has an inverse and its norm is bounded by

sy = M) (15)

[
So, we can obtain a solution of problem (5) by
V(t) — _Q(e—[B + e—(ZT—t)B)B—l(p _ Q(e—(T—t)B + e—(T+t)B)G—1

q
> :Z ki[Q(e—MB _ e*(ZT—M)B)Bfl(p + BilF(B,f,)\.i)]
i=1

T
+B‘11/f} +/ G(t,s)f (s) ds. (16)
0

Applying estimates (2), (3), (15), and the Cauchy-Schwartz and the triangle inequalities,

we can obtain

[Q(e™ + ) B g oy = MB) [ B0

H’

<M@®)|B |,
C(H)

q
Q(e’(T’t)B + e’(T”)B)G’1 { Z kB¢ + B 1y }

i=1

] (17)
Qe + & TIE) G " kBTF(B.f, 1)

i=1

<ME)f llcens
cH)

< MO llcu-
C(H)

T
/ G(t,5)f (s)ds
0
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From (17) it follows that

Wllcan < MO[Py (@ 0,2) + If leun]. 8)

By using (13),(16) and (3), the estimates (9) and (10) can be established.
From (11), (13), (16), (18), and the triangle inequalities the estimate (8) follows. a

Theorem 2 Under the assumptions that A is an SAPD operator, condition (2) for the co-
efficients is valid, ¢, V,¢ € D(A) N D(A%) and f(t) € Cy7 (H) (0 < o0 < 1), and the solution
(p, u(t)) of problem (1) obeys the following coercive inequality:

" ”CS’ﬁ’(H) + | Aull e iy + Il (19)
1 1
1 2 —_— o0
< M) Phtor 00+ Pho .0+ i W lcgpan | (20)
where M(S) is independent of «, ¢, ¥, ¢, and f(t).
Proof Applying (11) and (16), we have
Ault) = _Q(e—tB + - @T-0B _ ;~hoB _ e—(2T—Ao)B)B¢
- Q( o~ (T-0B | ,~(T+)B _ ,~(T-20)B _ e—(T+A0)B) Gl
! 1
X {Zk,-[Q(e-MB — e @T8\By + BE(B,f,1:)] + By § — EQB
i=1

T
X/ [e—(t+s)B +e—(2T—t—s)B +e—\t—s\B +e—(2T—\t—s\)B]f(S) ds
0

T
+ lQB/ [e—()\0+S)B + e—(ZT—Xo—S)B + e—|)\0—S‘B
2 0
+ e_(ZT_MO_S‘)B]f(s) ds. (21)
The proof of estimate (20) is based on equation (21) and the estimates (3). O

3 Difference schemes for problem (1)

Since A is an SAPD operator, the operator C = %(‘L’A +v/4A + 12A?) will be an SAPD op-
erator, too ([29]). Denote R=(I +tC)™, P=(I-R*™)", D=1+ tC)(2I + tC)"'CL.The
bounded operator R is defined on the whole space H.

Lemma 2 ([28]) The following estimates hold:

M(S)
kHH%H =

IR |, =M@ +5%7),  |cRr , k=1,

HH%H kt

IPll—r < M(S), 6>0.

Lemma 3 Under the assumptions that (2) is valid, the operator

q
Al — (I_R2N) |:I _RZN—Z _ Zki(RN_li_l _RN+1L‘—1)} (22)

i=1
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has inverse G{* and the following estimate holds:

1Ay S MG, A, hg). (23)
Lemma 4 Under the assumptions that (2) is valid, the operator
Ay =[R-31+RN*(I-3R)] [31 —R-R™2(]-3R)
q
= K[RNET(BI = R+ (I - R)) = RPN I = 3R + (I - R))]:|
i-1
~ ([ +R)R"*(-R* + 4R -I) [(1 +RRN(R* - 4R +1)
q
- Z i[RI = 3R + pi(I = R)) = RT3 — R+ (I - R))]j|
i=1
has inverse A" and the following estimate holds:
1AM S MG, 2,5 2y). (24)
It is well known that [28]
Vi = P[(Rm _RZN—WI)VO + (RN—m _RN+WI)VN]
N-1
_ P(RN—m _RN+m)D Z(RN—j _RN+])ﬁT
j=1
N-1
+DY (R™ -R™)fr (1<m=<N-1) (25)
j=1
is a solution of the direct problem
T2Vl = 2V + V1) + AV =y, 1<m <N -1,
(Vi1 1) S =m=< (26)

vo and vy are given.

Let [-] be the notation of the greatest integer function, and

A; A;
li:|:_li|r pi=——1l, 0<i<gq.
T T

We consider the first and second order of accuracy difference schemes (ADSs) for the

nonlocal problem (1). First, by using the approximate formulas

M 7 +0o(1), uy, =¢ +o(t), (27)

us(A;) .
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problem (1) is reduced to the first order of the ADS

1 gy = 2up +win) +Aug = fr +p, 1<k<N-1,
U — Uy =TQ, (28)

un —un- = 3y k(g —ug) + T, u,=2¢.
Second, applying the approximate formulas

3up1 —4u;, +u; U —2U;, + U1
i i i + 1 i i i + 0(‘[2),

2T T (29)

M()\O) =u, + /Li(u10+1 - M[D) + 0("52);

u(Ai) =

problem (1) can be reduced to the second order of the ADS,

T gy = 2up + wn) +Aug = fr +p, 1<k<N-1,

=3ug+4ur—uy _ @
2T - ’ (30)
Sun—4un_1+uN_y _ q Buy; o —4uy+up, Up 1 =20+
2t =Y+ ikl 2 ————=1,

uy, + pwi(ug,a —uy,) =¢.

Introduce the set of grid points {# = k7,1 <k <N —1,Nt = T} and the spaces C;(H),
C¥(H), and C?*(H) (o € (0,1)) of H-valued grid functions f; = {ﬂ}fi’ll with the corre-

sponding norms,

= max
Vellcan = max el

Wfacn = fill et
Ifellcew = Ifellc,en + sup ———
' ! 1<k<k+n<N-1 (ﬂl’)a

(kT +nt)*(1 = k) ficen —ficllu
e llcee @y = W llcoany + sup P .
1<k<k+n<N-1 (nt)

Theorem 3 Under the assumptions that ¢,V,¢ € D(A), fr € C**(H) the solution (p,
{Mk}f(\[:_ll of the difference problems (28) and (30) in C;(H) x H obeys the following stability

estimates:
[ . gy < M2 ) [Pyl 0, ) + lfelicn ) (31)
”A_IPHH = M(81 ALy... ,)\q)[P%((D, 1#; ;) + "f‘; ”CT(H)]) (32)
1
Pl < MG,k )| Pl 90) + s e | @

where M(8,)1,...,Ag) does not depend on parameters t, o, elements ¢, \, &, and the grid
function f; .
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Proof Applying equation (11) at the point ¢ = £ to the difference problem (28) , we get the
auxiliary nonlocal difference problem

T2 (Va1 = 2k + Vi) +Avk = fi, 1<k<N-1,
Vi =0 = T9, (34)

VN —VN-1= Z?=1 ki(vi1 —vy) + T,

By using (25), and the local and nonlocal conditions of problem (34), one can get the
system of equations

(I+ RNy — (RN + RNYwy = (R-D) ' (I - R*N)Fy

q
(_RN—I _ RN _ Zki(Rli + RZN—ZL‘—I)>V0
i=1

(35)
( 1+R2N 1 Zkl RN li-1 RN+Z)> VN
=—R-D(I-RN)F,
to find vy and vy, where
N-1 N-1
Fi=1@+P(RN" = RN)D Y “(RN7 - RNY)fr - DY "(R'' - R)fe,
j=1 j=1
Fo=1y +P[R - RN
q
_ Zki(RNfll‘fl _RN+ll'+l _RN’li +RN+[[)} (36)
i=1
N-1 N-1
x DY (RN7 - RNY)fr —DZ|:R'N‘ JI_ RN
j=1 j=1

q
_ Zkl,(R\l#l—j\ _ Rli+14j _ plli-jl +Rli+}'):|’/jr.

i=1

It easy to check that the determinant of system (35) is defined by equation (22). Since
the operator A; has a bounded inverse, we obtain the solution of (35),

q
vo = Af [ (F+ RN 4 Y k(RN RN (R - 1) (1 - RPN Ry

i=1
+ (RN + RN)(R -7 (I - R*N)Fy }
q
VN = A;l{ (RN-I RN+ ) k(R + RZN-li-l)>
i=1

x R-I) NI -RNF - (I+ RN R-1)7'(I RZN)FZ},
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Hence, problem (34) has a unique solution {vk}],:’= o and it is defined by equations (25),
(37).

Applying equation (11) to the difference problems (30), we have the auxiliary nonlocal
difference problem

12 =2k + i) + Ak =fir, 1<k<N-1,

—3vg+4vy—v

Bz _, (38)
3YN—4VN_1+VN_2 _ q 3vy =4y v V1 =2V V1

2 T v+ Zi—l ki[% + 2’“%]'

Later, by using the local and nonlocal conditions of problem (38), we have the following

system of equations:

P(I - R){[R-3I+R*N"(I-3R)]vo}

+ ([ +RRV?(-R* + 4R - I)vy} = F3,

P(I-R) { [(1 +RRN"?(R* - 4R + 1)

q
- Z K[ R (I = 3R + pi(I = R)) = RNTHH(31 = R+ (1 - R))]:| Vo (39)

i=1

q
+ {31 —R-R™2(]-3R) - Zki[RN”"’I(H - R+ wi(I-R)

i=1

— RNE(T 3R + (I — R))]j|VN} =Fy,

where
F3 =219 +P(I-R)I + R)RN*(-R* + 4R - I

N-1

_DZ[4(R|N—1—j\ _RN—1+/) + (RlN—Z—jl —RN_2+j)]];‘E, (40)

j=1
Fy =2ty + P(I - R) {31 —R-RN"Y(J-3R)
q
= > KRNI = R+ i1 — R)) = RPN*H(I = 3R + (I - R))]]
i=1
N-1
_DZ|:_4(RIJI _R1+/) + (R\Z*il _R2+/)
j=1

q . .
>k [(3 ¥ 2%) (R — Q#1474 <—4 " 4%) (R — Ri)
i=1

¥ (1 ¥ 2%) (R Rliﬂ'l)ﬂf,r, (41)
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Ay =[R-3I+RN?(I-3R)] {31 ~R-R*N"*(I-3R)

q
= > K[RNTE(BI = R+ il = R)) = RPN*H(I = 3R + (I - R))]i|

i=1

~ (I +RR"(-R* + 4R - 1) {(1 +R)RN>(R* - 4R + 1)

q
= > KRNI = 3R+ pi(l = R)) = RN (31 — R+ puy(I - R))]].

i=1

Since the operator A, has bounded inverse, we obtain the solution of (39) in the follow-

ing form:

vo =AM I - R (I -R™N)

q
x :[31 —R-RN2(1=3R) = Y " k[RN (31 - R+ pui(I - R))

i=1
~ RN - 3R + pui(I - R))|]F5 — (I + RN (-R? + 4R - 1)F, }
(42)

v = AN =R - R¥Y) {—[(1 +RRN(R* - 4R +1)
q
=Y K[RHI = 3R + i = R)) = RN (31— R+ i1 — R))]j|F3
i=1
+[R=3I+RN(I-3R)|Fs }

Thus, problem (34) has a unique solution {Vk}f(\[: o and it is defined by equations (25),
(42). Applying equations (25), (37), (42) and the method of [28], we get

S e gy < MG 21, A [P0, 9,0 + el ceen])s (43)

[z 0k =20+ ) L5 gy + 1AMRE g

1
< M(S: )\11 .. ':)‘q) |:P}—[((pr 1/[’ é‘) + m ”ff ”C?‘H(H)]! (44)

for the solutions of both difference problems (34), (38). The proofs of the estimates (32),
(33) for the solutions of the difference problems (34), (38) are based on equation (11) and
estimates (43), (44). By using equation (11) and estimates (43), (32), we can get estimate
(31). O

Denote by F an SAPD operator in a Hilbert space H, introduce E, = E,(D(F), H), the
Banach space of such functions u € H for which the norm

lullg, =supz"||Fe ™ u| , + |lulln
z>0

is finite.
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Theorem 4 Under the assumptions ¢,V,¢ € D(C), f; € C¥*(H) (« € (0,1)) the solution
(p {uk}ffz ‘11) of the difference problems (28) and (30) obeys the coercive stability estimate

N-1
H { Uyl — 2Up + Ug_1 }
2
T k=1
1

SM((S;)\L.--,)\q)[”CQD”ED, +ICY g, + 1CE g, + mllﬁllc,(m], (45)

+ [HAmRS | . g + 1Ml
Cz(H)

where M(8, M1, ..., L) is independent from parameters T, o, elements ¢, Y, &, and the grid
function f.

4 Multidimensional elliptic problem
Now, we give the application of the abstract Theorems 1 and 3.

Let 2 =(0,£) x --- x (0,£) be the open cube in the n-dimensional Euclidean space with
boundary S, Q=QUS and numbers Ao, Aj, i=1,...,g (0 <A <Ay < - < g < T) and
nonnegative real coefficients k;, i = 1,..., ¢, be given, condition (2) for coefficients be valid,
x = (%1,...,%,). Consider the inverse problem of finding functions p(x) and u(t, x) for the
multidimensional elliptic equation in [0, 7] x €2,

—uy(£,%) = Dy (ar(®)ity, )x, + oult,x) =f(t, %) + p(x),
0<t<T,xeq,
u:(0,x) = (x), u(T,x) = YL, kiuy(hiy x) + ¥ (), (46)
ulho,x) =¢(x), x€Q,
u(t,x)=0, xe€S5,0<t<T.

Here, o > 0 is a known number, a,(x) (x € Q), p(x), ¥ (x), {(x) (x € Q), and f(t,x) (¢t €
(0,1), x € Q) are given smooth functions, a,(x) > a > 0 (x € Q).

It is well known that the differential expression [28]

n

Afu(x) = - Z(“’(x)u"r)x, +ou(x) (47)

r=1

defines a self-adjoint positive definite operator A* acting on L,(2) with the domain
D(A*) = {u(x) € WZ(Q),u =0 on S}.

Let H be the Hilbert space L,($2). Denote by Cor (L»(R)) the space obtained by comple-
tion of the space of all smooth L, (Q)-valued functions p on [0,1] with the norm

t+0)*A=)Np+7) - pOlL,@
||p”C8'7‘3‘(L2(§)) = ||P||C(L2(§)) + Ssup :

0<t<t+t<l ¢

Applying the abstract Theorems 1 and 3, we get the following estimates for the solution of
problem (46).

Theorem 5 Assume that A* is defined by equation (47), condition (2) for coefficients is
valid, f € C37 (Ly(Q)) and ¢, ¢,y € D(A*) N D((A")‘%). Then, for the solutions (p,u) of the
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inverse boundary value problem (46), the stability estimates

el ey iy SM(S)[P (%1// {)+P L (Q (Qﬂrl/f O+ fllca,@ ]
“ (Ax) p”L <M(s )[sz(ﬁ)(%l/’r()"' |[f||c(L2(§))]7

1
IPlL,@ < M(5)|: @@V, 0)+ ) |lf||cg;Y(L2(Q))}

are satisfied, where M(8) is independent of o, p(x), ¢ (x), ¥ (x), and f(t, x).

Now, we will discretize problem (46) into two steps. In the first step, we define the grid

spaces

~

Q= {x:xm = (hlmlr“-;hnmn);m: (mlw--)mn);
mr:O,...,M,,h,M,:Z,rzl,...,n},

Qh=§hﬂ§2, Sh=§~2;,ﬂS.

To the differential operator A* generated by problem (46) we assign the difference operator
A7 defined by the formula

n

Al @) = =3 (e,

r=1

acting in the space of grid functions u"(x), satisfying the condition %" (x) = 0 for all x € S},.
It is well known that A7 is a self-adjoint positive definite operator.

By using A7, we arrive at the following BVP:

- ‘;tg“‘ + A7 u(t,x) = f(t,x) + p'(x), O<t<T,xey,
—(O x) =¢"(x), (48)

Z kl )"lrx) Wh(x), RAS S~2h:

for a system of ordinary differential equations.
In the second step of discretization, problem (4.8) is replaced by the following difference

schemes:

a2 | () = ) + ),
fkh(x) = ' (tx, %), tk:kt,lfka—l,erh,

u} (x) — ug(x) = T¢" (%), (49)
() — iy () = Yo ki (%) — u) (%)) = T (),

uZ)(x) =), xeSy,
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B o h h
_w + A5 () = £ () + P (),
f}<h(x) =fh(tk:x)) tksz)ISkSereﬂhr
—Sug (%) + 4l (x) — 2u12“(x) =27¢" (%),

(50)
Suf([(x) - 4uf([_1(x) + uﬁ[_z (%)
= 2L kLB 2 (%) — (4 + dpg)uf (x) + (1+ 2p0)uf (%))
= 2oy, (x) + el () — () = £ (), x e By,
For the calculation of p(x) we have
Phx) = AT (&) — AV (o, k), x € (51)

To formulate our results, let Ly, = L2(§~2h) and szh = sz(ﬁh) be spaces of the grid func-
tions p"(x) = {p(lm, ..., h,.m,)} defined on U, equipped with the norms

1/2
|61, = (1 i)

xGSNZ],,

n 1/2
195 =161, + (2 zuph)xr‘zhl...hn)

xeﬁh r=1

n 1/2
' (Z Z|(’Oh(x))xrx_r,w 2h1 . "h”> ‘
xeﬁh r=1

Let T and |h| = \/h? + - - - + K2 be sufficiently small positive numbers.

Theorem 6 For the solutions of the difference schemes (49) and (50) the following stability

estimates hold:
e " e,y < MG 220", + 1971,
ey, + AR

17", SM(MW,M)[W Lz, + 19" g, + 16" g,

1 _
AR |

+—
al-a

Cr(Lzh)]’

where M(8,\1,...,1,) is independent of T, o, h, o"(x), ¥"(x), ¢"(x) and {fkh(x)}iv’l.

The proof of Theorem 6 is based on the symmetry property of the operator Aj in Ly, and
the following theorem on the coercivity inequality for the solution of the elliptic difference

problem in Lyy,.

Theorem 7 ([30]) For the solution of the elliptic difference problem

Al (x) = 0 (x), xSy,

u'(x)=0, x€S,,

(52)
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the following coercivity inequality holds:

1y, M|,

n
21: H (”2)2,&,,/,
=

where M is independent of h and w.

5 Numerical results

In this section, we present numerical results with explanation on the realization for two
dimensional and three dimensional examples of the Bitsadze-Samarskii type overdeter-
mined elliptic multipoint NBVP. The MATLAB program is used to get numerical results.

5.1 Two dimensional example

It is easy to check that pair functions p(x) = [(1 +x)72 + 1] sin(rx) — 7 cos(x) and u(t, x) =
(exp(—t) + 1) sin(;rx) is an exact solution of the following two dimensional overdetermined
elliptic three-point NBVP:

S () — (14 2) 2 (8, x)) + it %) = £ (2, %) + pla),
0<x<1,0<t<1,
(1) = (3, %) = (5, %) = (%) = ¥ (), (53)
u(0,%) = p(x), u2,x)=¢x), 0<x<l,
u(t,0)=u(t,1)=0, 0<t<l,

where

f(t,x) = (1 +x)m2e " sin(x) — me ™ cos(mx),
V(x) = |:—e"1 + —(e‘% ety e‘i)} sin(rrx),
C(x) = (e‘% +1) sin(7rx).

Denote by [0,1]; x [0,1], the set of grid points depending on the small parameters t
and &

[0,1]; x [0,1]; = {(tk,xn) sty =kt,k=0,N,x, =nh,n= O,M},

where N7 =1, Mh =1. Let us

A —2 A —1 A A —3'
0—5: 1—47 2= 73 3—4;
Ai 'y
li:[_l]; l-’l/iz_l_lii i=0;172;3;
T T

On = (p(xn); Yy = w(xn): Cn = ((xn): n=0,M;
fr{(:f(tbxn), k=0,N,n=0,M.
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To approximately solve (53), we use an algorithm with three stages. In the first stage, we
find a numerical solution of the auxiliary NBVP. We can write

2vk Kok
Vet Vel n+1 "n L = f(tx, %),

+1 1
% +(1+%,)

k:l,N—l,n:l,M—l,

(54)
=1 =0, k=0,...,N, v —W =19,
NN LTy Lt ) S LB ) =y, n=0,M,
the first order of accuracy in ¢ and the second order of accuracy in x and

+1 -1 ko _ _

v —2;'25“’5 +(1 +x”)"{1+1 2}1"25*"1;71 ¥ Vel = £ (tx, %)
k=1,N-1,n=1,M-1,

k _ ok 0 1_.2
ve=v,,=0, k=0,N, =3v, +4v, —v, =2T¢,,

0 M n Pn (55)

BV — 4N N2 L3 4 20V 4o+ AV 4 (14 20V
L3+ 2ua)V2™ = (4 + dp)Vid + (L + 2p2)v12]
— LB+ 2ua) T = (4 sV + (L+ 2u3)VE] = 20y, n=0,M,

the second order of accuracy in ¢ and the second order of accuracy in x difference schemes
for corresponding NBVP.
In the second stage, we find p,,. It is carried out by

(§n+1 n+1) 2(§n - Vn ) + (gn 1— V )
h2
_ (§n+l n+1) (gn 1— ) lo

Y +V,

Pn=—1+x,)

n=1,M-1,

for the first order approximation, and

1+, .
[ = (vt = (20 = 19)]

Pn =
=22, (ov™! = (o - DY) ]
#[gnr = (ov2 = (o - DV2,)]}
[ (025 = (o =108

— [1 = (v = (1o = V)]

lo+1

+ 6= (mov?™ = (ko = D?), n=1LM-1,

for the second order approximation.

Both difference problems (54) and (55) can be rewritten in the matrix form

AnVn+1 + BnVn + CnVn—l = Igm n=1,M-1,
(56)
— —

vw=0, vmy=0.
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Here, g, is (N + 1) x 1 a column matrix, A,, B,, C, are (N + 1) x (N + 1) square matrices,
and [ is the (N + 1) x (N + 1) identity matrix, vy is the (N + 1) x 1 matrix v; = [0 --- v},
s=n-1,nn+1. Denote

1+, 1 1y, 1 b - 2 2(1+wxy) 1

n - ~7 n = ) n = e e— d:—'
=T Yo T T T 2 w2 2

Then

A, =diag(0,a,,ay,...,a,,0), C, = diag(0,cy, ¢y, ..., ¢y, 0),

g:l( = _f(tk’xl’l)’ k = l,N— l,n = l,M— 1,

B,[i,i] = by, B,li-1,i] =d, B,li,i-1]=d, i=2,N,
B,L1]=-1, B,L,2]=1, BJN+LN+1]=1,

B,[N +1,N] = -1,

1 1 1
Bn[N‘l'l;ll]:_Z: Bn[N"'l;lZ]:_Z: Bn[N‘}'LlB]:_E

1
B,IN+1,L+1]=—, Bn[N+1,lz+1]=Z’

1
4
1
B,IN+1,l3+1]=—,

4
B,li,j1=0, for otheriandj,

L=t0, =1V, n=LM-],

for the first order approximation, and

Bn[i:i]:bn: Bn[i_l;i]:d; Bn[iri_l]:dx i=2,N,
BVI [1’ 1] = _3r BVI [1’ 2] = 47 Bn [1’ 3] = _1’ BVI [N + LN + 1] = 3y
B,[N +1,N]=-4, B,[N+1,N-1]=-1,

1 1
B,IN+1,1+1] = —2(3 +211), B,IN+1,1+1] = 1(3 +211),
1 1
B,IN+1,; -1] = —Z(1+2/L1), B,IN+1,l, +1] = —1(3 +2142),
1 1
B,[N +1,5, +1] = 1(3 + 2442), B,IN+1,5,-1] = —1(14'2#2),
1 1
B,[N+1,l3+1] = —1(3 +2u3), B,N+1,l3+1] = 2(3 +23),

1
Bn[N+ 1’13 - 1] = _Z(l + ZMB);

B,[i,j]=0, forotheriandj,

2L =2t9,, g=2t¢,, n=1,M-1,

for the second order approximation.
Finally, in the third stage, we calculate {uX} by uf =% + ¢, - v, and uk =K+ ¢, -

(ro vi? e (o — l)vif’), for the first and second order approximations, respectively.
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Table 1 Error of v in example (53)

Difference scheme N=M=20 N=M=40 N=M=80 N=M=160
First order of the ADS 6.12x 1073 269 % 1073 125 % 1073 6.03 x 107
Second order of the ADS 173 x 1073 436 x 107 1.09 x 107 273 %107

Table 2 Error of u in example (53)

Difference scheme N=M=20 N=M=40 N=M=80 N=M=160
First order of the ADS 378 x 1073 178 x 1073 863 x 107 424 x 107
Second order of the ADS 388 x 107 9.74 x 107 244 x 107 6.10 x 10°°

Table 3 Error of p in example (53)

Type of approximation N=M=20 N=M=40 N=M =280 N=M=160
First order 0.022091 0010516 0.0051328 0.002536
Second order 364 x 107 948 x 10™ 240 x 107 6.05 x 107°

To solve (56), we use a modification of the Gauss elimination method ([31]). Let vy, =_0>,
a, m=1,...,M-1) be (N +1) x (N + 1) square matrices and 8, (n=1,...,M — 1) be
(N +1) x 1 column vectors, o; be the zero matrix and f; be zero column vector. Searching
the solution of (56) by

Vi = 0pi1Vnel +,3n+b n=M-1,...,1,
we get formulas for 41, Bys1:

Ayl = _(Bn + Cnan)_lAm

,Bn+1 = _(Bn + Cnan)_l(lgn - Cnﬂn)r n= 17 oo ’M -1

Results of numerical calculations are presented in Tables 1-3 for both the first and second
order approximations in the cases N = M = 20,40, 80 and 160. Table 1 gives the error be-
tween the exact solution of NBVP and the solutions derived by difference schemes. Table 2
contains the error between exact and approximate u. Tables 3 includes the error for p. It
can be seen from Tables 1-3 that the second order of the ADS is more accurate compared
to the first order of the ADS.

5.2 Three dimensional example
Now, consider the three dimensional overdetermined elliptic two point NBVP

—EEExY) - THx) - TEEx ) + ult,x)) =f(6%,9) + p,),
0<x<1,0<y<1,0<t<],

ur(0,%,y) = ¢(x,),

w(Lx,y) — 3u(3,%,9) — 3u(5,%,9) = ¥ (x,9),

u(2,%,9) = ¢ (x,9),
0<x<1,0=<y=<1ut0)=u(1)=0,0<t<],

(57)
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where

f(t,x,y) = 2% sin(rrx) sin(7ry),
@(x,y) = —sin(rx) sin(r y),
V(x,y) = [—e‘l + %(e‘% + e‘%)] sin(rrx) sin(rry),

C(x,y) = (e’% + 1) sin(m x) sin(7r y).

It is easy to see that the pair functions p(x,y) = (272 + 1) sin(rrx) sin(y) and u(t,x,y) =
(e7* + 1) sin(rrx) sin( y) are an exact solution of (57).
Denote by [0,1]; x [0,1], x [0,1], the set of grid points depending on the small param-

eters T and /,

(0,1]; x [0,1]; x [0,1]4 = {(t&s X, ) : tx = kT, k = O, N,

X, =nh,n=0,M,y,, =mh,m=0,M,Nt =1,Mh = 1}.

Let us take

A —3 A ! A 5
0—5’ l—4r 2= "5
Ai Ai
li:|:_li|r :u‘i:_l_li: i:0,1;2;
T T

Pmn = Qo(xmym)r Yinn = 1p(xmym)r Cmn = s(xmym)’

n=0,M,m=0,M,;

fy];,n :f(tk)xmym)) k= O,N,ﬂ = O,M,Vl’l = O,M'

In the first stage, the difference schemes for the approximate solution of NBVP can be

written in the following forms:

k+1 k -1 k k k
_thf’lfzvm,nﬂ’]};,n _ Vm,n+1_2men+Vm,n—1
72 . h?

_ "lr(ml,n*z"m,n‘f"l;;fl,n + K _fk
2 mn ~—JSmn’

k=L,LN-1,n=1,M-1,m=1,M -1,
k k k
VO,n = VM,n = Vlr(n,n = Vm,M = 0’
k=0,...,Nn=1,M-1,m=1,M -1,

1 0 _
Vm,n - Vm,n = TPmn»

_ 1. 0+1 5 1/, 0o+l I
V%,n - fo\,,[,nl - g(Vr}':n - Vrit,n - _(V}’%l::’l - Vnz) = 1//m,;/u

3
n=1lM-1,n=1,M-1,

(58)
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and
V]r(n+}1_2vlr<n n+V]r<rT}I an n+1_2vl;n,rl+vfn n-1
e 2
vfn+ "—21/],;,’”+v';”_ "
- - 2 - + an,n :frﬁ,n’
k=1L, N-1,n=1,M-1,m=1,M -1,
k k 3
Vou =Vmnu = Vl;fn,n =V = 0,
k=0,...,.Nn=1,M-1,m=1,M -1, (59)
=30, +4v,  —VE
= 2t<pm_,,,3vﬁ‘n — 41/%;,1 + V%_,?
I j j
— LB+ 2V — (4 + 4p)Vi + (L + 200)V1 ]
I . 1
— LB+ 2t — (4 + 42)Vin + (L + 2)Vi2n] = 2TV s
n=1,M-1,n=1,M-1,
respectively.

In the second stage, the calculation of p,, (n =1,M —1, m =1, M — 1) is carried out by

! I/ If
(Cm,n+1 - Vy(n),y”l) - 2(§m,n - Vrg,n) + ({m,n—l - Vyg,n_l)

Pmn = —

h2
If I I
(Cm+1,n - V,sﬁ.l,n) - 2(§m,n - anl,n) + (Cm—l,n - Vy?,—l,n) lo
- h2 Vm,n’

for the first order approximation, and

1
Pmn = _ﬁ{[gm,nd - (N«Ovig;,lﬂ - (I"LO - 1)Vig,n+1)]

- 2[é‘m,n - (MOV?,;} = (o — 1)V£2,n)]

lo+1

+ [t = (oViSLy = (o =1V, )]}
1

- ﬁ{[gmﬂ,n - (Monfqﬁ,n - (MO - I)foqﬂ,n)]

- 2[Qn,n - (MOVE«?,:} - (MO - 1)fo91,n)]

+ [gm—l,n - (/’Lovf«ziin — (o — 1)"2—1,;1)]}

for the second order approximation.
In the third stage, we calculate {uX} by
k

_ K lo
U = Vi ¥ S =V and

Mo = Vi + Cmn = (10vi93! = (o = 1)V, )
for the first and second order approximation, respectively.

The difference problems (58) and (59) can be rewritten in the matrix form (56). In this
case, g, is (N +1)(M +1) x 1 a column matrix, A, B, C, I are (N + 1)(M +1) x (N +1)(M +1)

square matrices, and [ is the identity matrix, v is the (N + 1)(M + 1) x 1 column matrix
such that

t
— 0 0 0
VS—[Vo,s O L - FRNRTPRY, ANUPRNR S V%’S],

s=n-1Lmn+1.
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Denote
1 2 4 1
a:hz, b=1+ 2+ﬁ’ dzﬁ
Then
[0 o 0O O | Q@ o 0O O |
O E O O O D O O
A=C= ,  B= . ,
O O - E O O .- D
0 0o - 0 O | L 0 0 - 0 Q|

E =diag(0,a,a,...,a,0), Q = Iins1)x(N+1)s O = Oy x(N+1)»

Gon =St Xwym)y k=LN-Ln=1LM-1,m=1,M-1,

Dli,ij=b,  Dli-1,i]=d,  Dli,i-1]=d, i=2,N,

D[L1]=-1, D[L,2]=1, DIN+LN+1]=1,

DIN +1,N] = -1,

DIN +1,4] = —l, DIN +1,L] = —l, DIN +1,15] = 1
4 4 4

DIN +1,5 +1] = —, D[N+1,12+1]=%,

D[N +1,l3+1] = —,

N N =

Dl[i,j]=0, for otheriandj,

Con = TOmms Goon=TWmm n=LM-Lm=LM-1,
for the first order approximation, and

Dliil=b, Dli-1,il=d, Dli,i-1]=d, i=2,N,
D[1,11=-3, D[L,2]=4, D[,3]=-1, D[N+LN+1]=3,
DIN+1,N]=-4, DIN+1N-1]=-1,

1 1
D[N+1,ll +1] = —5(3 +2,U/1); D[N+1,11 + 1] = §(3 +2,LL1),

1 1
DIN+1,Lh-1] = _§(1 +2M1), DIN +1,l +1] = —5(3 +21432),

1 1
D[N+ 1, 12 + 1] = g(s + 2[1/2)’ D[N+ 1, 12 —1] = —g(l + 2[.1,2),

D[i,j]=0, for otheriand;

gqu,n =2TQmn» gf\n{n =2tV n=1lM-1m=1,M-1,

for the second order approximation.
In Tables 4-6, we give the results of the numerical calculations for both first and second
order approximations in the cases N = M =10, 20,40. Table 1 presents the error between
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Table 4 Error of v in example (57)

Difference scheme N=M=10 N=M=20 N=M=40
First order of the ADS 0.01089 0.00408 0.0017133
Second order of the ADS 539 x 1073 134 x 1073 327 x 107

Table 5 Error of u in example (57)

Difference scheme N=M=10 N=M=20 N=M=40
First order of the ADS 0.026598 0.013488 6.77 x 1073
Second order of the ADS 747 x 107 184 x 107 395 x 107

Table 6 Error of p in example (57)

Type of approximation N=M=10 N=M=20 N=M=40

First order of the ADS 041618 0.21802 0.11065
Second order of the ADS 271 %1073 6.64 x 107 140 x 1074

exact and approximately solutions of NBVP . Table 2 includes the error between exact and
approximate u. Table 3 gives the error for p. It can be seen from Tables 1-3 that the second
order of the ADS is more accurate compared with the first order of the ADS.

6 Conclusion
In the present paper, we discuss stability estimates for the solution of a Bitsadze-Samarskii
type elliptic overdetermined multipoint NBVP. We apply the finite difference method to
construct the first and second order of the ADSs for this problem and establish stabil-
ity estimates for its solutions. The abstract results established are applied to get stability
estimates for the solution of Bitsadze-Samarskii type overdetermined elliptic multidimen-
sional differential and difference problems with multipoint NBVCs. Stability estimates for
the solution of difference schemes are obtained. Finally, we present numerical results with
explanation on the realization for two dimensional and three dimensional elliptic overde-
termined multipoint NBVP in test examples.

Moreover, applying the results of [28, 32, 33] the high order ADSs for the numerical
solution of a Bitsadze-Samarskii type elliptic overdetermined multipoint NBVP can be

presented.
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