

Note on small singular values of sequences of matrices

Charyyar Ashyralyyev and Zafer Cakir

Citation: AIP Conference Proceedings 1611, 167 (2014); doi: 10.1063/1.4893824
View online: http://dx.doi.org/10.1063/1.4893824
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1611?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

A note on the limiting mean distribution of singular values for products of two Wishart random matrices J. Math. Phys. 54, 083303 (2013); 10.1063/1.4818978

Zero Singular Values Of Parameter Dependent Matrices
AIP Conf. Proc. 936, 288 (2007); 10.1063/1.2790132
Perturbation and Location of the Singular Values of Symmetrically Scaled Matrices
AIP Conf. Proc. 936, 255 (2007); 10.1063/1.2790123
On the largest singular values of random matrices with independent Cauchy entries J. Math. Phys. 46, 033302 (2005); 10.1063/1.1855932

Singularities in the spectra of random matrices
J. Math. Phys. 37, 5019 (1996); 10.1063/1.531686

Note on small singular values of sequences of matrices

Charyyar Ashyralyyev*, \dagger and Zafer Cakir*
*Department of Mathematical Engineering, Gumushane University, 29100, Gumushane, Turkey ${ }^{\dagger}$ TAU, Ashgabat, Turkmenistan

Abstract

In this paper, some sequences of matrices for matrix pencils are considered. Properties of small singular values of these matrices are investigated. Estimates for singular values are obtained. The result of computer calculations is given.

Keywords: Matrix pencils, Singular values, Matrix theory
PACS: 02.10.Ud, 02.10.Yn, 02.60.Dc

INTRODUCTION

Matrix pencils play important role in numerical linear algebra, control systems and signal processing (see, for example [1-9] and the references therein). In [4], authors revalued the relation between the critical points of approximating the eigenvalues of matrix pencils and pseudospectra of perturbed pencils. Matrix pencils are also important tools in signal processing [6].

Let C be an $r \times s$ matrix. Decomposition C as with orthogonal matrices U, V and diagonal matrix K with nonnegative real diagonal elements is called the singular decomposition of matrix C [10]:

$$
\begin{equation*}
C=V K U^{*} . \tag{1}
\end{equation*}
$$

The diagonal elements of the matrix K are called the singular values of matrix C and are denoted by

$$
\sigma_{1}(C)=k_{11}, \sigma_{2}(C)=k_{22}, \ldots, \sigma_{r}(C)=k_{r r} .
$$

Singular values of the matrix C are nonnegative square roots of the eigenvalues of the symmetric matrices $C C^{*}$ or $C^{*} C$. Usually, singular values are thought to be ordered, i.e.,

$$
0 \leq \sigma_{1}(C) \leq \sigma_{2}(C) \leq \ldots \leq \sigma_{r}(C)
$$

Let (A, B) be a pair of $m \times n$ matrices. For all $k=0,1, \ldots, m-1$, we consider the following sequence of matrices [1]

$$
\begin{gather*}
F_{0}=\left[\begin{array}{l}
A \\
B
\end{array}\right], F_{1}=\left[\begin{array}{cc}
A & 0 \\
B & A \\
0 & B
\end{array}\right], F_{2}=\left[\begin{array}{ccc}
A & 0 & 0 \\
B & A & 0 \\
0 & B & A \\
0 & 0 & B
\end{array}\right], \\
F_{k}=\left[\begin{array}{cccccc}
A & 0 & 0 & \cdots & 0 & 0 \\
B & A & 0 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \ddots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & B & A \\
0 & 0 & 0 & \cdots & 0 & B
\end{array}\right] \tag{2}
\end{gather*}
$$

which play important roles in construction of Kronecker canonical form of matrix pencils. This canonical form provides many applications in control systems (see [2-9] and references therein).

In this work, we obtain estimates for singular values of sequences of matrices (2). We investigate the properties of small singular values of these matrices. Furthermore, results of computer calculations are given.

The rest of this paper is organized as follows. In Section 2, we present estimates for singular values of F_{1}. In Section 3 , we obtain estimates for singular values of F_{l}. Section 4 is conclusion.

PROPERTY OF SMALL SINGULAR VALUES OF F_{1}

We investigate small singular values of F_{0}, F_{1} and define relations between counter of small singular values of these matrices. From definition it follows that

$$
F_{0}^{*} F_{0}=\left[A^{*} A+B^{*} B\right], F_{1}^{*} F_{1}=\left[\begin{array}{ll}
F_{0}^{*} F_{0} & B^{*} A \\
A^{*} B & F_{0}^{*} F_{0}
\end{array}\right] .
$$

Denote that $N_{0}=\min \{n, 2 m\}, N_{1}=\min \{2 n, 3 m\}$.
Theorem 1. Assume that $\sigma_{k}\left(F_{0}\right), k=1, \ldots, N_{0}$ and $\tau_{i}\left(F_{1}\right), i=1, \ldots, N_{1}$ are the ordered singular values of F_{0} and F_{1}, respectively. Let the following inequalities

$$
\begin{equation*}
0 \leq \sigma_{1}\left(F_{0}\right) \leq \sigma_{2}\left(F_{0}\right) \leq \cdots \leq \sigma_{\rho_{0}}\left(F_{0}\right) \leq \delta \tag{3}
\end{equation*}
$$

hold for singular values of F_{0}, where $\delta \geq 0$ is a small number and ρ_{0} is a natural number such that $\rho_{0} \leq N_{0}$. Then, for first $2 \rho_{0}$ singular values of F_{1} the inequalities

$$
\begin{equation*}
0 \leq \tau_{1}\left(F_{1}\right) \leq \tau_{2}\left(F_{1}\right) \leq \cdots \leq \tau_{\rho_{0}}\left(F_{1}\right) \leq \cdots \leq \tau_{2 \rho_{0}}\left(F_{1}\right) \leq \sqrt{2 \rho_{0}} \delta \tag{4}
\end{equation*}
$$

are satisfied.
Proof. Denote

$$
H=F_{1}^{*} F_{1}=\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{12}^{*} & H_{22}
\end{array}\right], \bar{H}=\left[\begin{array}{ll}
H_{11} & 0_{m \times m} \\
0_{m \times m} & H_{22}
\end{array}\right],
$$

where $H_{11}=H_{22}=F_{0}^{*} F_{0}, H_{12}=B^{*} A, 0_{m \times m}$ is $m \times m$ matrix with zero elements.
Let $\mu_{1}, \mu_{2}, \ldots, \mu_{2 n}$ be the eigenvalues of the matrix H and $s_{1}, s_{2}, \ldots, s_{2 n}$ be the eigenvalues of the matrix \bar{H}, here $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{2 n} \geq 0, s_{1} \geq s_{2} \geq \ldots \geq s_{2 n} \geq 0$. By using K. Fan's theorem [11, 12], we get

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i} \leq \sum_{i=1}^{k} \mu_{i} \tag{5}
\end{equation*}
$$

for each $1 \leq k \leq 2 n$ and

$$
\begin{equation*}
\sum_{i=1}^{2 n} s_{i}=\sum_{i=1}^{2 n} \mu_{i} \tag{6}
\end{equation*}
$$

Subtracting (5) from (6) for fixed k, we obtain

$$
\begin{equation*}
\sum_{i=k+1}^{2 n} s_{i} \geq \sum_{i=k+1}^{2 n} \mu_{i} \tag{7}
\end{equation*}
$$

From (7) it follows that the inequalities

$$
\begin{align*}
\mu_{2 n} & \leq s_{2 n} \tag{8}\\
\mu_{2 n-1} & \leq \mu_{2 n-1}+\mu_{2 n} \leq s_{2 n}+s_{2 n-1}, \\
& \vdots \\
\mu_{2 n-2 \rho_{0}+1} & \leq \sum_{i=2 \rho_{0}+1}^{2 n} \mu_{2 n-i+1} .
\end{align*}
$$

are valid.
First, suppose that $m \geq n$. By using definitions of eigenvalues and singular values, we have that

$$
\begin{equation*}
s_{1}=\lambda_{1}, s_{2}=\lambda_{1}, s_{3}=\lambda_{2}, s_{4}=\lambda_{2}, \ldots, s_{2 n-1}=\lambda_{n}, s_{2 n}=\lambda_{n} \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
& \lambda_{1}=\sigma_{n}^{2}\left(F_{0}\right), \lambda_{2}=\sigma_{n-1}^{2}\left(F_{0}\right), \ldots, \lambda_{n}=\sigma_{1}^{2}\left(F_{0}\right) \tag{10}\\
& \mu_{1}=\tau_{2 n}^{2}\left(F_{1}\right), \mu_{2}=\tau_{2 n-1}^{2}\left(F_{1}\right), \ldots, \mu_{n}=\tau_{n+1}^{2}\left(F_{1}\right), \cdots, \mu_{2 n}=\tau_{1}^{2}\left(F_{1}\right) . \tag{11}
\end{align*}
$$

Applying (3), (7), and (9)-(11), we have

$$
\begin{gathered}
\tau_{1}^{2}\left(F_{1}\right) \leq \sigma_{1}^{2}\left(F_{0}\right) \leq \delta^{2}, \\
\tau_{2}^{2}\left(F_{1}\right) \leq \sigma_{1}^{2}\left(F_{0}\right)+\sigma_{1}^{2}\left(F_{0}\right) \leq 2 \delta^{2}, \\
\tau_{3}^{2}\left(F_{1}\right) \leq \sigma_{1}^{2}\left(F_{0}\right)+\sigma_{1}^{2}\left(F_{0}\right)+\sigma_{2}^{2}\left(F_{0}\right) \leq 3 \delta^{2}, \cdots, \\
\tau_{2 \rho_{0}}^{2}\left(F_{1}\right) \leq \sigma_{1}^{2}\left(F_{0}\right)+\sigma_{1}^{2}\left(F_{0}\right)+\sigma_{2}^{2}\left(F_{0}\right)+\sigma_{2}^{2}\left(F_{0}\right)+\cdots+\sigma_{\rho_{0}-1}^{2}\left(F_{0}\right)+\sigma_{\rho_{0}-1}^{2}\left(F_{0}\right)+\sigma_{\rho_{0}}^{2}\left(F_{0}\right)+\sigma_{\rho_{0}}^{2}\left(F_{0}\right) \leq 2 \rho_{0} \delta^{2} .
\end{gathered}
$$

Hence, from these inequalities the required inequalities (4) follows for the case $m \geq n$.
Second, suppose that $m<n$. There are three subcases:

$$
\begin{align*}
2 m & <n \tag{12}\\
2 m & \geq n \text { and } 3 m<n \tag{13}\\
2 m & \geq n \text { and } 3 m \geq n . \tag{14}
\end{align*}
$$

Let us consider subcase (12). We have $3 m<n$. From definition of singular values it follows that formula (9) is valid. Hence, we get

$$
\begin{gather*}
\lambda_{n}=\lambda_{n-1}=\ldots=\lambda_{2 m-1}=0, \\
\lambda_{2 m}=\sigma_{1}^{2}\left(F_{0}\right), \lambda_{2 m+1}=\sigma_{2}^{2}\left(F_{0}\right), \ldots, \lambda_{1}=\sigma_{2 m}^{2}\left(F_{0}\right), \tag{15}\\
\mu_{2 n}=\mu_{2 n-1}=\cdots=\mu_{3 m+1}=0, \mu_{3 m}=\tau_{1}^{2}\left(F_{1}\right), \tag{16}\\
\mu_{3 m-1}=\tau_{2}^{2}\left(F_{1}\right), \ldots, \mu_{1}=\tau_{3 m}^{2}\left(F_{1}\right) .
\end{gather*}
$$

Applying (7) for $k=2 n-1,2 n-2, \cdots, 3 m-2 \rho_{0}-1$ and inequalities (9), (15), (16), we have that inequalities (4) are valid.
Now, we consider subcase (13). By using definition of singular values, we have (9), (10), (15). Applying (7) for $k=2 n-1,2 n-2, \cdots, 3 m-2 \rho_{0}-1$ and inequalities (3), (9), (10), (15), we get (4).

Finally, we consider subcase (14). By using definition of singular values, we obtain (9)-(11). In a similar manner as case $m \geq n$, we can get (4). The proof of Theorem 1 is completed.

PROPERTY OF SMALL SINGULAR VALUES OF F_{l}

Consider $F_{l}, 1<l<m$. Denote $N_{l}=\min \{(l+1) n,(l+2) m\}$. It is easy to get

$$
F_{l}^{*} F_{l}=\left[\begin{array}{cc}
F_{l-1}^{*} F_{l-1} & Q_{l} \\
Q_{l}^{*} & F_{0}^{*} F_{0}
\end{array}\right], Q_{l}=\left[\begin{array}{c}
0_{n l \times n} \\
B^{*} A
\end{array}\right],
$$

where $0_{n l \times n}$ is $n l \times n$ matrix with zero elements.
Theorem 2. Suppose that $\sigma_{i}\left(F_{l-1}\right)\left(i=1, \ldots, N_{l-1}\right), \eta_{k}\left(F_{0}\right)\left(k=1, \ldots, N_{0}\right)$, and $\tau_{j}\left(F_{l}\right)\left(j=1, \ldots, N_{l}\right)$ are the ordered singular values of F_{l-1} and F_{l}, respectively. Let the following inequalities

$$
\begin{align*}
& 0 \leq \sigma_{1}\left(F_{l-1}\right) \leq \sigma_{2}\left(F_{l-1}\right) \leq \cdots \leq \sigma_{\rho_{l-1}}\left(F_{l-1}\right) \leq \delta, \\
& 0 \leq \eta_{1}\left(F_{0}\right) \leq \eta_{2}\left(F_{0}\right) \leq \cdots \leq \eta_{\rho_{0}}\left(F_{0}\right) \leq \delta \tag{17}
\end{align*}
$$

be satisfied for singular values of F_{l-1} and F_{0} where $\delta \geq 0$ is a small number and ρ_{l-1} is a natural number such that $\rho_{l-1} \leq N_{l-1}$. Then, $\left(p_{l-1}+\rho_{0}\right)$ first singular values of F_{l} are small and the inequalities

$$
0 \leq \tau_{1}\left(F_{l}\right) \leq \tau_{2}\left(F_{l}\right) \leq \cdots \leq \tau_{\rho_{l-1}}\left(F_{l}\right) \leq \cdots \leq \tau_{\rho_{l-1}+\rho_{0}}\left(F_{l}\right) \leq \sqrt{\rho_{l-1}+\rho_{0}} \delta
$$

are valid.

Consider $F_{k}, 2<k<m$. Denote $N_{k}=\min \{(k+1) n,(k+2) m\}$. Let $0 \leq l, q<m$, such that $l+q<m$. We can obtain

$$
F_{l+q+1}^{*} F_{l+q+1}=\left[\begin{array}{cc}
F_{l}^{*} F_{l} & P_{l q} \\
P_{l q}^{*} & F_{q}^{*} F_{q}
\end{array}\right], P_{l q}=\left[\begin{array}{cc}
0_{n(l+1) \times n} & 0_{n(l+1) \times n(q+1)} \\
B^{*} A & 0_{n \times n(q+1)}
\end{array}\right],
$$

where $0_{n(l+1) \times n(q+1)}$ is $n(l+1) \times n(q+1)$ matrix with zero elements.
Theorem 3. Assume that $\sigma_{i}\left(F_{l}\right)\left(i=1, \ldots, N_{l}\right), \eta_{k}\left(F_{q}\right)\left(k=1, \ldots, N_{q}\right)$, and $\tau_{j}\left(F_{l+q+1}\right),\left(j=1, \ldots, N_{l+q+1}\right)$ are the ordered singular values of F_{l}, F_{q} and F_{l}, respectively. Let the following inequalities

$$
\begin{align*}
& 0 \leq \sigma_{1}\left(F_{l}\right) \leq \sigma_{2}\left(F_{l}\right) \leq \cdots \leq \sigma_{\rho_{l}}\left(F_{l}\right) \leq \delta, \\
& 0 \leq \eta_{1}\left(F_{q}\right) \leq \eta_{2}\left(F_{q}\right) \leq \cdots \leq \eta_{\rho_{q}}\left(F_{q}\right) \leq \delta \tag{18}
\end{align*}
$$

be satisfied for singular values of F_{l} and F_{q}, where $\delta \geq 0$ is a small number and ρ_{l} is a natural number such that $\rho_{l} \leq N_{l}$. Then $\left(p_{l}+\rho_{q}\right)$ first singular values of F_{l+q+1} are small and the inequalities

$$
0 \leq \tau_{1}\left(F_{l+q+1}\right) \leq \tau_{2}\left(F_{l+q+1}\right) \leq \cdots \leq \tau_{\rho_{l}}\left(F_{l+q+1}\right) \leq \cdots \leq \tau_{\rho_{l}+\rho_{q}}\left(F_{l+q+1}\right) \leq \sqrt{\rho_{l}+\rho_{q}} \delta
$$

are satisfied.
Now, we shall consider the following example:

$$
n=4, m=5, A=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], B=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Matlab software is used to calculate the singular values of sequence matrices. Table 1 presents singular values of $F_{0}, F_{1}, F_{2}, F_{3}$.

TABLE 1. Singular values of matrices

Singular values of F_{0}	0	1	1	1.4142	1.4142
Singular values of F_{1}	0	0	0.61803	1	1
	1	1	1.4142	1.618	1.7321
Singular values of F_{2}	0	0	0	0.44504	0.61803
	1	1	1	1	1
	1.247	1.4142	1.618	1.7321	1.8019
Singular values of F_{3}	0	0	0	$1.282 \mathrm{e}-016$	0.44504
	0.44504	0.61803	1	1	1
	1	1	1	1.247	1.247
	1.4142	1.618	1.7321	1.8019	1.8019

For small number $\delta=1.3 \cdot 10^{-16}$ we have $\rho_{0}=1, \rho_{1}=2, \rho_{2}=3, \rho_{3}=4$. As it can be seen from Table 1, numbers of small singular values for matrices $F_{0}, F_{1}, F_{2}, F_{3}$ are $1,2,3,4$, respectively.

CONCLUSION

We consider some sequences of matrices for matrix pencils. Properties of small singular values of these matrices are investigated. Estimates for singular values are obtained. Example with computer calculations is given.

REFERENCES

1. F. R. Gantmacher, The Theory of Matrices 1, 2, American Mathematical Society Chelsea, New York, 1959.
2. L. Dai, Singular Control Systems, Springer Verlag, New York, 1989.
3. A. Diaz, and M. I. Garcia-Planas, 14th WSEAS International Conference on Applied Mathematics, Puerto de la Cruz, Spain, edited by C.A.Bulucea, V. Mladenov, E. Pop, et al. (Recent Advances in Applied Mathematics, Book Series: Math. Comput. Sci. Eng.) (WSEAS, Athens, Greece, 2009) 64-69.
4. Sk. S. Ahmad, R. Alam, and R. Byers, SIAM J. Matrix Anal. Appl. 31, 1915-1933 (2010).
5. R. C. Li, Math.Comp. 72, 715-728 (2003).
6. C. Chang, Z. Ding, S. F. Yau, and F. H. Y. Chan, IEEE Trans. Automat. Contr. 48, 900-907 (2000).
7. S. Wang, X. Guan, D. Wang, X. Ma, and Y. Su, Electronic Letters 43, 3-5 (2007).
8. F. R. Chang, and H. C. Chen, Syst. Control Lett. 18, 179-182 (1992).
9. A. S. Morse, SIAM J. Contr. 11, 446-465, (1973).
10. A. G. Antonov, S. K. Godunov, O. P. Kirriluk, and V. I. Costin, Guaranteed Accuracy of Solution of Linear Equations System in Euclide Space, Nauka, Novosibirsk, 1988.
11. K. Fan, Inequalities for eigenvalues of Hermitian matrices, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series, U. S. Government Printing Office, Washington, D.C., no. 39 131-139 (1954).
12. A. W. Marshall, and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
