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Abstract. In this paper, some sequences of matrices for matrix pencils are considered. Properties of small singular values of
these matrices are investigated. Estimates for singular values are obtained. The result of computer calculations is given.
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INTRODUCTION

Matrix pencils play important role in numerical linear algebra, control systems and signal processing (see, for example
[1–9] and the references therein). In [4], authors revalued the relation between the critical points of approximating the
eigenvalues of matrix pencils and pseudospectra of perturbed pencils. Matrix pencils are also important tools in signal
processing [6].

Let C be an r×s matrix. Decomposition C as with orthogonal matrices U,V and diagonal matrix K with nonnegative
real diagonal elements is called the singular decomposition of matrix C [10]:

C =V KU∗. (1)

The diagonal elements of the matrix K are called the singular values of matrix C and are denoted by

σ1(C) = k11, σ2(C) = k22, . . . ,σr(C) = krr.

Singular values of the matrix C are nonnegative square roots of the eigenvalues of the symmetric matrices CC∗ or
C∗C. Usually, singular values are thought to be ordered, i.e.,

0 ≤ σ1(C)≤ σ2(C)≤ . . .≤ σr(C).

Let (A,B) be a pair of m× n matrices. For all k = 0,1, . . . ,m− 1, we consider the following sequence of matrices
[1]

F0 =

[
A
B

]
, F1 =

⎡
⎣ A 0

B A
0 B

⎤
⎦ , F2 =

⎡
⎢⎣

A 0 0
B A 0
0 B A
0 0 B

⎤
⎥⎦ ,

Fk =

⎡
⎢⎢⎢⎢⎣

A 0 0 · · · 0 0
B A 0 · · · 0 0

· · · · · · · · · . . . · · · · · ·
0 0 0 · · · B A
0 0 0 · · · 0 B

⎤
⎥⎥⎥⎥⎦ (2)

which play important roles in construction of Kronecker canonical form of matrix pencils. This canonical form
provides many applications in control systems (see [2–9] and references therein).

In this work, we obtain estimates for singular values of sequences of matrices (2). We investigate the properties of
small singular values of these matrices. Furthermore, results of computer calculations are given.

The rest of this paper is organized as follows. In Section 2, we present estimates for singular values of F1. In Section
3, we obtain estimates for singular values of Fl . Section 4 is conclusion.
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PROPERTY OF SMALL SINGULAR VALUES OF F1

We investigate small singular values of F0, F1 and define relations between counter of small singular values of these
matrices. From definition it follows that

F∗
0 F0 = [A∗A+B∗B] , F∗

1 F1 =

[
F∗

0 F0 B∗A
A∗B F∗

0 F0

]
.

Denote that N0 = min{n,2m} , N1 = min{2n,3m} .
Theorem 1. Assume that σk(F0), k = 1, . . . ,N0 and τi(F1), i = 1, . . . ,N1 are the ordered singular values of F0 and F1,
respectively. Let the following inequalities

0 ≤ σ1(F0)≤ σ2(F0)≤ ·· · ≤ σρ0
(F0)≤ δ (3)

hold for singular values of F0, where δ ≥ 0 is a small number and ρ0 is a natural number such that ρ0 ≤ N0. Then, for
first 2ρ0 singular values of F1 the inequalities

0 ≤ τ1 (F1)≤ τ2(F1)≤ ·· · ≤ τρ0
(F1)≤ ·· · ≤ τ2ρ0

(F1)≤
√

2ρ0δ (4)

are satisfied.

Proof. Denote

H = F∗
1 F1 =

[
H11 H12

H∗
12 H22

]
, H =

[
H11 0m×m
0m×m H22

]
,

where H11 = H22 = F∗
0 F0, H12 = B∗A, 0m×m is m×m matrix with zero elements.

Let μ1,μ2, . . . ,μ2n be the eigenvalues of the matrix H and s1,s2, . . . ,s2n be the eigenvalues of the matrix H, here
μ1 ≥ μ2 ≥ . . .≥ μ2n ≥ 0,s1 ≥ s2 ≥ . . .≥ s2n ≥ 0. By using K. Fan’s theorem [11, 12], we get

k

∑
i=1

si ≤
k

∑
i=1

μi (5)

for each 1 ≤ k ≤ 2n and
2n

∑
i=1

si =
2n

∑
i=1

μi. (6)

Subtracting (5) from (6) for fixed k, we obtain

2n

∑
i=k+1

si ≥
2n

∑
i=k+1

μi. (7)

From (7) it follows that the inequalities

μ2n ≤ s2n, (8)

μ2n−1 ≤ μ2n−1 +μ2n ≤ s2n + s2n−1,

...

μ2n−2ρ0+1 ≤
2n

∑
i=2ρ0+1

μ2n−i+1.

are valid.
First, suppose that m ≥ n. By using definitions of eigenvalues and singular values, we have that

s1 = λ1, s2 = λ1, s3 = λ2, s4 = λ2, . . . ,s2n−1 = λn, s2n = λn, (9)
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and

λ1 = σ2
n (F0), λ2 = σ2

n−1(F0), . . . ,λn = σ2
1 (F0), (10)

μ1 = τ2
2n(F1), μ2 = τ2

2n−1(F1), . . . ,μn = τ2
n+1(F1), · · · ,μ2n = τ2

1 (F1). (11)

Applying (3), (7), and (9)-(11), we have
τ2

1 (F1)≤ σ2
1 (F0)≤ δ 2,

τ2
2 (F1)≤ σ2

1 (F0)+σ2
1 (F0)≤ 2δ 2,

τ2
3 (F1)≤ σ2

1 (F0)+σ2
1 (F0)+σ2

2 (F0)≤ 3δ 2, · · · ,
τ2

2ρ0
(F1)≤ σ2

1 (F0)+σ2
1 (F0)+σ2

2 (F0)+σ2
2 (F0)+ · · ·+σ2

ρ0−1(F0)+σ2
ρ0−1(F0)+σ2

ρ0
(F0)+σ2

ρ0
(F0)≤ 2ρ0δ 2.

Hence, from these inequalities the required inequalities (4) follows for the case m ≥ n.
Second, suppose that m < n. There are three subcases:

2m < n; (12)

2m ≥ n and 3m < n; (13)

2m ≥ n and 3m ≥ n. (14)

Let us consider subcase (12). We have 3m < n. From definition of singular values it follows that formula (9) is valid.
Hence, we get

λn = λn−1 = . . .= λ2m−1 = 0,

λ2m = σ2
1 (F0), λ2m+1 = σ2

2 (F0), . . . ,λ1 = σ2
2m(F0), (15)

μ2n = μ2n−1 = · · ·= μ3m+1 = 0, μ3m = τ2
1 (F1), (16)

μ3m−1 = τ2
2 (F1), . . . ,μ1 = τ2

3m(F1).

Applying (7) for k = 2n−1,2n−2, · · · ,3m−2ρ0 −1 and inequalities (9), (15), (16), we have that inequalities (4) are
valid.

Now, we consider subcase (13). By using definition of singular values, we have (9), (10), (15). Applying (7) for
k = 2n−1,2n−2, · · · ,3m−2ρ0 −1 and inequalities (3), (9), (10), (15), we get (4).

Finally, we consider subcase (14). By using definition of singular values, we obtain (9)-(11). In a similar manner as
case m ≥ n, we can get (4). The proof of Theorem 1 is completed.

PROPERTY OF SMALL SINGULAR VALUES OF Fl

Consider Fl ,1 < l < m. Denote Nl = min{(l +1)n,(l +2)m} . It is easy to get

F∗
l Fl =

[
F∗

l−1Fl−1 Ql
Q∗

l F∗
0 F0

]
, Ql =

[
0nl×n
B∗A

]
,

where 0nl×n is nl ×n matrix with zero elements.

Theorem 2. Suppose that σi(Fl−1) (i = 1, . . . ,Nl−1), ηk(F0) (k = 1, . . . ,N0), and τ j(Fl) ( j = 1, . . . ,Nl) are the ordered
singular values of Fl−1 and Fl , respectively. Let the following inequalities

0 ≤ σ1(Fl−1)≤ σ2(Fl−1)≤ ·· · ≤ σρl−1
(Fl−1)≤ δ ,

0 ≤ η1(F0)≤ η2(F0)≤ ·· · ≤ ηρ0
(F0)≤ δ (17)

be satisfied for singular values of Fl−1 and F0 where δ ≥ 0 is a small number and ρl−1 is a natural number such that
ρl−1 ≤ Nl−1. Then, (pl−1 +ρ0) first singular values of Fl are small and the inequalities

0 ≤ τ1(Fl)≤ τ2(Fl)≤ ·· · ≤ τρl−1
(Fl)≤ ·· · ≤ τρl−1+ρ0

(Fl)≤
√

ρl−1 +ρ0δ

are valid.
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Consider Fk, 2 < k < m. Denote Nk = min{(k+1)n, (k+2)m} . Let 0 ≤ l, q < m, such that l + q < m. We can
obtain

F∗
l+q+1Fl+q+1 =

[
F∗

l Fl Plq
P∗

lq F∗
q Fq

]
, Plq =

[
0n(l+1)×n 0n(l+1)×n(q+1)

B∗A 0n×n(q+1)

]
,

where 0n(l+1)×n(q+1) is n(l +1)×n(q+1) matrix with zero elements.

Theorem 3. Assume that σi(Fl) (i = 1, . . . ,Nl), ηk(Fq) (k = 1, . . . ,Nq), and τ j(Fl+q+1),
(

j = 1, . . . ,Nl+q+1

)
are the

ordered singular values of Fl , Fq and Fl , respectively. Let the following inequalities

0 ≤ σ1(Fl)≤ σ2(Fl)≤ ·· · ≤ σρl (Fl)≤ δ ,
0 ≤ η1(Fq)≤ η2(Fq)≤ ·· · ≤ ηρq(Fq)≤ δ (18)

be satisfied for singular values of Fl and Fq, where δ ≥ 0 is a small number and ρl is a natural number such that
ρl ≤ Nl . Then (pl +ρq) first singular values of Fl+q+1 are small and the inequalities

0 ≤ τ1(Fl+q+1)≤ τ2(Fl+q+1)≤ ·· · ≤ τρl (Fl+q+1)≤ ·· · ≤ τρl+ρq(Fl+q+1)≤
√

ρl +ρqδ

are satisfied.

Now, we shall consider the following example:

n = 4, m = 5, A =

⎡
⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣

1 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1

⎤
⎥⎦ .

Matlab software is used to calculate the singular values of sequence matrices. Table 1 presents singular values of
F0, F1, F2, F3.

TABLE 1. Singular values of matrices

Singular values of F0 0 1 1 1.4142 1.4142

Singular values of F1 0 0 0.61803 1 1
1 1 1.4142 1.618 1.7321

Singular values of F2 0 0 0 0.44504 0.61803
1 1 1 1 1

1.247 1.4142 1.618 1.7321 1.8019

Singular values of F3 0 0 0 1.282e-016 0.44504
0.44504 0.61803 1 1 1

1 1 1 1.247 1.247
1.4142 1.618 1.7321 1.8019 1.8019

For small number δ = 1.3 ·10−16 we have ρ0 = 1, ρ1 = 2, ρ2 = 3, ρ3 = 4. As it can be seen from Table 1, numbers
of small singular values for matrices F0, F1, F2, F3 are 1,2,3,4, respectively.

CONCLUSION

We consider some sequences of matrices for matrix pencils. Properties of small singular values of these matrices are
investigated. Estimates for singular values are obtained. Example with computer calculations is given.
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