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Abstract. Approximate quadrature formulas for the numerical calculation of the two-dimensional Vekua potential and
singular integrals are obtained. The mechanical quadrature method for the two-dimensional quasilinear singular integral
equation with Vekua operators is described. The numerical results are compared with the exact solution of the integral
equation.
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INTRODUCTION

Singular integral equations are used for the solution of widely range of problems of physics and applied mechanics,
particularly in the areas of aerodynamics, fluid mechanics, elasticity (see [1-5] and references therein). On the other
hand, approximation methods for corresponding two-dimensional singular integral equations remain little studied [5-
13].

Consider Vekua potential and singular operators defined by [2]

T ρ =− 1

π

∫∫
G

ρ(ζ )
ζ − z

dζ , Sρ =− 1

π

∫∫
G

ρ(ζ )
(ζ − z)2

dζ , (1)

respectively.
Our aim in this paper is the construction of quadrature formulas for the numerical calculation of the two-dimensional

Vekua potential and singular integrals and their application for solving singular integral equations.
Some properties of the operators T and S are given in [3]. In [7], approximate formula for calculation of the singular

integral S in rectangular domain G was suggested.
Let K = {z ∈ C : |z| ≤ 1} be the unit disk in the complex plane, and Γ = {z ∈ C : |z|= 1} be the boundary of K.
Case G = K is important for the application. In [5], some grid sets on K were described, but these grid sets do not

permit us to get sufficiently small error in approximation of the singular integral.
In this work, we introduce some grid sets and obtain quadrature formulas for numerical the calculation of the two-

dimensional Vekua integral operators. In application, we apply these quadrature formulas to solve the two-dimensional
quasilinear singular integral equation with above mentioned operators.

APPROXIMATE FORMULA FOR CALCULATION OF T (ρ|z)
Introduce the sets of grid points

{rk | rk = kτ, 1 ≤ k ≤ N, Nτ = 1} ,{
θk,m | θk,m =−π +mhk, 0 ≤ m ≤ Mk, Mkhk = 2π

}
(Mk = 2k+1) .

Define

Dk,m =
{

ζ | ζ = reiθ , rk ≤ r ≤ rk+1,1 ≤ k ≤ N −1, θk,m ≤ θ ≤ θk,m+1, 0 ≤ m ≤ Mk −1
}
.

It is clear that area of Dk,m is πτ2. Moreover,
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∂Dk,m = Γkm = Γ1
km ∪Γ2

km ∪Γ3
km ∪Γ4

km,

where

Γ1
km =

{
ζ | ζ = reiθk,m+1 , rk ≤ r ≤ rk+1

}
,

Γ2
km =

{
ζ | ζ = rk+1eiθ , θk,m+1 ≥ θ ≥ θk,m

}
,

Γ3
km =

{
ζ | ζ = reiθk,m , rk+1 ≥ r ≥ rk

}
,

Γ4
km =

{
ζ | ζ = rkeiθ , θk,m ≤ θ ≤ θk,m+1

}
.

Let Kτ = {z ∈C : |z|< τ} be the disk with radius τ. Note that

K = Kτ

N−1⋃
k=1

Mk−1⋃
m=0

Dk,m.

Introduce the following two sets of grid points

Ω(1) = Ω(1)
τ ,h =

{
zk,m, zk+1,m, zk+1,m+1, zk,m+1| 1 ≤ k ≤ N −1, 0 ≤ m ≤ Mk −1

}∪{0} ,
and

Ω(2) = Ω(2)
τ ,h =

{
z∗k,m, z∗k+1,m, z∗k+1,m+1, z∗k,m+1 | 1 ≤ k ≤ N −1, 0 ≤ m ≤ Mk −1

}∪{0} .
Here,

zk,m = rkeiθk,m , zk+1,m = rk+1eiθk,m ,

zk+1,m+1 = rk+1eiθk,m+1 , zk,m+1 = rkeiθk,m+1 ,

z∗k,m =
(

rk +
τ
2

)
ei
(

θk,m+
hk
2

)
, z∗k+1,m =

(
rk+1 +

τ
2

)
ei
(

θk,m+
hk
2

)
,

z∗k+1,m+1 =
(

rk+1 +
τ
2

)
ei
(

θk,m+1+
hk
2

)
, z∗k,m+1 =

(
rk +

τ
2

)
ei
(

θk,m+1+
hk
2

)
.

To get approximate formula for the numerical calculation value of the integral on Ω(1) and Ω(2), we approximate
function in grid points Ω(2) and Ω(1), respectively.

Applying a step-by-step approximation of the function ρ (z), we can write

ρ̂(z) = ρkm, z ∈ Dk,m, ρkm = ρ(rkeiθk,m), 1 ≤ k ≤ N −1, 0 ≤ m ≤ Mk −1. (2)

Then, we get an approximate formula for the calculation of T (ρ |z) :

T (ρ |z)≈ T (ρ̂ | z) =
N−1

∑
k=1

Mk−1

∑
m=0

ρkmTk,m(z), (3)

where

Tk,m(z) =− 1

π

∫∫
Dk,m

dζ
ζ − z

.

Using Pompeu formula [3], we can obtain

Tk,m(z) =
{

z+ T̃k,m(z), z ∈ Dk,m,

T̃k,m(z), z /∈ Dk,m,
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where

T̃k,m(z) = − 1

2πi

{
zk,m+1

zk,m+1

[(
zk+1,m+1 − zk,m+1

)
+ z ln

(
zk+1,m+1 − z
zk,m+1 − z

)]
+

zk+1,mzk+1,m

z
ln

[(
zk+1,m − z

)
zk+1,m+1(

zk+1,m+1 − z
)

zk+1,m

]

+
zk,m

zk,m

[(
zk,m − zk+1,m

)
+ z ln

(
zk,m − z

zk+1,m − z

)]
+

zk,m+1zk,m+1

z
ln

[(
zk,m+1 − z

)
zk,m(

zk,m − z
)

zk,m+1

]}
,(z �= 0) ,

T̃k,m(0) = − 1

2πi

{
zk,m+1

zk,m+1

(
zk+1,m+1 − zk,m+1

)
+ zk+1,m

zk+1,m − zk+1,m+1

zk+1,m+1

+
zk,m

zk,m

(
zk,m − zk+1,m

)
+ zk,m+1

zk,m+1 − zk,m

zk,m

}
.

Theorem 1. Let ρ ∈ L2(K). For approximate formula (3) of the potential integral T , the following estimate is satisfied

‖T (ρ | z)−T (ρ̂ | z)‖L2(K) ≤ Mτ.

APPROXIMATE FORMULA FOR CALCULATION OF S(ρ|z)
Applying a step-by-step approximation (2) of the function ρ (z) , we can write an approximate formula for calculation
of S(ρ | z) :

S(ρ | z)≈ S(ρ̂ | z) =
N−1

∑
k=1

Mk−1

∑
m=0

ρkmSk,m(z), (4)

where

Sk,m(z) =− 1

π

∫∫
Dk,m

dζ
(ζ − z)2

.

Using Pompeu formula [3], we get

Sk,m(z) = − 1

2πi

{
zk,m+1

zk,m+1

[
ln

zk+1,m+1 − z
zk,m+1 − z

+ z

(
zk+1,m+1 − zk,m+1

)(
zk+1,m+1 − z

)(
zk,m+1 − z

)] (5)

+
zk+1,mzk+1,m

z

[
zk+1,m − zk+1,m+1(

zk+1,m+1 − z
)(

zk+1,m − z
) + 1

z
ln

(
zk+1,m+1 − z

)
zk+1,m(

zk+1,m − z
)

zk+1,m+1

]

+
zk+1,m

zk+1,m

[
ln

zk,m − z
zk+1,m − z

+ z

(
zk,m − zk+1,m

)(
zk,m − z

)(
zk+1,m − z

)]

+
zk,m+1zk,m+1

z

[
zk,m+1 − zk,m(

zk,m − z
)(

zk,m+1 − z
) + 1

z
ln

(
zk,m − z

)
zk,m+1(

zk,m+1 − z
)

zk,m

]}
,(z �= 0) ,

Sk,m(0) = − 1

2πi

{
zk,m+1

zk,m+1
ln

zk+1,m+1

zk,m+1
+

zk+1,mzk+1,m

2

(
− 1

z2
k+1,m

+
1

z2
k+1,m+1

)
(6)

+
zk+1,m

zk+1,m
ln

zk,m

zk+1,m
+

zk,m+1zk,m+1

2

(
− 1

z2
k,m+1

+
1

z2
k,m

)}
.
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Theorem 2. Let ρ ∈ L2(K). For approximate formula (4) of the singular integral S, the following estimate is satisfied

‖S(ρ | z)−S(ρ̂ | z)‖L2(K) ≤ Mτ.

APPROXIMATION OF SINGULAR INTEGRAL EQUATION

In this section, we apply the mechanical quadrature method to obtain numerical solution of the two-dimensional
quasilinear singular integral equation. We use quadrature formulas (5) and (6) for calculation of the two-dimensional
singular integrals.

Consider the following two-dimensional singular equation

f (z)−μ1( f |z)S( f |z)−μ2( f |z)S( f |z) = g(z), z ∈ K, (7)

where μ1, μ2, and g are given functions, μK = sup
K

(|μ1|+ |μ2|)< 1.

Let l2(Ω( j)) ( j = 1,2) be spaces of the grid functions ρτ ,h defined on Ω( j), equipped with the norms

∥∥∥ρτ ,h
∥∥∥

l2(Ω( j))
=
√

πτ

[
N−1

∑
k=1

Mk−1

∑
m=1

|ρk,m|2
]1/2

, (8)

where ρk,m = ρ(rkeiθk,m), rkeiθk,m ∈ Ω( j).

Let f ( j) be restriction of the function f (z) on the grid Ω( j) ( f ( j) = f (z), z ∈ Ω( j)) and S( j) f (z) = S( f |z), z ∈
Ω( j), j = 1,2. Applying approximate formula (4), we have the following difference problem for singular integral
equation (7)

f (2)(z∗)−μ(2)
1 ( f (2)|z∗)S(2) f (1)(z∗)−μ(2)

2 ( f (2)|z∗)S(2) f (1)(z∗) = g(2)(z∗), z∗ ∈ Ω(2),

f (1)(z)−μ(1)
1 ( f (1)|z)S(1) f (2)(z)−μ(1)

2 ( f (1)|z)S(1) f (2)(z) = g(1)(z), z ∈ Ω(1). (9)

For solving difference problem (9), we use the following iteration formulas

f (2)n+1(z
∗) = μ(2)

1 ( f (2)n |z∗)S(2) f (1)n (z∗)+μ(2)
2 ( f (2)n |z∗)S(2) f (1)n (z∗)+g(2)(z∗), z∗ ∈ Ω(2),

f (1)n+1(z) = μ(1)
1 ( f (1)n+1|z)S(1) f (2)n+1(z)+μ(1)

2 ( f (1)n+1|z)S(1) f (2)n+1(z)+g(1)(z), z ∈ Ω(1), n ≥ 0. (10)

Theorem 3. Difference problem (9) has an unique solution
(

f (1), f (2)
)

on the space of grid points
(

Ω(1),Ω(2)
)
.

Moreover, sequence
{(

f (1)n , f (2)n

)}∞

n=0
defined by (9) has a limit.

Example 1. Consider the two-dimensional singular integral equation

f (z)− | f |
3(| f |+1)

S( f |z)− | f |
3(| f |+1)

S( f |z) = zz− |z|2 (z2 + z2
)

3
(
|z|2 +1

) , z ∈ K. (11)

It is easy to see that f (z) = zz is the exact solution of singular integral equation (11) and the condition μK < 1 is
fulfilled.
Matlab software is used for calculation approximately solution of problem (11). We take f (1)0 (z) = 1, z ∈ K for the
initial data.

Table 1 displays error
∥∥∥ f (1)n − f (1)n−1

∥∥∥
l2(Ω(1))

between approximate solution in current and previous iteration in the

norm defined by (8). Table 2 shows the between the exact solution and the approximate solution in various iterations
using norm (8).
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TABLE 1. Error between approximate solutions in consecutive iterations

Iteration (n) N=10 N=20 N=40 N=80

1 1.0804 1.0485 1.0309 1.0216

2 2.9699×10−2 3.1593×10−2 3.3232×10−2 3.4137×10−2

3 1.586×10−3 1.9595×10−3 2.3324×10−3 2.5514×10−3

4 1.14×10−4 1.952×10−4 2.7894×10−4 3.3058×10−4

5 9.4905×10−6 2.3439×10−5 4.1685×10−5 5.4144×10−5

TABLE 2. Error analysis

N=10 N=20 N=40 N=80∥∥∥ f (1)5 − f (1)exact

∥∥∥
l2(Ω(1))

7.8358×10−3 4.0659×10−3 2.0808×10−3 1.0545×10−3

CONCLUSION

In the present paper, approximate quadrature formulas for the numerical calculation of the two-dimensional Vekua
potential and singular integrals are obtained. Moreover, applying the result of the monograph [5] the high order of
accuracy quadrature formulas can be presented. The mechanical quadrature method for two-dimensional quasilinear
singular integral equation with Vekua operators is described. The numerical results are compared with the exact
solution of the integral equation.
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